Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues. An association between certain mutations in the mitochondrial genome and cancer was reported. In other studies of 2-4 generations in each family, we found that mitochondrial mutations associated with atherosclerosis are inherited. This may at least partially explain the inheritance of predisposition to atherosclerotic disease by maternal line. Furthermore, to prove the important role of mitochondrial mutations in the development of atherosclerotic manifestations at the cellular level, we developed a technique for editing the mitochondrial genome. A recent article described how one of the pro-atherogenic mutations, namely m.15059G>A, was eliminated from such monocyte-derived cells using the technique we developed. Elimination of this mutation resulted in the restoration to normal levels of initially defective mitophagy and impaired inflammatory response. These data strongly suggest that mitochondrial mutations are closely associated with the development of atherosclerotic lesions. Considering that they are inherited, it can be assumed that, at least partly, the genetic predisposition to atherosclerotic diseases is transmitted from mother to offspring. Thus, despite the small size of mitochondrial DNA, its mutations may play a role in the pathogenesis of diseases. Further study of their role will make it possible to consider mitochondrial mutations as promising diagnostic markers and disorders caused by mutations as pharmacological targets.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673291199241129044139
2025-01-14
2025-10-02
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/32/CMC-32-32-01.html?itemId=/content/journals/cmc/10.2174/0109298673291199241129044139&mimeType=html&fmt=ahah

References

  1. DombiE. MortiboysH. PoultonJ. Modulating mitophagy in mitochondrial disease.Curr. Med. Chem.201925405597561210.2174/092986732466617061610174128618992
    [Google Scholar]
  2. YangS. HanY. LiuJ. SongP. XuX. ZhaoL. HuC. XiaoL. LiuF. ZhangH. SunL. Mitochondria: A novel therapeutic target in diabetic nephropathy.Curr. Med. Chem.201724293185320210.2174/092986732466617050912100328486920
    [Google Scholar]
  3. SahebkarA. MalhotraK. MalikA. AlmalkiW.H. KesharwaniP. Reactive oxygen species and its manipulation strategies in cancer treatment.Curr. Med. Chem.2025321553710.2174/092986733066623060911045537303173
    [Google Scholar]
  4. BianY. HouW. ChenX. FangJ. XuN. RuanB.H. Glutamate dehydrogenase as a promising target for hyperinsulinism hyperammonemia syndrome therapy.Curr. Med. Chem.202229152652267210.2174/092986732866621082510534234525914
    [Google Scholar]
  5. Leitão-RochaA. Guedes-DiasP. PinhoB. OliveiraJ. Trends in mitochondrial therapeutics for neurological disease.Curr. Med. Chem.201522202458246710.2174/092986732266615020916031725666789
    [Google Scholar]
  6. MorisakiT. KatanoM. Mitochondria-targeting therapeutic strategies for overcoming chemoresistance and progression of cancer.Curr. Med. Chem.200310232517252110.2174/092986703345643114529467
    [Google Scholar]
  7. AguilarK. JakubekP. ZorzanoA. WieckowskiM.R. Primary mitochondrial diseases: The intertwined pathophysiology of bioenergetic dysregulation, oxidative stress and neuroinflammation.Eur. J. Clin. Invest.2024547e1421710.1111/eci.1421738644687
    [Google Scholar]
