Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objectives

The objective of this study is to identify dual-target inhibitors against EGFR/c-Met through virtual screening, dynamic simulation, and biological activity evaluation. This endeavor is aimed at overcoming the challenge of drug resistance induced by L858R/T790M mutants.

Methods

Active structures were gathered to construct sets of drug molecules. Next, property filtering was applied to the drug structures within the compound library. Active compounds were then identified through virtual screening and cluster analysis. Subsequently, we conducted MTT antitumor activity evaluation and kinase inhibition assays for the active compounds to identify the most promising candidates. Furthermore, AO staining and JC-1 assays were performed on the selected compounds. Ultimately, the preferred compounds underwent molecular docking and molecular dynamics simulation with the EGFR and c-Met proteins, respectively.

Results

The IC of T13074 was determined as 2.446 μM for EGFRL858R/T790M kinase and 7.401 nM for c-Met kinase, underscoring its potential in overcoming EGFRL858R/T790M resistance. Additionally, T13074 exhibited an IC of 1.93 μM on the H1975 cell. Results from AO staining and JC-1 assays indicated that T13074 induced tumor cell apoptosis in a concentration-dependent manner. Notably, the binding energy between T13074 and EGFR protein was found to be -90.329 ± 16.680 kJ/mol, while the binding energy with c-Met protein was -139.935 ± 17.414 kJ/mol.

Conclusion

T13074 exhibited outstanding antitumor activity both and , indicating its potential utility as a dual-target EGFR/c-Met inhibitor. This suggests its promising role in overcoming EGFR resistance induced by the L858R/T790M mutation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673305941240605050450
2024-06-24
2025-09-08
Loading full text...

Full text loading...

References

  1. XiaoY. LiuP. WeiJ. ZhangX. GuoJ. LinY. Recent progress in targeted therapy for non-small cell lung cancer.Front. Pharmacol.202314112554710.3389/fphar.2023.112554736909198
    [Google Scholar]
  2. NiX. JiangX. YuS. WuF. ZhouJ. MaoD. WangH. LiuY. JinF. Triptonodiol, a diterpenoid extracted from tripterygium wilfordii, inhibits the migration and invasion of non-small-cell lung cancer.Molecules20232812470810.3390/molecules2812470837375263
    [Google Scholar]
  3. SchlachtenbergerG. HekmatK. WahlersT. HeldweinM.B. Adjuvant chemotherapy for locally advanced non-small cell lung cancer: still state of the art or an outdated therapy?Transl. Lung Cancer Res.202312220420610.21037/tlcr‑22‑88836895929
    [Google Scholar]
  4. MordantP. BrosseauS. MilleronB. SantelmoN. Fraboulet-MoreauS. BesseB. LanglaisA. GossotD. ThomasP.A. PujolJ.L. RicordelC. MadelaineJ. LamyR. Audigier-ValetteC. MissyP. BlonsH. BarlesiF. WesteelV. Outcome of patients with resected early-stage non-small cell lung cancer and EGFR mutations: results from the IFCT biomarkers france study.Clin. Lung Cancer202324111010.1016/j.cllc.2022.08.01336180314
    [Google Scholar]
  5. MoodyT.W. Ramos-AlvarezI. JensenR.T. Peptide G-protein-coupled receptors and ErbB receptor tyrosine kinases in cancer.Biology (Basel)202312795710.3390/biology1207095737508387
    [Google Scholar]
