Skip to content
2000
Volume 32, Issue 32
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Objective

Ribosome-associated protein Quality Control (RQC), comprising several well-organized processes and crucial factors, provides translational surveillance in cells by recognizing and degrading aberrant nascent proteins arising from ribosome stalling. Although rapid progress has been made in RQC, a bibliographic analysis of RQC-related literature studies for the overall trends and research progress, particularly the correlation of RQC with diseases, is absent.

Methods

We obtained scientific outputs of global RQC between 1999 and 2022 by Web of Science Core Collection (WoSCC). CiteSpace, VOSviewer, and a package of R called bibliometrix were applied to explore the current research status, hotspots, and the relationship between RQC and diseases.

Results

A total of 429 articles have been included in this study, and the number of published studies increases annually. The United States and Germany have been found to lead in this field. An analysis of the keywords has shown “initiation”, “aggregation”, “structure basis”, “elongation”, and “degradation” to be the emerging themes of RQC. Keywords co-occurrence has shown E3 ubiquitin ligase to bridge RQC and neurodegeneration.

Conclusion

Through a summary of the current studies on RQC, our study has provided evolutionary trends and frontiers in this field by mathematical analysis and visualization, implying the potential of RQC in neurodegeneration and other diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673317789240807055740
2024-08-09
2025-10-25
Loading full text...

Full text loading...