  8. SongN. MeiS. WangX. HuG. LuM. Focusing on mitochondria in the brain: From biology to therapeutics.Transl. Neurodegener.20241312310.1186/s40035‑024‑00409‑w38632601
    [Google Scholar]
  9. XiaoY. LiuX. XieK. LuoJ. ZhangY. HuangX. LuoJ. TanS. Mitochondrial dysfunction induced by HIF-1α under hypoxia contributes to the development of gastric mucosal lesions.Clin. Transl. Med.2024144e165310.1002/ctm2.165338616702
    [Google Scholar]
  10. XuM. WangW. ChengJ. QuH. XuM. WangL. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis.Biomed. Pharmacother.202417411658710.1016/j.biopha.2024.11658738636397
    [Google Scholar]
  11. RenH. HuW. JiangT. YaoQ. QiY. HuangK. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets.Biomed. Pharmacother.202417411654510.1016/j.biopha.2024.11654538603884
    [Google Scholar]
  12. DonatoL. MordàD. ScimoneC. AlibrandiS. D’AngeloR. SidotiA. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases.Free Radic. Biol. Med.202421810511910.1016/j.freeradbiomed.2024.03.02538565400
    [Google Scholar]
  13. FangX. ZhangY. WuH. WangH. MiaoR. WeiJ. ZhangY. TianJ. TongX. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links.Int. J. Biochem. Cell Biol.202417010656910.1016/j.biocel.2024.10656938556159
    [Google Scholar]
  14. ForteM. D’AmbrosioL. SchiattarellaG.G. SalernoN. PerroneM.A. LoffredoF.S. BerteroE. PilichouK. MannoG. ValentiV. SpadaforaL. BernardiM. SimeoneB. SartoG. FratiG. PerrinoC. SciarrettaS. Italian Society of Cardiology Working Group on Cellular and Molecular Biology of the Heart Mitophagy modulation for the treatment of cardiovascular diseases.Eur. J. Clin. Invest.2024548e1419910.1111/eci.1419938530070
    [Google Scholar]
  15. PromilaL. JoshiA. KhanS. AggarwalA. LahiriA. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes.Mitochondrion202373627110.1016/j.mito.2023.10.00438506094
    [Google Scholar]
  16. ZhangW. LiuD. YuanM. ZhuL.Q. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases.Ageing Res. Rev.20249710230710.1016/j.arr.2024.10230738614368
    [Google Scholar]
  17. NatarelliN. GahooniaN. AflatooniS. BhatiaS. SivamaniR.K. Dermatologic manifestations of mitochondrial dysfunction: A review of the literature.Int. J. Mol. Sci.2024256330310.3390/ijms2506330338542277
    [Google Scholar]
  18. FariaR. BoisguérinP. SousaÂ. CostaD. Delivery systems for mitochondrial gene therapy: A review.Pharmaceutics202315257210.3390/pharmaceutics1502057236839894
    [Google Scholar]
  19. Del DottoV. MusianiF. BaraccaA. SolainiG. Variants in human ATP synthase mitochondrial genes: Biochemical dysfunctions, associated diseases, and therapies.Int. J. Mol. Sci.2024254223910.3390/ijms2504223938396915
    [Google Scholar]
  20. BlagovA. NedosugovaL. KirichenkoT. SukhorukovV. MelnichenkoA. OrekhovA. Mitochondrial dysfunction as a factor of energy metabolism disorders in type 2 diabetes mellitus.Front. Biosci.2024161510.31083/j.fbs160100538538341
    [Google Scholar]
  21. YanW. XieC. SunS. ZhengQ. WangJ. WangZ. ManC.H. WangH. YangY. WangT. ShiL. ZhangS. HuangC. XuS. WangY.P. SUCLG1 restricts POLRMT succinylation to enhance mitochondrial biogenesis and leukemia progression.EMBO J.202443122337236710.1038/s44318‑024‑00101‑938649537
    [Google Scholar]
  22. ShabalinaIG EdgarD GibanovaN. KalinovichA.V. PetrovicN. VyssokikhM.Y. CannonB. NedergaardJ. Enhanced ROS production in mitochondria from prematurely aging mtDNA mutator mice.Biochemistry2024Feb89227929810.1134/S0006297924020081
    [Google Scholar]
  23. ChenX. MengF. ChenC. LiS. ChouZ. XuB. MoJ.Q. GuoY. GuanM.X. Deafness-associated tRNAPhe mutation impaired mitochondrial and cellular integrity.J. Biol. Chem.2024300510723510.1016/j.jbc.2024.10723538552739
    [Google Scholar]
  24. LiX. ShangJ. LiS. WangY. Identification of a novel mitochondrial trna mutation in chinese family with type 2 diabetes mellitus.Pharm. Genomics Pers. Med.20241714916110.2147/PGPM.S43897838645701
    [Google Scholar]
  25. Brañas CasasR. ZuppardoA. RisatoG. DinarelloA. CeleghinR. FontanaC. GrelloniE. GileaA.I. ViscomiC RasolaA. Dalla ValleL. LodiT. BaruffiniE. FacchinelloN. ArgentonF. TisoN. Zebrafish polg2 knock-out recapitulates human POLG-disorders; Implications for drug treatment.Cell Death Dis.2024Apr15428110.1038/s41419‑024‑06622‑9
    [Google Scholar]
  26. FerreiraR.C. RodriguesC.R. BroachJ.R. BrionesM.R.S. Convergent mutations and single nucleotide variants in mitochondrial genomes of modern humans and neanderthals.Int. J. Mol. Sci.2024257378510.3390/ijms2507378538612593
    [Google Scholar]
  27. OzluC. MessahelS. MinassianB. KayaniS. Mitochondrial encephalopathies and myopathies: Our tertiary center’s experience.Eur. J. Paediatr. Neurol.202450314010.1016/j.ejpn.2024.03.00538583367
    [Google Scholar]
  28. FerreiraT. PolavarapuK. OlimpioC. ParamonovI. LochmüllerH. HorvathR. Variants in mitochondrial disease genes are common causes of inherited peripheral neuropathies.J. Neurol.202427163546355310.1007/s00415‑024‑12319‑y38549004
    [Google Scholar]
  29. WalshD.J. BernardD.J. FiddlerJ.L. PangilinanF. EspositoM. HaroldD. FieldM.S. Parle-McDermottA. BrodyL.C. Vitamin B12 status and folic acid supplementation influence mitochondrial heteroplasmy levels in mice.PNAS Nexus202434pgae11610.1093/pnasnexus/pgae11638560530
    [Google Scholar]
  30. ZhuangX. YeR. ZhouY. ChengM.Y. CuiH. WangL. ZhangS. WangS. CuiY. ZhangW. Leveraging new methods for comprehensive characterization of mitochondrial DNA in esophageal squamous cell carcinoma.Genome Med.20241615010.1186/s13073‑024‑01319‑238566210
    [Google Scholar]
  31. ChenY. CaoW. LiB. QiaoX. WangX. YangG. LiS. The potential role of hydrogen sulfide in regulating macrophage phenotypic changes via PINK1/parkin-mediated mitophagy in sepsis-related cardiorenal syndrome.Immunopharmacol. Immunotoxicol.202446213915110.1080/08923973.2023.228190137971696
    [Google Scholar]
  32. YaoX. LiuY. YangY. LiY. HuN. SongF. YangF. Microcystin-LR-exposure-induced kidney damage by inhibiting MKK6-mediated mitophagy in mice.Toxins202315640410.3390/toxins1506040437368704
    [Google Scholar]
  33. ZhongJ. ZhaoG. EdwardsS. TranJ. RajagopalanS. RaoX. Particulate air pollution exaggerates diet-induced insulin resistance through NLRP3 inflammasome in mice.Environ. Pollut.202332812160310.1016/j.envpol.2023.12160337062408
    [Google Scholar]
  34. YouL. ZhaoY. KucaK. WangX. OleksakP. ChrienovaZ. NepovimovaE. JaćevićV. WuQ. WuW. Hypoxia, oxidative stress, and immune evasion: a trinity of the trichothecenes T-2 toxin and deoxynivalenol (DON).Arch. Toxicol.20219561899191510.1007/s00204‑021‑03030‑233765170
    [Google Scholar]
  35. ChichovaM. TasinovO. ShkodrovaM. MishonovaM. SazdovaI. IlievaB. Doncheva-StoimenovaD. Kiselova-KanevaY. RaikovaN. UzunovB. IvanovaD. GagovH. New data on cylindrospermopsin toxicity.Toxins20211314110.3390/toxins1301004133429940
    [Google Scholar]
  36. DuncanB.B. CastilhosC.D. BraccoP.A. SchmidtM.I. KangS. ImS. LeeH.K. VigoÁ. PakY.K. Aryl-hydrocarbon receptor binding and the incidence of type 2 diabetes: The Brazilian longitudinal study of adult health (ELSA-Brasil).Environ. Health202019110510.1186/s12940‑020‑00658‑y33046063
    [Google Scholar]
  37. GaoZ. MeiJ. YanX. JiangL. GengC. LiQ. ShiX. LiuY. CaoJ. Cr (VI) induced mitophagy via the interaction of HMGA2 and PARK2.Toxicol. Lett.202033326126810.1016/j.toxlet.2020.08.01232866567
    [Google Scholar]
  38. SrinivasanP. ThrowerE.C. GorelickF.S. SaidH.M. Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.Am. J. Physiol. Gastrointest. Liver Physiol.201631010G874G88310.1152/ajpgi.00461.201526999808
    [Google Scholar]
  39. NgP.C. Hendry-HoferT.B. WiteofA.E. BrennerM. MahonS.B. BossG.R. HaouziP. BebartaV.S. Hydrogen sulfide toxicity: Mechanism of action, clinical presentation, and countermeasure development.J. Med. Toxicol.201915428729410.1007/s13181‑019‑00710‑531062177
    [Google Scholar]
  40. LibiadM. VitvitskyV. BostelaarT. BakD.W. LeeH.J. SakamotoN. FearonE. LyssiotisC.A. WeerapanaE. BanerjeeR. Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells.J. Biol. Chem.201929432120771209010.1074/jbc.RA119.00944231213529
    [Google Scholar]
  41. CatalaniE. BrunettiK. Del QuondamS. CerviaD. Targeting mitochondrial dysfunction and oxidative stress to prevent the neurodegeneration of retinal ganglion cells.Antioxidants20231211201110.3390/antiox1211201138001864
    [Google Scholar]
  42. ManiV. DashI. ChandrashekarS. NatarajanM. β- caryophyllene attenuates oxidative stress and hepatocellular mitochondrial dysfunction in type-2 diabetic rats induced with high fat and fructose diets.Int. J. Health Sci.202418271638455602
    [Google Scholar]
  43. ModiH.R. MusyajuS. RatcliffeM. ShearD.A. ScultetusA.H. PandyaJ.D. Mitochondria-targeted antioxidant therapeutics for traumatic brain injury.Antioxidants202413330310.3390/antiox1303030338539837
    [Google Scholar]
  44. HussainA. AshiqueS. AfzalO. AltamimiM.A. MalikA. KumarS. GargA. SharmaN. FaridA. KhanT. AltamimiA.S.A. A correlation between oxidative stress and diabetic retinopathy: An updated review.Exp. Eye Res.202323610965010.1016/j.exer.2023.10965037734426
    [Google Scholar]
  45. JiangJ. NiL. ZhangX. GokulnathP. VulugundamG. LiG. WangH. XiaoJ. Moderate-intensity exercise maintains redox homeostasis for cardiovascular health.Adv. Biol.202374220020410.1002/adbi.20220020436683183
    [Google Scholar]
  46. ZhangZ. HuangQ. ZhaoD. LianF. LiX. QiW. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications.Front. Endocrinol.202314111236310.3389/fendo.2023.111236336824356
    [Google Scholar]
  47. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox1202051736830075
    [Google Scholar]
  48. KaurP. AttriS. SinghD. RashidF. SinghS. KumarA. KaurH. BediN. AroraS. Neuromodulatory effect of 4-(methylthio)butyl isothiocyanate against 3-nitropropionic acid induced oxidative impairments in human dopaminergic SH-SY5Y cells via BDNF/CREB/TrkB pathway.Sci. Rep.2023131446110.1038/s41598‑023‑31716‑336932199
    [Google Scholar]
  49. ZhuN. LiuR. XuM. LiY. The potential of bioactive fish collagen oligopeptides against hydrogen peroxide-induced NIH/3T3 and HUVEC damage: The involvement of the mitochondria.Nutrients2024167100410.3390/nu1607100438613037
    [Google Scholar]
  50. CasatiS.R. CerviaD. Roux-BiejatP. MoscheniC. PerrottaC. De PalmaC. Mitochondria and reactive oxygen species: The therapeutic balance of powers for duchenne muscular dystrophy.Cells202413757410.3390/cells1307057438607013
    [Google Scholar]
  51. LongY. AngY. ChenW. WangY. ShiM. HuF. ZhouQ. ShiY. GeB. PengY. YuW. BaoH. LiQ. DuanM. GaoJ. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway.Free Radic. Biol. Med.202421813214810.1016/j.freeradbiomed.2024.03.02238554812
    [Google Scholar]
  52. Reynaud-DulaurierR. ClémentR. YjjouS. CressonC. SaoudiY. FaideauM. DecressacM. The blood–brain barrier is unaffected in the Ndufs4−/− mouse model of leigh syndrome.Int. J. Mol. Sci.2024259482810.3390/ijms2509482838732047
    [Google Scholar]
  53. XieX. HuangC. Role of the gut–muscle axis in mitochondrial function of ageing muscle under different exercise modes.Ageing Res. Rev.20249810231610.1016/j.arr.2024.10231638703951
    [Google Scholar]
  54. ZhangH. MuhetarijiangM. ChenR.J. HuX. HanJ. ZhengL. ChenT. Mitochondrial dysfunction: A roadmap for understanding and tackling cardiovascular aging.Aging Dis.202410.14336/AD.2024.005838739929
    [Google Scholar]
  55. ZhangD. JiL. YangY. WengJ. MaY. LiuL. MaW. Ceria nanoparticle systems alleviate degenerative changes in mouse postovulatory aging oocytes by reducing oxidative stress and improving mitochondrial functions.ACS Nano20241821136181363410.1021/acsnano.4c0038338739841
    [Google Scholar]
  56. QueirozM.I.C. LazaroC.M. dos SantosL.M.B. RentzT. Virgilio-da-SilvaJ.V. Moraes-VieiraP.M.M. CunhaF.A.S. SantosJ.C.C. VercesiA.E. LeiteA.C.R. OliveiraH.C.F. In vivo chronic exposure to inorganic mercury worsens hypercholesterolemia, oxidative stress and atherosclerosis in the LDL receptor knockout mice.Ecotoxicol. Environ. Saf.202427511625410.1016/j.ecoenv.2024.11625438547729
    [Google Scholar]
  57. ChenC.C. HsuL.W. ChenK.D. ChiuK.W. ChenC.L. HuangK.T. Emerging roles of calcium signaling in the development of non-alcoholic fatty liver disease.Int. J. Mol. Sci.202123125610.3390/ijms2301025635008682
    [Google Scholar]
  58. BalanA.I. HalațiuV.B. ScridonA. Oxidative stress, inflammation, and mitochondrial dysfunction: A link between obesity and atrial fibrillation.Antioxidants202413111710.3390/antiox1301011738247541
    [Google Scholar]
  59. RossiM.M. SignoriniF.J. CastilloT.A. ParadaM.P.S. MoserF. BaezM. Sleeve gastrectomy reduces oxidative stress and reverses mitochondrial dysfunction associated with metabolic syndrome.Obes. Surg.20243462042205310.1007/s11695‑024‑07244‑y38653888
    [Google Scholar]
  60. WarrenC.E. CampbellK.M. KirkhamM.N. SaitoE.R. RemundN.P. CayabyabK.B. KimI.J. HeimuliM.S. ReynoldsP.R. ArroyoJ.A. BikmanB.T. The effect of diesel exhaust particles on adipose tissue mitochondrial function and inflammatory status.Int. J. Mol. Sci.2024258432210.3390/ijms2508432238673906
    [Google Scholar]
  61. SanginetoM. BukkeV.N. BellantiF. TamborraR. MoolaA. DudaL. VillaniR. RomanoA.D. ServiddioG. A novel nutraceuticals mixture improves liver steatosis by preventing oxidative stress and mitochondrial dysfunction in a NAFLD model.Nutrients202113265210.3390/nu1302065233671262
    [Google Scholar]
  62. HenschkeS. NolteH. MagoleyJ. KleeleT. BrandtC. HausenA.C. WunderlichC.M. BauderC.A. AschauerP. ManleyS. LangerT. WunderlichF.T. BrüningJ.C. Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver.Science2024384669443844610.1126/science.adk100538662831
    [Google Scholar]
  63. Vilas-BoasE.A. KowaltowskiA.J. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus.Free Radic. Biol. Med.202421919521410.1016/j.freeradbiomed.2024.04.23438677486
    [Google Scholar]
  64. WesselinkE. KoekkoekW.A.C. GrefteS. WitkampR.F. van ZantenA.R.H. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence.Clin. Nutr.201938398299510.1016/j.clnu.2018.08.03230201141
    [Google Scholar]
  65. Díaz-CasadoM.E. QuilesJ.L. Barriocanal-CasadoE. González-GarcíaP. BattinoM. LópezL.C. Varela-LópezA. The paradox of coenzyme Q10 in aging.Nutrients2019119222110.3390/nu1109222131540029
    [Google Scholar]
  66. ShiH.Z. WangY.J. WangY.X. XuL.F. PanW. ShiL. WangJ. The potential benefits of PGC-1α in treating Alzheimer’s disease are dependent on the integrity of the LLKYL L3 motif: Effect of regulating mitochondrial axonal transportation.Exp. Gerontol.202419411251410.1016/j.exger.2024.11251438971132
    [Google Scholar]
  67. ZhouZ. ZhaoQ. HuangY. MengS. ChenX. ZhangG. ChiY. XuD. YinZ. JiangH. YuL. WangH. Berberine ameliorates chronic intermittent hypoxia-induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling.J. Cell. Mol. Med.20242812e1840710.1111/jcmm.1840738894630
    [Google Scholar]
  68. LiuB.H. XuC.Z. LiuY. LuZ.L. FuT.L. LiG.R. DengY. LuoG.Q. DingS. LiN. GengQ. Mitochondrial quality control in human health and disease.Mil. Med. Res.20241113210.1186/s40779‑024‑00536‑538812059
    [Google Scholar]
  69. MaX. NiuM. NiH.M. DingW.X. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer.Hepatology202410109710.1097/HEP.000000000000091038683546
    [Google Scholar]
  70. ZhangY. YaoB. GuoY. HuangS. LiuJ. ZhangY. LiangC. HuangJ. TangY. WangX. Sorafenib reduces the production of epoxyeicosatrienoic acids and leads to cardiac injury by inhibiting CYP2J in rats.Biochem. Pharmacol.202422311616910.1016/j.bcp.2024.11616938548244
    [Google Scholar]
  71. XieY. KeX. YeZ. LiX. ChenZ. LiuJ. WuZ. LiuQ. DuX. Se-methylselenocysteine ameliorates mitochondrial function by targeting both mitophagy and autophagy in the mouse model of Alzheimer’s disease.Food Funct.20241584310432210.1039/D4FO00520A38529619
    [Google Scholar]
  72. RebeloM. PiresM. AzuraraL. CâmaraL. PereiraM. RibeirinhoA. PadeiraG. SilvaP.G. JacintoS. VieiraJ.P. FerreiraA.C. Metabolic myopathies: Experience of a reference center of inherited metabolic diseases.Endocr. Metab. Immune Disord. Drug Targets20232310.2174/011871530327920823101205193737859320
    [Google Scholar]
  73. FinstererJ. Update review about metabolic myopathies.Life20201044310.3390/life1004004332316520
    [Google Scholar]
  74. AndreuA.L. HannaM.G. ReichmannH. BrunoC. PennA.S. TanjiK. PallottiF. IwataS. BonillaE. LachB. Morgan-HughesJ. ShanskeS. SueC.M. PulkesT. SiddiquiA. ClarkJ.B. LandJ. IwataM. SchaeferJ. DiMauroS. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA.N. Engl. J. Med.1999341141037104410.1056/NEJM19990930341140410502593
    [Google Scholar]
  75. QuigleyC. StephensonK.A.J. KennaP.F. CassidyL. Peripapillary retinal nerve fibre layer thinning, perfusion changes and optic neuropathy in carriers of Leber hereditary optic neuropathy-associated mitochondrial variants.BMJ Open Ophthalmol.202491e00129510.1136/bmjophth‑2023‑00129538471715
    [Google Scholar]
  76. AlgahtaniH. ShirahB. AbdulkareemA.A. BibiF. PushparajP.N. NaseerM.I. Leber hereditary optic neuropathy presenting as bilateral visual loss and white matter disease.Bioinformation202319322622910.6026/9732063001922637808372
    [Google Scholar]
  77. ChannerK.S. ChannerJ.L. CampbellM.J. ReesJ.R. Cardiomyopathy in the Kearns-Sayre syndrome.Heart198859448649010.1136/hrt.59.4.4863370184
    [Google Scholar]
  78. MakS.C. ChiC.S. ChenC.H. ShianW.J. Clinical manifestation of mitochondrial diseases in children.Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi19933442472568213154
    [Google Scholar]
  79. HornáS. PéčM.J. KrivušJ. MichalováR. SivákŠ. GalajdaP. MokáňM. Gastrointestinal complications of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome managed by parenteral nutrition.Eur. J. Case Rep. Intern. Med.202411200426810.12890/2024_00426838352812
    [Google Scholar]
  80. WangW. ZhaoY. XuX. MaX. SunY. LinY. ZhaoY. XuZ. WangJ. RenH. WangB. ZhaoD. WangD. LiuF. LiW. YanC. JiK. A different pattern of clinical, muscle pathology and brain MRI findings in MELAS with mt-ND variants.Ann. Clin. Transl. Neurol.20231061035104510.1002/acn3.5178737221696
    [Google Scholar]
  81. GalosiS. ManciniC. CommoneA. CalligariP. CaputoV. NardecchiaF. CarducciC. van den HeuvelL.P. PizziS. BrusellesA. NicetaM. MartinelliS. RodenburgR.J. TartagliaM. LeuzziV. Biallelic variants of MRPS36 cause a new form of leigh syndrome.Mov. Disord.20243971225123110.1002/mds.2979538685873
    [Google Scholar]
  82. LoC.H. LiuZ. ChenS. LinF. BerneshawiA.R. YuC.Q. KooE.B. KowalT.J. NingK. HuY. WangW.J. LiaoY.J. SunY. Primary cilia formation requires the Leigh syndrome–associated mitochondrial protein NDUFAF2.J. Clin. Invest.202413413e17556010.1172/JCI17556038949024
    [Google Scholar]
  83. LoprioreP. PalermoG. MeliA. BelliniG. BeneventoE. MontanoV. SicilianoG. MancusoM. CeravoloR. Mitochondrial parkinsonism: A practical guide to genes and clinical diagnosis.Mov. Disord. Clin. Pract.202411894896510.1002/mdc3.1414838943319
    [Google Scholar]
  84. PengoM. SquitieriF. Beyond CAG repeats: The multifaceted role of genetics in Huntington disease.Genes202415680710.3390/genes1506080738927742
    [Google Scholar]
  85. BurrS.P. ChinneryP.F. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease.Hum. Mol. Genet.202433R1R3R1110.1093/hmg/ddae05938779777
    [Google Scholar]
  86. FunkeV.L.E. SandmannS. MelcherV. SeggewissJ. HorvathJ. JägerN. KoolM. JonesD.T.W. PfisterS.M. MildeT. RutkowskiS. MynarekM. VargheseJ. SträterR. RustS. SeelhöferA. ReunertJ. FiedlerB. SchüllerU. MarquardtT. KerlK. Mitochondrial DNA mutations in Medulloblastoma.Acta Neuropathol. Commun.202311112410.1186/s40478‑023‑01602‑037501103
    [Google Scholar]
  87. SobeninI.A. ZhelankinA.V. KhasanovaZ.B. SinyovV.V. MedvedevaL.V. SagaidakM.O. MakeevV.J. KolmychkovaK.I. SmirnovaA.S. SukhorukovV.N. PostnovA.Y. GrechkoA.V. OrekhovA.N. Heteroplaslma.Biomolecules20199945510.3390/biom909045531500189
    [Google Scholar]
  88. OrekhovA.N. NikiforovN.G. OmelchenkoA.V. SinyovV.V. SobeninI.A. VinokurovA.Y. OrekhovaV.A. The role of mitochondrial mutations in chronification of inflammation: Hypothesis and overview of own data.Life2022128115310.3390/life1208115336013333
    [Google Scholar]
  89. SobeninI.A. SazonovaM.A. PostnovA.Y. SalonenJ.T. BobryshevY.V. OrekhovA.N. Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One201387e6807010.1371/journal.pone.006807023874496
    [Google Scholar]
  90. OrekhovA.N. We must abandon the myth: Oxidized low-density lipoprotein is not a lipoprotein that plays a key role in atherogenesis.Curr. Med. Chem.20243110.2174/010929867330123624031111380738494931
    [Google Scholar]
  91. OrekhovA.N. AndreevaE.R. MikhailovaI.A. GordonD. Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions.Atherosclerosis19981391414810.1016/S0021‑9150(98)00044‑69699890
    [Google Scholar]
  92. LeeR.J. AdappaN.D. PalmerJ.N. Effects of Akt activator SC79 on human M0 macrophage phagocytosis and cytokine production.Cells2024131190210.3390/cells1311090238891035
    [Google Scholar]
  93. OrekhovA.N. ZhuravlevA.D. VinokurovA.Y. NikiforovN.G. OmelchenkoA.V. SukhorukovV.N. SinyovV.V. SobeninI.A. Defective mitophagy impairs response to inflammatory activation of macrophage-like cells.Curr. Med. Chem.20253211112210.2174/010929867329464324022810595738441018
    [Google Scholar]
  94. OrekhovA. NikiforovN. IvanovaE. SobeninI. Possible role of mitochondrial DNA mutations in chronification of inflammation: Focus on atherosclerosis.J. Clin. Med.20209497810.3390/jcm904097832244740
    [Google Scholar]
  95. VuscanP. KischkelB. JoostenL.A.B. NeteaM.G. Trained immunity: General and emerging concepts.Immunol. Rev.2024323116418510.1111/imr.1332638551324
    [Google Scholar]
  96. SukhorukovV.N. KhotinaV.A. KalmykovV.A. ZhuravlevA.D. SinyovV.V. PopovD.Y. VinokurovA.Y. SobeninI.A. OrekhovA.N. Mitochondrial genome editing: Exploring the possible relationship of the atherosclerosis-associated mutation m.15059G>A with defective mitophagy.J. Lipid Atheroscler.202413216618310.12997/jla.2024.13.2.16638826184
    [Google Scholar]
  97. OrekhovA.N. SukhorukovV.N. NikiforovN.G. KubekinaM.V. SobeninI.A. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. PoznyakA.V. WuW.K. KasianovA.S. MakeevV.Y. ManabeI. OishiY. Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response—what is first?Int. J. Mol. Sci.2020218271610.3390/ijms2108271632295185
    [Google Scholar]
  98. OrekhovA.N. NikiforovN.G. SukhorukovV.N. KubekinaM.V. SobeninI.A. WuW.K. FoxxK.K. PintusS. StegmaierP. StelmashenkoD. KelA. GratchevA.N. MelnichenkoA.A. WetzkerR. SummerhillV.I. ManabeI. OishiY. Role of phagocytosis in the pro-inflammatory response in LDL-induced foam cell formation; A transcriptome analysis.Int. J. Mol. Sci.202021381710.3390/ijms2103081732012706
    [Google Scholar]
  99. DöringY. van der VorstE.P.C. WeberC. Targeting immune cell recruitment in atherosclerosis.Nat. Rev. Cardiol.202411710.1038/s41569‑024‑01023‑z38664575
    [Google Scholar]
  100. MovatH.Z. MoreR.H. HaustM.D. The diffuse intimal thickening of the human aorta with aging.Am. J. Pathol.19583461023103113583094
    [Google Scholar]
  101. BobryshevY.V. AndreevaE.R. MikhailovaI.A. AndrianovaI.V. MoisenovichM.M. KhapchaevS. AgapovI.I. SobeninI.A. LustaK.A. OrekhovA.N. Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta.Atherosclerosis2011219117118310.1016/j.atherosclerosis.2011.07.01621831373
    [Google Scholar]
  102. OrekhovA.N. IvanovaE.A. MarkinA.M. NikiforovN.G. SobeninI.A. Genetics of arterial-wall-specific mechanisms in atherosclerosis: Focus on mitochondrial mutations.Curr. Atheroscler. Rep.202022105410.1007/s11883‑020‑00873‑532772280
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673291199241129044139
Loading
/content/journals/cmc/10.2174/0109298673291199241129044139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test