  6. EbrahimiN. FardiE. GhaderiH. PalizdarS. KhorramR. VafadarR. GhanaatianM. Rezaei-TazangiF. BaziyarP. AhmadiA. HamblinM.R. ArefA.R. Receptor tyrosine kinase inhibitors in cancer.Cell. Mol. Life Sci.202380410410.1007/s00018‑023‑04729‑436947256
    [Google Scholar]
  7. YasudaH. KobayashiS. CostaD.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications.Lancet Oncol.2012131e23e3110.1016/S1470‑2045(11)70129‑221764376
    [Google Scholar]
  8. LiS. SchmitzK.R. JeffreyP.D. WiltziusJ.J.W. KussieP. FergusonK.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab.Cancer Cell20057430131110.1016/j.ccr.2005.03.00315837620
    [Google Scholar]
  9. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  10. HeJ. ZhouZ. SunX. YangZ. ZhengP. XuS. ZhuW. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation.Eur. J. Med. Chem.202121011299510.1016/j.ejmech.2020.11299533243531
    [Google Scholar]
  11. AlaliM. SaifoM. Optimizing the treatment for advanced non–small-cell lung cancer with mutated epidermal growth factor receptor in low-income countries: a review.J. Immuno. Prec. Oncol.20236314014910.36401/JIPO‑22‑2937637235
    [Google Scholar]
  12. TracyS. MukoharaT. HansenM. MeyersonM. JohnsonB.E. JänneP.A. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255.Cancer Res.200464207241724410.1158/0008‑5472.CAN‑04‑190515492241
    [Google Scholar]
  13. LuX. YuL. ZhangZ. RenX. SmaillJ.B. DingK. Targeting EGFR L858R/T790M and EGFR L858R/T790M/C797S resistance mutations in NSCLC: Current developments in medicinal chemistry.Med. Res. Rev.20183851550158110.1002/med.2148829377179
    [Google Scholar]
  14. OrciuoloC. CappuzzoF. LandiL. ResuliB. CarpanoS. VidiriA. BuglioniS. MandojC. CilibertoG. MinutiG. Pretreated EGFR/BRAF lung adenocarcinoma with leptomeningeal disease achieving long-lasting disease control on osimertinib, dabrafenib, and trametinib: a case report.JTO Clinic. Res. Rep.20234810054510054510.1016/j.jtocrr.2023.10054537533438
    [Google Scholar]
  15. ShepherdF.A. Rodrigues PereiraJ. CiuleanuT. TanE.H. HirshV. ThongprasertS. CamposD. MaoleekoonpirojS. SmylieM. MartinsR. van KootenM. DediuM. FindlayB. TuD. JohnstonD. BezjakA. ClarkG. SantabárbaraP. SeymourL. Erlotinib in previously treated non-small-cell lung cancer.N. Engl. J. Med.2005353212313210.1056/NEJMoa05075316014882
    [Google Scholar]
  16. MoyerJ.D. BarbacciE.G. IwataK.K. ArnoldL. BomanB. CunninghamA. DiOrioC. DotyJ. MorinM.J. MoyerM.P. NeveuM. PollackV.A. PustilnikL.R. ReynoldsM.M. SloanD. ThelemanA. MillerP. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase.Cancer Res.19975721483848489354447
    [Google Scholar]
  17. FukuokaM. YanoS. GiacconeG. TamuraT. NakagawaK. DouillardJ.Y. NishiwakiY. VansteenkisteJ. KudohS. RischinD. EekR. HoraiT. NodaK. TakataI. SmitE. AverbuchS. MacleodA. FeyereislovaA. DongR.P. BaselgaJ. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial).J. Clin. Oncol.200321122237224610.1200/JCO.2003.10.03812748244
    [Google Scholar]
  18. ShiY. ZhangL. LiuX. ZhouC. ZhangL. ZhangS. WangD. LiQ. QinS. HuC. ZhangY. ChenJ. ChengY. FengJ. ZhangH. SongY. WuY.L. XuN. ZhouJ. LuoR. BaiC. JinY. LiuW. WeiZ. TanF. WangY. DingL. DaiH. JiaoS. WangJ. LiangL. ZhangW. SunY. Icotinib versus gefitinib in previously treated advanced non-small-cell lung cancer (ICOGEN): a randomised, double-blind phase 3 non-inferiority trial.Lancet Oncol.2013141095396110.1016/S1470‑2045(13)70355‑323948351
    [Google Scholar]