References

  1. JoazeiroC.A.P. Mechanisms and functions of ribosome-associated protein quality control.Nat. Rev. Mol. Cell Biol.201920636838310.1038/s41580‑019‑0118‑230940912
    [Google Scholar]
  2. HamdanN. KritsiligkouP. GrantC.M. ER stress causes widespread protein aggregation and prion formation.J. Cell Biol.201721682295230410.1083/jcb.20161216528630146
    [Google Scholar]
  3. MitaraiN. SneppenK. PedersenS. Ribosome collisions and translation efficiency: Optimization by codon usage and mRNA destabilization.J. Mol. Biol.2008382123624510.1016/j.jmb.2008.06.06818619977
    [Google Scholar]
  4. HarigayaY. ParkerR. No-go decay: A quality control mechanism for RNA in translation.Wiley Interdiscip. Rev. RNA20101113214110.1002/wrna.1721956910
    [Google Scholar]
  5. PochopienA.A. BeckertB. KasvandikS. BerninghausenO. BeckmannR. TensonT. WilsonD.N. Structure of Gcn1 bound to stalled and colliding 80S ribosomes.Proc. Natl. Acad. Sci. USA202111814e202275611810.1073/pnas.202275611833790014
    [Google Scholar]
  6. VindA.C. SnieckuteG. BlasiusM. TiedjeC. KroghN. Bekker-JensenD.B. AndersenK.L. NordgaardC. TollenaereM.A.X. LundA.H. OlsenJ.V. NielsenH. Bekker-JensenS. ZAKα recognizes stalled ribosomes through partially redundant sensor domains.Mol. Cell2020784700713.e710.1016/j.molcel.2020.03.02132289254
    [Google Scholar]
  7. BengtsonM.H. JoazeiroC.A.P. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control.Nature2010467731447047310.1038/nature0937120835226
    [Google Scholar]
  8. DeshaiesR.J. JoazeiroC.A.P. RING domain E3 ubiquitin ligases.Annu. Rev. Biochem.200978139943410.1146/annurev.biochem.78.101807.09380919489725
    [Google Scholar]
  9. LytvynenkoI. PaternogaH. ThrunA. BalkeA. MüllerT.A. ChiangC.H. NaglerK. TsaprailisG. AndersS. BischofsI. Maupin-FurlowJ.A. SpahnC.M.T. JoazeiroC.A.P. Alanine tails signal proteolysis in bacterial ribosome-associated quality control.Cell201917817690.e2210.1016/j.cell.2019.05.00231155236
    [Google Scholar]
  10. ThrunA. GarziaA. Kigoshi-TanshoY. PatilP.R. UmbaughC.S. DallingerT. LiuJ. KregerS. PatriziA. CoxG.A. TuschlT. JoazeiroC.A.P. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing.Mol. Cell2021811021122122.e710.1016/j.molcel.2021.03.00433909987
    [Google Scholar]
  11. SitronC.S. BrandmanO. CAT tails drive degradation of stalled polypeptides on and off the ribosome.Nat. Struct. Mol. Biol.201926645045910.1038/s41594‑019‑0230‑131133701
    [Google Scholar]
  12. VermaR. ReichermeierK.M. BurroughsA.M. OaniaR.S. ReitsmaJ.M. AravindL. DeshaiesR.J. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes.Nature2018557770544645110.1038/s41586‑018‑0022‑529632312
    [Google Scholar]
  13. ChenC. SongM. Visualizing a field of research: A methodology of systematic scientometric reviews.PLoS One20191410e022399410.1371/journal.pone.022399431671124
    [Google Scholar]
  14. ChuJ. HongN. MasudaC. JenkinsB.V. JoazeiroC. KayS.A. An E3 ubiquitin ligase involved in neurodegeneration.Neurology200666A147A147
    [Google Scholar]
  15. MartinP.B. Kigoshi-TanshoY. SherR.B. RavenscroftG. StaufferJ.E. KumarR. YonashiroR. MüllerT. GriffithC. AllenW. PehlivanD. HarelT. ZenkerM. HowtingD. SchanzeD. FaqeihE.A. AlmontashiriN.A.M. MaroofianR. HouldenH. MazaheriN. GalehdariH. DouglasG. PoseyJ.E. RyanM. LupskiJ.R. LaingN.G. JoazeiroC.A.P. CoxG.A. NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease.Nat. Commun.2020111462510.1038/s41467‑020‑18327‑632934225
    [Google Scholar]
  16. ColsonP. FournousG. DieneS.M. RaoultD. Codon usage, amino acid usage, transfer RNA and amino-acyl-tRNA synthetases in Mimiviruses.Intervirology201356636437510.1159/00035455724157883
    [Google Scholar]
  17. JanE. MohrI. WalshD. A Cap-to-Tail guide to mrna translation strategies in virus-infected cells.Annu. Rev. Virol.20163128330710.1146/annurev‑virology‑100114‑05501427501262
    [Google Scholar]
  18. LiuR. ProudC.G. Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases.Acta Pharmacol. Sin.201637328529410.1038/aps.2015.12326806303
    [Google Scholar]
  19. PelechanoV. AlepuzP. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences.Nucleic Acids Res.201745127326733810.1093/nar/gkx47928549188
    [Google Scholar]
  20. WangN. WangD. Genome-wide transcriptome and translatome analyses reveal the role of protein extension and domestication in liver cancer oncogenesis.Mol. Genet. Genomics2021296356156910.1007/s00438‑021‑01766‑133575838
    [Google Scholar]
  21. GaoJ. JungM. MayohC. VenkatP. HannanK.M. FletcherJ.I. KamiliA. GiffordA.J. KusnadiE.P. PearsonR.B. HannanR.D. HaberM. NorrisM.D. SomersK. HendersonM.J. Suppression of ABCE1-mediated mrna translation limits N-MYC–driven cancer progression.Cancer Res.202080173706371810.1158/0008‑5472.CAN‑19‑391432651259
    [Google Scholar]
  22. ZhouX. ShangY.N. LuR. FanC.W. MoX.M. High ANKZF1 expression is associated with poor overall survival and recurrence-free survival in colon cancer.Future Oncol.201915182093210610.2217/fon‑2018‑092031257922
    [Google Scholar]
  23. LiG. WangZ. GaoB. DaiK. NiuX. LiX. WangY. LiL. WuX. LiH. YuZ. WangZ. ChenG. ANKZF1 knockdown inhibits glioblastoma progression by promoting intramitochondrial protein aggregation through mitoRQC.Cancer Lett.202459121689510.1016/j.canlet.2024.21689538670305
    [Google Scholar]
  24. Moral-MuñozJ.A. Herrera-ViedmaE. Santisteban-EspejoA. CoboM.J. Software tools for conducting bibliometric analysis in science: An up-to-date review.Prof. Inf.20202912010.3145/epi.2020.ene.03
    [Google Scholar]
  25. KeilerK.C. WallerP.R.H. SauerR.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA.Science1996271525199099310.1126/science.271.5251.9908584937
    [Google Scholar]
  26. IbbaM. SöllD. Quality control mechanisms during translation.Science199928654461893189710.1126/science.286.5446.189310583945
    [Google Scholar]
  27. BrandmanO. Stewart-OrnsteinJ. WongD. LarsonA. WilliamsC.C. LiG.W. ZhouS. KingD. ShenP.S. WeibezahnJ. DunnJ.G. RouskinS. InadaT. FrostA. WeissmanJ.S. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.Cell201215151042105410.1016/j.cell.2012.10.04423178123
    [Google Scholar]
  28. SundaramoorthyE. LeonardM. MakR. LiaoJ. FulzeleA. BennettE.J. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40s ribosomal ubiquitylation.Mol. Cell2017654751760.e410.1016/j.molcel.2016.12.02628132843
    [Google Scholar]
  29. JuszkiewiczS. ChandrasekaranV. LinZ. KraatzS. RamakrishnanV. HegdeR.S. ZNF598 is a quality control sensor of collided ribosomes.Mol. Cell2018723469481.e710.1016/j.molcel.2018.08.03730293783
    [Google Scholar]
  30. YipM.C.J. KeszeiA.F.A. FengQ. ChuV. McKennaM.J. ShaoS. Mechanism for recycling tRNAs on stalled ribosomes.Nat. Struct. Mol. Biol.201926534334910.1038/s41594‑019‑0211‑431011209
    [Google Scholar]
  31. ShenP.S. ParkJ. QinY. LiX. ParsawarK. LarsonM.H. CoxJ. ChengY. LambowitzA.M. WeissmanJ.S. BrandmanO. FrostA. Rqc2p and 60 S ribosomal subunits mediate mRNA-independent elongation of nascent chains.Science20153476217757810.1126/science.125972425554787
    [Google Scholar]
  32. EngqvistL. FrommenJ.G. The h-index and self-citations.Trends Ecol. Evol.200823525025210.1016/j.tree.2008.01.00918367289
    [Google Scholar]
  33. NerurS.P. RasheedA.A. NatarajanV. The intellectual structure of the strategic management field: an author co-citation analysis.Strateg. Manage. J.200829331933610.1002/smj.659
    [Google Scholar]
  34. HetzC. ZhangK. KaufmanR.J. Mechanisms, regulation and functions of the unfolded protein response.Nat. Rev. Mol. Cell Biol.202021842143810.1038/s41580‑020‑0250‑z32457508
    [Google Scholar]
  35. ShoemakerC.J. GreenR. Translation drives mRNA quality control.Nat. Struct. Mol. Biol.201219659460110.1038/nsmb.230122664987
    [Google Scholar]
  36. MooreS.D. SauerR.T. The tmRNA system for translational surveillance and ribosome rescue.Annu. Rev. Biochem.200776110112410.1146/annurev.biochem.75.103004.14273317291191
    [Google Scholar]
  37. MillerM.R. BuskirkA.R. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes.Front. Microbiol.2014546210.3389/fmicb.2014.0046225228900
    [Google Scholar]
  38. IshimuraR. NagyG. DotuI. ZhouH. YangX.L. SchimmelP. SenjuS. NishimuraY. ChuangJ.H. AckermanS.L. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration.Science2014345619545545910.1126/science.124974925061210
    [Google Scholar]
  39. JoazeiroC.A.P. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control.Annu. Rev. Cell Dev. Biol.201733134336810.1146/annurev‑cellbio‑111315‑12524928715909
    [Google Scholar]
  40. SarkarA. ThomsM. Barrio-GarciaC. ThomsonE. FlemmingD. BeckmannR. HurtE. Preribosomes escaping from the nucleus are caught during translation by cytoplasmic quality control.Nat. Struct. Mol. Biol.201724121107111510.1038/nsmb.349529083413
    [Google Scholar]
  41. ShaoS. BrownA. SanthanamB. HegdeR.S. Structure and assembly pathway of the ribosome quality control complex.Mol. Cell201557343344410.1016/j.molcel.2014.12.01525578875
    [Google Scholar]
  42. BrooksS.A. Functional interactions between mRNA turnover and surveillance and the ubiquitin proteasome system.Wiley Interdiscip. Rev. RNA20101224025210.1002/wrna.1121935888
    [Google Scholar]
  43. ChoeY.J. ParkS.H. HassemerT. KörnerR. Vincenz- DonnellyL. Hayer-HartlM. HartlF.U. Failure of RQC machinery causes protein aggregation and proteotoxic stress.Nature2016531759319119510.1038/nature1697326934223
    [Google Scholar]
  44. Crowe-McAuliffeC. TakadaH. MurinaV. PolteC. KasvandikS. TensonT. IgnatovaZ. AtkinsonG.C. WilsonD.N. HauryliukV. Structural basis for bacterial ribosome-associated quality control by RqcH and RqcP.Mol. Cell2021811115126.e710.1016/j.molcel.2020.11.00233259810
    [Google Scholar]
  45. LyumkisD. Oliveira dos PassosD. TaharaE.B. WebbK. BennettE.J. VinterboS. PotterC.S. CarragherB. JoazeiroC.A.P. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.Proc. Natl. Acad. Sci. USA201411145159811598610.1073/pnas.141388211125349383
    [Google Scholar]
  46. FilbeckS. CerulloF. PaternogaH. TsaprailisG. JoazeiroC.A.P. PfefferS. Mimicry of canonical translation elongation underlies alanine tail synthesis in RQC.Mol. Cell2021811104114.e610.1016/j.molcel.2020.11.00133259811
    [Google Scholar]
  47. DefenouillèreQ. YaoY. MouaikelJ. NamaneA. GalopierA. DecourtyL. DoyenA. MalabatC. SaveanuC. JacquierA. Fromont-RacineM. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products.Proc. Natl. Acad. Sci. USA2013110135046505110.1073/pnas.122172411023479637
    [Google Scholar]
  48. JuszkiewiczS. HegdeR.S. Initiation of quality control during Poly(A) Translation requires site-specific ribosome ubiquitination.Mol. Cell2017654743750.e410.1016/j.molcel.2016.11.03928065601
    [Google Scholar]
  49. ChuJ. HongN.A. MasudaC.A. JenkinsB.V. NelmsK.A. GoodnowC.C. GlynneR.J. WuH. MasliahE. JoazeiroC.A.P. KayS.A. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration.Proc. Natl. Acad. Sci. USA200910672097210310.1073/pnas.081281910619196968
    [Google Scholar]
  50. DomaM.K. ParkerR. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation.Nature2006440708356156410.1038/nature0453016554824
    [Google Scholar]
  51. MishraR. BansalA. MishraA. LISTERIN E3 ubiquitin ligase and ribosome-associated quality control (RQC) mechanism.Mol. Neurobiol.202158126593660910.1007/s12035‑021‑02564‑x34590243
    [Google Scholar]
  52. TsuboiT. KurohaK. KudoK. MakinoS. InoueE. KashimaI. InadaT. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA.Mol. Cell201246451852910.1016/j.molcel.2012.03.01322503425
    [Google Scholar]
  53. ShoemakerC.J. EylerD.E. GreenR. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay.Science2010330600236937210.1126/science.119243020947765
    [Google Scholar]
  54. PisarevaV.P. SkabkinM.A. HellenC.U.T. PestovaT.V. PisarevA.V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes.EMBO J.20113091804181710.1038/emboj.2011.9321448132
    [Google Scholar]
  55. DimitrovaL.N. KurohaK. TatematsuT. InadaT. Nascent peptide-dependent translation arrest leads to Not4p- mediated protein degradation by the proteasome.J. Biol. Chem.200928416103431035210.1074/jbc.M80884020019204001
    [Google Scholar]
  56. BairdN.A. DouglasP.M. SimicM.S. GrantA.R. MorescoJ.J. WolffS.C. YatesJ.R.III ManningG. DillinA. HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span.Science2014346620736036310.1126/science.125316825324391
    [Google Scholar]
  57. SinghB.K. VatsaN. NelsonV.K. KumarV. KumarS.S. MandalS.C. PalM. JanaN.R. Azadiradione restores protein quality control and ameliorates the disease pathogenesis in a mouse model of Huntington's disease.Mol. Neurobiol.20185586337634610.1007/s12035‑017‑0853‑3.
    [Google Scholar]
  58. FrydmanJ. Folding of newly translated proteins in vivo : The role of molecular chaperones.Annu. Rev. Biochem.200170160364710.1146/annurev.biochem.70.1.60311395418
    [Google Scholar]
  59. WillmundF. del AlamoM. PechmannS. ChenT. AlbanèseV. DammerE.B. PengJ. FrydmanJ. The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis.Cell20131521-219620910.1016/j.cell.2012.12.00123332755
    [Google Scholar]
  60. ShaoS. von der MalsburgK. HegdeR.S. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation.Mol. Cell201350563764810.1016/j.molcel.2013.04.01523685075
    [Google Scholar]
  61. VermaR. OaniaR.S. KolawaN.J. DeshaiesR.J. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome.eLife20132e0030810.7554/eLife.0030823358411
    [Google Scholar]
  62. PechmannS. WillmundF. FrydmanJ. The ribosome as a hub for protein quality control.Mol. Cell201349341142110.1016/j.molcel.2013.01.02023395271
    [Google Scholar]
  63. MatsudaR. IkeuchiK. NomuraS. InadaT. Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast.Genes Cells201419111210.1111/gtc.1210624261871
    [Google Scholar]
  64. ShaoS. HegdeR.S. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors.