Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Non-Nucleoside Reverse Transcriptases Inhibitors (NNRTIs) are among the most extensively studied enzymes for understanding the biology of Human Immunodeficiency Viruses (HIV) and designing inhibitors for managing HIV infections. Indolyl aryl sulfones (IASs), an underexplored class of potent NNRTIs, require further exploration for the development of newer drugs for HIV.

Aims

In this context, we synthesized a series of novels by Indolyl Aryl Sulfones with a hydrazone moiety at the carboxylate site of the indole nucleus. A 2D-QSAR model was developed to predict Reverse Transcriptase inhibitory activity against wild-type RT (WT-RT) enzyme.

Methods

The model was successfully applied to predict the HIV-1 inhibitory activity of known Indolyl Aryl Sulfones. Considering the reliability, robustness, and reproducibility of the 2D-QSAR model, we made an prediction of the RT inhibition for our synthesized compounds (-).

Results

Molecular docking and dynamics simulations established our synthesized Indolyl Aryl Sulfones, particularly compounds , and , as effective NNRTIs by stabilizing HIV reverse transcriptase's structure. Binding energy calculations revealed compound as the strongest inhibitor (-43.21 ± 0.09 kcal/mol), followed by (-40.94 ± 0.10 kcal/mol) and (-39.18±0.08 kcal/mol), emphasizing their binding affinity towards HIV reverse transcriptase.

Conclusion

In summary, the synthesized Indolyl Aryl Sulfones, particularly compounds , , and , demonstrate significant potential as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) against HIV. These results highlight the promising role of these compounds in developing novel NNRTIs for managing HIV infections.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673318987240926052450
2024-10-14
2025-10-22
Loading full text...

Full text loading...

References

  1. WHOThe Global Health Observatory: Explore a world of health data.2021Available From: https://www.who.int/data/gho/data/themes/hiv-aids
  2. WHO Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach, 2nd ed.2016Available from: https://www.who.int/publications/i/item/9789241549684
  3. EstéJ.A. CihlarT. Current status and challenges of antiretroviral research and therapy.Antiviral Res.2010851253310.1016/j.antiviral.2009.10.00720018390
    [Google Scholar]
  4. CortezK.J. MaldarelliF. Clinical management of HIV drug resistance.Viruses20113434737810.3390/v304034721994737
    [Google Scholar]
  5. De ClercqE. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS).Adv. Pharmacol.20136731735810.1016/B978‑0‑12‑405880‑4.00009‑323886005
    [Google Scholar]
  6. HawkinsT. Understanding and managing the adverse effects of antiretroviral therapy.Antiviral Res.201085120120910.1016/j.antiviral.2009.10.01619857521
    [Google Scholar]
  7. SilvestriR. De MartinoG. La ReginaG. ArticoM. MassaS. VargiuL. MuraM. LoiA.G. MarcedduT. La CollaP. Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: Synthesis and SAR studies.J. Med. Chem.200346122482249310.1021/jm021106312773052
    [Google Scholar]
  8. WilliamsT.M. CiccaroneT.M. MacToughS.C. RooneyC.S. BalaniS.K. CondraJ.H. EminiE.A. GoldmanM.E. GreenleeW.J. KauffmanL.R. 5-Chloro-3-(phenylsulfonyl)indole-2-carboxyamide: A novel non nucleoside inhibitor of the HIV-1 reverse transcriptase.J. Med. Chem.199336129110.1021/jm00061a0227683725
    [Google Scholar]
  9. SilvestriR. ArticoM. De MartinoG. La ReginaG. LoddoR. La CollaM. La CollaP. La CollaP. Simple, short peptide derivatives of a sulfonylindolecarboxamide (L-737,126) active in vitro against HIV-1 wild type and variants carrying non-nucleoside reverse transcriptase inhibitor resistance mutations.J. Med. Chem.200447153892389610.1021/jm031147e15239667
    [Google Scholar]
  10. YoungS.D. AmblardM.C. BritcherS.F. GreyV.E. TranL.O. LummaW.C. HuffJ.R. SchleifW.A. EminiE.E. O’BrienJ.A. PettiboneD.J. 2-Heterocyclic indole-3-sulfones as inhibitors of HIV-1 reverse transcriptase.Bioorg. Med. Chem. Lett.19955549149610.1016/0960‑894X(95)00059‑3
    [Google Scholar]
  11. RagnoR. ArticoM. De MartinoG. La ReginaG. ColucciaA. Di PasqualiA. SilvestriR. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives.J. Med. Chem.200548121322310.1021/jm040854k15634015
    [Google Scholar]
  12. RagnoR. ColucciaA. La ReginaG. De MartinoG. PiscitelliF. LavecchiaA. NovellinoE. BergaminiA. CiapriniC. SinistroA. MagaG. CrespanE. ArticoM. SilvestriR. Design, molecular modeling, synthesis, and anti-HIV-1 activity of new indolyl aryl sulfones. Novel derivatives of the indole-2-carboxamide.J. Med. Chem.200649113172318410.1021/jm051249016722636
    [Google Scholar]
  13. La ReginaG. ColucciaA. PiscitelliF. BergaminiA. SinistroA. CavazzaA. MagaG. SamueleA. ZanoliS. NovellinoE. ArticoM. SilvestriR. Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: Role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity.J. Med. Chem.200750205034503810.1021/jm070488f17803291
    [Google Scholar]
  14. StorerR. AlexandreF. R. DoussonC. MoussaA. M. BridgesE. StewartA. WangJ. Y. MayesB. A. Enantiomerically pure phosphoindoles as HIV inhibitors.WO Patent 2008042240A22008
  15. ZhaoZ. WolkenbergS.E. LuM. MunshiV. MoyerG. FengM. CarellaA.V. EctoL.T. GabryelskiL.J. LaiM-T. PrasadS.G. YanY. McGaugheyG.B. MillerM.D. LindsleyC.W. HartmanG.D. VaccaJ.P. WilliamsT.M. WilliamsT.M. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs).Bioorg. Med. Chem. Lett.200818255455910.1016/j.bmcl.2007.11.08518083561
    [Google Scholar]
  16. ConsonniV. BallabioD. TodeschiniR. Comments on the definition of the Q2 parameter for QSAR validation.J. Chem. Inf. Model.20094971669167810.1021/ci900115y19527034
    [Google Scholar]
  17. DuchowiczP.R. GoodarziM. OcsachoqueM.A. RomanelliG.P. OrtizE.V. AutinoJ.C. BennardiD.O. RuizD.M. CastroE.A. QSAR analysis on Spodoptera litura antifeedant activities for flavone derivatives.Sci. Total Environ.2009408227728510.1016/j.scitotenv.2009.09.04119846206
    [Google Scholar]
  18. WeaverS. GleesonM.P. The importance of the domain of applicability in QSAR modeling.J. Mol. Graph. Model.20082681315132610.1016/j.jmgm.2008.01.00218328754
    [Google Scholar]
  19. GramaticaP. ChiricoN. PapaE. CassaniS. KovarichS. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models.J. Comput. Chem.201334242121213210.1002/jcc.23361
    [Google Scholar]
  20. LiuY. ZhangY. HuC. WanJ.P. WenC. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction.RSC Advances2014467355283553010.1039/C4RA05206D
    [Google Scholar]
  21. AliM. AliS. KhanM. RashidU. AhmadM. KhanA. Al-HarrasiA. UllahF. LatifA. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives.Bioorg. Chem.20188047247910.1016/j.bioorg.2018.06.03229990895
    [Google Scholar]
  22. BoraeiA. El AshryE. BarakatA. GhabbourH. Synthesis of new functionalized indoles based on ethyl indol-2-carboxylate.Molecules201621333310.3390/molecules2103033326978331
    [Google Scholar]
  23. RoyU. LuckL.A. Molecular modeling of estrogen receptor using molecular operating environment.Biochem. Mol. Biol. Educ.200735423824310.1002/bmb.6521591100
    [Google Scholar]
  24. KhanA. KhanM. HalimS.A. KhanZ.A. ShafiqZ. Al-HarrasiA. Quinazolinones as competitive inhibitors of carbonic anhydrase-II (human and bovine): Synthesis, in-vitro, in-silico, selectivity, and kinetics studies.Front Chem.2020859809510.3389/fchem.2020.59809533335888
    [Google Scholar]
  25. LiuX. ShiD. ZhouS. LiuH. LiuH. YaoX. Molecular dynamics simulations and novel drug discovery.Expert Opin. Drug Discov.2018131233710.1080/17460441.2018.140341929139324
    [Google Scholar]
  26. CaseD.A. AktulgaH.M. BelfonK. CeruttiD.S. CisnerosG.A. CruzeiroV.W.D. ForouzeshN. GieseT.J. GötzA.W. GohlkeH. IzadiS. KasavajhalaK. KaymakM.C. KingE. KurtzmanT. LeeT.S. LiP. LiuJ. LuchkoT. LuoR. ManathungaM. MachadoM.R. NguyenH.M. O’HearnK.A. OnufrievA.V. PanF. PantanoS. QiR. RahnamounA. RishehA. Schott-VerdugoS. ShajanA. SwailsJ. WangJ. WeiH. WuX. WuY. ZhangS. ZhaoS. ZhuQ. CheathamT.E.III RoeD.R. RoitbergA. SimmerlingC. YorkD.M. NaganM.C. MerzK.M.Jr. AmberTools.J. Chem. Inf. Model.202363206183619110.1021/acs.jcim.3c0115337805934
    [Google Scholar]
  27. TianC. KasavajhalaK. BelfonK.A.A. RaguetteL. HuangH. MiguesA.N. BickelJ. WangY. PincayJ. WuQ. SimmerlingC. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution.J. Chem. Theory Comput.202016152855210.1021/acs.jctc.9b0059131714766
    [Google Scholar]
  28. SenguptaA. LiZ. SongL.F. LiP. MerzK.M.Jr Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models.J. Chem. Inf. Model.202161286988010.1021/acs.jcim.0c0139033538599
    [Google Scholar]
  29. WangB. MerzK.M. A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules.J. Chem. Theory Comput.20062120921510.1021/ct050212s26626395
    [Google Scholar]
  30. WangJ. WangW. KollmanP.A. CaseD.A. Antechamber: An accessory software package for molecular mechanical calculations.J. Am. Chem. Soc.200122212001
    [Google Scholar]
  31. KräutlerV. Van GunsterenW.F. HünenbergerP.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations.J. Comput. Chem.200122550150810.1002/1096‑987X(20010415)22:5<501::AID‑JCC1021>3.0.CO;2‑V
    [Google Scholar]
  32. HarrisJ.A. LiuR. Martins de OliveiraV. Vázquez-MontelongoE.A. HendersonJ.A. ShenJ. GPU-accelerated all-atom particle-mesh ewald continuous constant pH molecular dynamics in amber.J. Chem. Theory Comput.202218127510752710.1021/acs.jctc.2c0058636377980
    [Google Scholar]
  33. PressW.H. FlanneryB.P. TeukolskyS.A. VetterlingW.T. KramerP.B. Numerical recipes: The art of scientific computingPhys. Today1987401012012210.1063/1.2820230
    [Google Scholar]
  34. SindhikaraD.J. KimS. VoterA.F. RoitbergA.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules.J. Chem. Theory Comput.2009561624163110.1021/ct800573m26609854
    [Google Scholar]
  35. RoeD.R. CheathamT.E.III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  36. HalimS.A. WaqasM. KhanA. OgalyH.A. OthmanG. Al-HarrasiA. Identification of potential agonist-like molecules for α2-adrenergic receptor by multi-layer virtual screening to combat sinusitis.Comput. Biol. Med.202316710769310.1016/j.compbiomed.2023.10769337976818
    [Google Scholar]
  37. KollmanP.A. MassovaI. ReyesC. KuhnB. HuoS. ChongL. LeeM. LeeT. DuanY. WangW. DoniniO. CieplakP. SrinivasanJ. CaseD.A. CheathamT.E.III. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models.Acc. Chem. Res.2000331288989710.1021/ar000033j11123888
    [Google Scholar]
  38. WangW. DoniniO. ReyesC.M. KollmanP.A. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions.Annu. Rev. Biophys. Biomol. Struct.200130121124310.1146/annurev.biophys.30.1.21111340059
    [Google Scholar]
  39. WangJ. HouT. XuX. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models.Curr. Computeraided Drug Des.20062328730610.2174/157340906778226454
    [Google Scholar]
  40. OnufrievA. BashfordD. CaseD.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model.Proteins200455238339410.1002/prot.2003315048829
    [Google Scholar]
  41. WeiserJ. ShenkinP.S. StillW.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO).J. Comput. Chem.199920221723010.1002/(SICI)1096‑987X(19990130)20:2<217::AID‑JCC4>3.0.CO;2‑A
    [Google Scholar]
  42. OriginLabOrigin 2021 Feature Highlights.2021Available From: https://www.originlab.com/2021
  43. La ReginaG. ColucciaA. BrancaleA. PiscitelliF. GattiV. MagaG. SamueleA. PannecouqueC. ScholsD. BalzariniJ. NovellinoE. SilvestriR. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: New cyclic substituents at indole-2-carboxamide.J. Med. Chem.20115461587159810.1021/jm101614j21366296
    [Google Scholar]
  44. PiscitelliF. ColucciaA. BrancaleA. La ReginaG. SansoneA. GiordanoC. BalzariniJ. MagaG. ZanoliS. SamueleA. CirilliR. La TorreF. LavecchiaA. NovellinoE. SilvestriR. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus.J. Med. Chem.20095271922193410.1021/jm801470b19281225
    [Google Scholar]
  45. KabschW. A solution for the best rotation to relate two sets of vectors.Acta Crystallogr. A197632592292310.1107/S0567739476001873
    [Google Scholar]
  46. MaiorovV.N. CrippenG.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins.J. Mol. Biol.1994235262563410.1006/jmbi.1994.10178289285
    [Google Scholar]
  47. CarballeiraN.M. MontanoN. AmadorL.A. RodríguezA.D. GolovkoM.Y. GolovkoS.A. RegueraR.M. Álvarez-VelillaR. Balaña-FouceR. Novel very long-chain α-Methoxylated Δ5,9 fatty acids from the sponge asteropus niger are effective inhibitors of topoisomerases IB.Lipids201651224525610.1007/s11745‑015‑4114‑926694606
    [Google Scholar]
  48. ChenQ. ViethM. TimmD.E. HumbletC. Schneidman-DuhovnyD. ChemmamaI.E. SaliA. ZengW. LuJ. LiuL. Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages.PLoS One2017124e017575810.1371/journal.pone.017575828406969
    [Google Scholar]
  49. WaqasM. UllahS. HalimS.A. RehmanN.U. AliA. JanA. MuhsinahA.B. KhanA. Al-HarrasiA. Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2.Int. J. Biol. Macromol.2024258Pt 112881210.1016/j.ijbiomac.2023.12881238114011
    [Google Scholar]
  50. KohnJ.E. MillettI.S. JacobJ. ZagrovicB. DillonT.M. CingelN. DothagerR.S. SeifertS. ThiyagarajanP. SosnickT.R. HasanM.Z. PandeV.S. RuczinskiI. DoniachS. PlaxcoK.W. Random-coil behavior and the dimensions of chemically unfolded proteins.Proc. Natl. Acad. Sci. USA200410134124911249610.1073/pnas.040364310115314214
    [Google Scholar]
  51. MarshJ.A. Forman-KayJ.D. Sequence determinants of compaction in intrinsically disordered proteins.Biophys. J.201098102383239010.1016/j.bpj.2010.02.00620483348
    [Google Scholar]
  52. LuzarA. ChandlerD. Hydrogen-bond kinetics in liquid water.Nature19963796560555710.1038/379055a0
    [Google Scholar]
  53. KumarS. NussinovR. Relationship between ion pair geometries and electrostatic strengths in proteins.Biophys. J.20028331595161210.1016/S0006‑3495(02)73929‑512202384
    [Google Scholar]
  54. AmadeiA. LinssenA.B.M. BerendsenH.J.C. Essential dynamics of proteins.Proteins199317441242510.1002/prot.3401704088108382
    [Google Scholar]
  55. GarcíaA.E. Large-amplitude nonlinear motions in proteins.Phys. Rev. Lett.199268172696269910.1103/PhysRevLett.68.269610045464
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673318987240926052450
Loading
/content/journals/cmc/10.2174/0109298673318987240926052450
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test