  19. TanF. ShenX. WangD. XieG. ZhangX. DingL. HuY. HeW. WangY. WangY. Icotinib (BPI-2009H), a novel EGFR tyrosine kinase inhibitor, displays potent efficacy in preclinical studies.Lung Cancer201276217718210.1016/j.lungcan.2011.10.02322112293
    [Google Scholar]
  20. CristofanilliM. JohnstonS.R.D. ManikhasA. GomezH.L. GladkovO. ShaoZ. SafinaS. BlackwellK.L. AlvarezR.H. RubinS.D. RanganathanS. RedhuS. TrudeauM.E. A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer.Breast Cancer Res. Treat.2013137247148210.1007/s10549‑012‑2369‑x23239151
    [Google Scholar]
  21. ShiraishiK. MimuraK. IzawaS. InoueA. ShibaS. MaruyamaT. WatanabeM. KawaguchiY. InoueM. FujiiH. KonoK. Lapatinib acts on gastric cancer through both antiproliferative function and augmentation of trastuzumab-mediated antibody-dependent cellular cytotoxicity.Gastric Cancer201316457158010.1007/s10120‑012‑0219‑523187882
    [Google Scholar]
  22. EngelmanJ.A. ZejnullahuK. MitsudomiT. SongY. HylandC. ParkJ.O. LindemanN. GaleC.M. ZhaoX. ChristensenJ. KosakaT. HolmesA.J. RogersA.M. CappuzzoF. MokT. LeeC. JohnsonB.E. CantleyL.C. JänneP.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.Science200731658271039104310.1126/science.114147817463250
    [Google Scholar]
  23. KwakE.L. SordellaR. BellD.W. Godin-HeymannN. OkimotoR.A. BranniganB.W. HarrisP.L. DriscollD.R. FidiasP. LynchT.J. RabindranS.K. McGinnisJ.P. WissnerA. SharmaS.V. IsselbacherK.J. SettlemanJ. HaberD.A. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib.Proc. Natl. Acad. Sci. USA2005102217665767010.1073/pnas.0502860102
    [Google Scholar]
  24. MokT.S. ChengY. ZhouX. LeeK.H. NakagawaK. NihoS. LeeM. LinkeR. RosellR. CorralJ. MigliorinoM.R. PluzanskiA. SbarE.I. WangT. WhiteJ.L. WuY.-L. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations.J. Clin. Oncol.2018362244.10.1200/JCO.2018.78.7994
    [Google Scholar]
  25. KrisM.G. CamidgeD.R. GiacconeG. HidaT. LiB.T. O’ConnellJ. TaylorI. ZhangH. ArcilaM.E. GoldbergZ. JänneP.A. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors.Ann. Oncol.20152671421142710.1093/annonc/mdv18625899785
    [Google Scholar]
  26. BarfT. KapteinA. Irreversible protein kinase inhibitors: balancing the benefits and risks.J. Med. Chem.201255146243626210.1021/jm300320322621397
    [Google Scholar]
  27. SequistL.V. YangJ.C.-H. YamamotoN. O’ByrneK. HirshV. MokT. GeaterS.L. OrlovS. TsaiC.-M. BoyerM. SuW.-C. BennounaJ. KatoT. GorbunovaV. LeeK.H. ShahR. MasseyD. ZazulinaV. ShahidiM. SchulerM. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma With EGFR Mutations.J. Clin. Oncol.201331332710.1200/JCO.2012.44.2806
    [Google Scholar]
  28. WuY.L. ZhouC. HuC.P. FengJ. LuS. HuangY. LiW. HouM. ShiJ.H. LeeK.Y. XuC.R. MasseyD. KimM. ShiY. GeaterS.L. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial.Lancet Oncol.201415221322210.1016/S1470‑2045(13)70604‑124439929
    [Google Scholar]
  29. WuY.L. ChengY. ZhouX. LeeK.H. NakagawaK. NihoS. TsujiF. LinkeR. RosellR. CorralJ. MigliorinoM.R. PluzanskiA. SbarE.I. WangT. WhiteJ.L. NadanacivaS. SandinR. MokT.S. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial.Lancet Oncol.201718111454146610.1016/S1470‑2045(17)30608‑328958502
    [Google Scholar]
  30. RabindranS.K. DiscafaniC.M. RosfjordE.C. BaxterM. FloydM.B. GolasJ. HallettW.A. JohnsonB.D. NilakantanR. OverbeekE. ReichM.F. ShenR. ShiX. TsouH.R. WangY.F. WissnerA. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase.Cancer Res.200464113958396510.1158/0008‑5472.CAN‑03‑286815173008
    [Google Scholar]
  31. WindS. SchnellD. EbnerT. FreiwaldM. StopferP. Clinical pharmacokinetics and pharmacodynamics of afatinib.Clin. Pharmacokinet.201756323525010.1007/s40262‑016‑0440‑127470518
    [Google Scholar]
  32. YangJ.C.H. ShepherdF.A. KimD.W. LeeG.W. LeeJ.S. ChangG.C. LeeS.S. WeiY.F. LeeY.G. LausG. CollinsB. PisetzkyF. HornL. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M–Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report.J. Thorac. Oncol.201914593393910.1016/j.jtho.2019.02.00130763730
    [Google Scholar]
  33. WangS. CangS. LiuD. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.J. Hematol. Oncol.2016913410.1186/s13045‑016‑0268‑z27071706
    [Google Scholar]
  34. TanC.S. KumarakulasingheN.B. HuangY.Q. AngY.L.E. ChooJ.R.E. GohB.C. SooR.A. Third generation EGFR TKIs: current data and future directions.Mol. Cancer20181712910.1186/s12943‑018‑0778‑029455654
    [Google Scholar]
  35. TrickerE.M. XuC. UddinS. CapellettiM. ErcanD. OginoA. PratilasC.A. RosenN. GrayN.S. WongK.K. JänneP.A. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR -mutant lung cancer.Cancer Discov.20155996097110.1158/2159‑8290.CD‑15‑006326036643
    [Google Scholar]
  36. ErcanD. XuC. YanagitaM. MonastC.S. PratilasC.A. MonteroJ. ButaneyM. ShimamuraT. ShollL. IvanovaE.V. TadiM. RogersA. RepellinC. CapellettiM. MaertensO. GoetzE.M. LetaiA. GarrawayL.A. LazzaraM.J. RosenN. GrayN.S. WongK.K. JänneP.A. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors.Cancer Discov.201221093494710.1158/2159‑8290.CD‑12‑010322961667
    [Google Scholar]
  37. WuY.L. TsuboiM. HeJ. JohnT. GroheC. MajemM. GoldmanJ.W. LaktionovK. KimS.W. KatoT. VuH.V. LuS. LeeK.Y. AkewanlopC. YuC.J. de MarinisF. BonannoL. DomineM. ShepherdF.A. ZengL. HodgeR. AtasoyA. RukazenkovY. HerbstR.S. ADAURA Investigators Osimertinib in resected EGFR -mutated non–small-cell lung cancer.N. Engl. J. Med.2020383181711172310.1056/NEJMoa202707132955177
    [Google Scholar]
  38. MokT.S. WuY.L. AhnM.J. GarassinoM.C. KimH.R. RamalingamS.S. ShepherdF.A. HeY. AkamatsuH. TheelenW.S.M.E. LeeC.K. SebastianM. TempletonA. MannH. MarottiM. GhiorghiuS. PapadimitrakopoulouV.A. AURA3 Investigators Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer.N. Engl. J. Med.2017376762964010.1056/NEJMoa161267427959700
    [Google Scholar]
  39. KouS.B. LinZ.Y. WangB.L. ShiJ.H. LiuY.X. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies.J. Mol. Struct.2021122412902410.1016/j.molstruc.2020.129024
    [Google Scholar]
  40. KimE.S. Olmutinib: first global approval.Drugs201676111153115710.1007/s40265‑016‑0606‑z27357069
    [Google Scholar]
  41. SequistL.V. PiotrowskaZ. NiederstM.J. HeistR.S. DigumarthyS. ShawA.T. EngelmanJ.A. Engelman, osimertinib responses after disease progression in patients who had been receiving rociletinib.JAMA Oncol.2016254110.1001/jamaoncol.2015.5009
    [Google Scholar]
  42. SchoenfeldA.J. YuH.A. The evolving landscape of resistance to osimertinib.J. Thorac. Oncol.2020151182110.1016/j.jtho.2019.11.00531864549
    [Google Scholar]
  43. BardelliA. CorsoS. BertottiA. HoborS. ValtortaE. SiravegnaG. Sartore-BianchiA. ScalaE. CassingenaA. ZecchinD. ApicellaM. MigliardiG. GalimiF. LauricellaC. ZanonC. PereraT. VeroneseS. CortiG. AmatuA. GambacortaM. DiazL.A.Jr SausenM. VelculescuV.E. ComoglioP. TrusolinoL. Di NicolantonioF. GiordanoS. SienaS. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer.Cancer Discov.20133665867310.1158/2159‑8290.CD‑12‑055823729478
    [Google Scholar]
  44. PuriN. SalgiaR. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer.J. Carcinog.200871910.4103/1477‑3163.4437219240370
    [Google Scholar]
  45. TurkeA.B. ZejnullahuK. WuY.L. SongY. Dias-SantagataD. LifshitsE. ToschiL. RogersA. MokT. SequistL. LindemanN.I. MurphyC. AkhavanfardS. YeapB.Y. XiaoY. CapellettiM. IafrateA.J. LeeC. ChristensenJ.G. EngelmanJ.A. JänneP.A. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC.Cancer Cell2010171778810.1016/j.ccr.2009.11.02220129249
    [Google Scholar]
  46. BeanJ. BrennanC. ShihJ.Y. RielyG. VialeA. WangL. ChitaleD. MotoiN. SzokeJ. BroderickS. BalakM. ChangW.C. YuC.J. GazdarA. PassH. RuschV. GeraldW. HuangS.F. YangP.C. MillerV. LadanyiM. YangC.H. PaoW. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib.Proc. Natl. Acad. Sci. USA200710452209322093710.1073/pnas.071037010418093943
    [Google Scholar]
  47. ZhuC. JiangX. XiaoH. GuanJ. Tumor-derived extracellular vesicles inhibit HGF/c-Met and EGF/EGFR pathways to accelerate the radiosensitivity of nasopharyngeal carcinoma cells via microRNA-142-5p delivery.Cell Death Discov.2022811710.1038/s41420‑021‑00794‑535013115
    [Google Scholar]
  48. YuH.A. ArcilaM.E. RekhtmanN. SimaC.S. ZakowskiM.F. PaoW. KrisM.G. MillerV.A. LadanyiM. RielyG.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers.Clin. Cancer Res.20131982240224710.1158/1078‑0432.CCR‑12‑224623470965
    [Google Scholar]
  49. DuX. YangB. AnQ. AssarafY.G. CaoX. XiaJ. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors.Innovation20212210010310.1016/j.xinn.2021.10010334557754
    [Google Scholar]
  50. YunC.H. MengwasserK.E. TomsA.V. WooM.S. GreulichH. WongK.K. MeyersonM. EckM.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.Proc. Natl. Acad. Sci. USA200810562070207510.1073/pnas.070966210518227510
    [Google Scholar]
  51. QinK. HongL. ZhangJ. LeX. MET amplification as a resistance driver to TKI therapies in lung cancer: clinical challenges and opportunities.Cancers (Basel)202315361210.3390/cancers1503061236765572
    [Google Scholar]
  52. FeldtS.L. BestvinaC.M. The role of MET in resistance to EGFR inhibition in NSCLC: a review of mechanisms and treatment implications.Cancers (Basel)20231511299810.3390/cancers1511299837296959
    [Google Scholar]
  53. LiangM. WangL. XiaoY. YangM. MeiC. ZhangY. ShanH. LiD. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes.Eur. J. Nucl. Med. Mol. Imaging20235092787280110.1007/s00259‑023‑06250‑z37145165
    [Google Scholar]
  54. ChenH.J. JiangY.L. LinC.M. TsaiS.C. PengS.F. FushiyaS. HourM.J. YangJ.S. Dual inhibition of EGFR and c-Met kinase activation by MJ-56 reduces metastasis of HT29 human colorectal cancer cells.Int. J. Oncol.201343114115010.3892/ijo.2013.194123677180
    [Google Scholar]
  55. SinghP.K. SilakariO. Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET.Bioorg. Chem.20187916317010.1016/j.bioorg.2018.04.00129758406
    [Google Scholar]
  56. QiuP. WangS. LiuM. MaH. ZengX. ZhangM. XuL. CuiY. XuH. TangY. HeY. ZhangL. Norcantharidin Inhibits cell growth by suppressing the expression and phosphorylation of both EGFR and c-Met in human colon cancer cells.BMC Cancer20171715510.1186/s12885‑016‑3039‑x28086832
    [Google Scholar]
  57. LiuX. WangQ. YangG. MarandoC. KoblishH.K. HallL.M. FridmanJ.S. BehshadE. WynnR. LiY. BoerJ. DiamondS. HeC. XuM. ZhuoJ. YaoW. NewtonR.C. ScherleP.A. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3.Clin. Cancer Res.201117227127713810.1158/1078‑0432.CCR‑11‑115721918175
    [Google Scholar]
  58. SzokolB. GyulaváriP. KurkóI. BaskaF. Szántai-KisC. GreffZ. ŐrfiZ. PetákI. PénzesK. TorkaR. UllrichA. ŐrfiL. VántusT. KériG. Discovery and biological evaluation of novel dual EGFR/c-met inhibitors.ACS Med. Chem. Lett.20145429830310.1021/ml400330924900830
    [Google Scholar]
  59. OhH.N. LeeM.H. KimE. KwakA.W. YoonG. ChoS.S. LiuK. ChaeJ.I. ShimJ.H. LicochalconeD. Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET.Biomolecules202010229710.3390/biom1002029732070026
    [Google Scholar]
  60. ZhouG. PuY. ZhaoK. ChenY. ZhangG. Heat shock proteins in non-small-cell lung cancer-functional mechanism.Frontiers in Bioscience-Landmark20232835610.31083/j.fbl280305637005758
    [Google Scholar]
  61. OhY. ParkS. SeoY. The targeted inhibition of Hsp90 by a synthetic small molecule, DPide offers an effective treatment strategy against TNBCs.Oncol. Rep.20183941775178210.3892/or.2018.625029436674
    [Google Scholar]
  62. DoklaE.M.E. FangC.S. AbouzidK.A.M. ChenC.S. 1,2,4-Oxadiazole derivatives targeting EGFR and c-Met degradation in TKI resistant NSCLC.Eur. J. Med. Chem.201918211160710.1016/j.ejmech.2019.11160731446247
    [Google Scholar]
  63. WuD-W. ChenT-C. HuangH-S. LeeH. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells.Cell Death Dis.201676e2290e229010.1038/cddis.2016.19227362807
    [Google Scholar]
  64. JeongC.H. ParkH.B. JangW.J. JungS.H. SeoY.H. Discovery of hybrid Hsp90 inhibitors and their anti-neoplastic effects against gefitinib-resistant non-small cell lung cancer (NSCLC).Bioorg. Med. Chem. Lett.201424122422710.1016/j.bmcl.2013.11.03424345447
    [Google Scholar]
  65. ZhangB. LiH. YuK. JinZ. Molecular docking-based computational platform for high-throughput virtual screening.CCF Transactions on High Performance Computing202241637410.1007/s42514‑021‑00086‑535039800
    [Google Scholar]
  66. YinL. DuX. MaC. GuH. Virtual screening of drug proteins based on the prediction classification model of imbalanced data mining.Processes202210142010.3390/pr10071420
    [Google Scholar]
  67. YangY. ZhouD. ZhangX. ShiY. HanJ. ZhouL. WuL. MaM. LiJ. PengS. XuZ. ZhuW. D3AI- CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19.Brief. Bioinform.2022233bbac14710.1093/bib/bbac14735443040
    [Google Scholar]
  68. HananE.J. BaumgardnerM. BryanM.C. ChenY. EigenbrotC. FanP. GuX.H. LaH. MalekS. PurkeyH.E. SchaeferG. SchmidtS. SiderisS. YenI. YuC. HeffronT.P. 4-Aminoindazolyl-dihydrofuro [3,4- d ]pyrimidines as non-covalent inhibitors of mutant epidermal growth factor receptor tyrosine kinase.Bioorg. Med. Chem. Lett.201626253453910.1016/j.bmcl.2015.11.07826639762
    [Google Scholar]
  69. QianF. EngstS. YamaguchiK. YuP. WonK.A. MockL. LouT. TanJ. LiC. TamD. LougheedJ. YakesF.M. BentzienF. XuW. ZaksT. WoosterR. GreshockJ. JolyA.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.Cancer Res.200969208009801610.1158/0008‑5472.CAN‑08‑488919808973
    [Google Scholar]
  70. ZhangQ. LiuX. GanW. WuJ. ZhouH. YangZ. ZhangY. LiaoM. YuanP. XuS. ZhengP. ZhuW. Discovery of Triazolo-pyridazine/-pyrimidine Derivatives Bearing Aromatic (Heterocycle)-Coupled Azole Units as Class II c-Met Inhibitors.ACS Omega2020527164821649010.1021/acsomega.0c0083832685812
    [Google Scholar]
  71. HeissE. Calisiopsis azteca n. sp., the first Aradidae from mid Miocene Mexican Amber (Hemiptera: Heteroptera) (vol 68, pg 7, 2016).BOLETIN Soc. Geol. Mex.20166837137110.18268/BSGM2016v68n2a14
    [Google Scholar]
  72. RoeD.R. CheathamT.E.III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p26583988
    [Google Scholar]
  73. WangJ. WolfR.M. CaldwellJ.W. KollmanP.A. CaseD.A. Development and testing of a general amber force field.J. Comput. Chem.20042591157117410.1002/jcc.2003515116359
    [Google Scholar]
  74. KumariR. KumarR. LynnA. Open Source Drug Discovery Consortium g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  75. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py : an efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  76. XuS. SunX. LuoL. YangY. GuoQ. TangS. JiangZ. LiY. HanJ. GanW. YangF. ZhangX. LiuY. SunC. HeJ. LiuM. ZuoD. ZhuW. WuY. XS-2, a novel potent dual PI3K/mTOR inhibitor, exhibits high in vitro and in vivo anti-breast cancer activity and low toxicity with the potential to inhibit the invasion and migration of triple-negative breast cancer.Biomed. Pharmacother.202215511353710.1016/j.biopha.2022.11353736113258
    [Google Scholar]
  77. YangY. PengR. ChengZ. YuM. FuL. ZhangX. ZhengP. ZhuW. WangL. XuS. Based on virtual screening methods and biological activity assessment, AK-968/13030056 has been identified as a potential mTOR inhibitor.J. Mol. Struct.2024130213742510.1016/j.molstruc.2023.137425
    [Google Scholar]
  78. XuS. HuangX. AnY. LvX. XuS. WangL. ZhuW. In silico screening applied in drug discovery: T001-10026247 as a novel fourth-generation EGFR inhibitor.New J. Chem.20234744204052041610.1039/D3NJ03597B
    [Google Scholar]
  79. XieZ. RuanW. GuoJ. LiY. ZhouS. ZhaoJ. WanL. XuS. TangQ. ZhengP. WangL. ZhuW. T5S1607 identified as a antibacterial FtsZ inhibitor:Virtual screening combined with bioactivity evaluation for the drug discovery.Comput. Biol. Chem.202410810800610.1016/j.compbiolchem.2023.10800638142532
    [Google Scholar]
  80. WangL. FanD. RuanW. HuangX. ZhuW. TuY. ZhengP. T6496 targeting EGFR mediated by T790M or C797S mutant: machine learning, virtual screening and bioactivity evaluation study.J. Biomol. Struct. Dyn.202310.1080/07391102.2023.230075638174383
    [Google Scholar]
  81. WangL. AnY. WeiX. HuangX. TuY. QiaoL. ZhuW. In silico screening combined with bioactivity evaluation to identify AMI-1 as a novel anticancer compound by targeting AXL.J. Biomol. Struct. Dyn.202311310.1080/07391102.2023.225565437691424
    [Google Scholar]
  82. ChangC. ZhuY.Q. MeiJ. LiuS. LuoJ. Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells.J. Exp. Clin. Cancer Res.201029114510.1186/1756‑9966‑29‑14521059274
    [Google Scholar]
  83. GuoJ. WuY. YangL. DuJ. GongK. ChenW. DaiJ. LiX. XiS. Repression of YAP by NCTD disrupts NSCLC progression.Oncotarget2017822307231910.18632/oncotarget.1366827903989
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673305941240605050450
Loading
/content/journals/cmc/10.2174/0109298673305941240605050450
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test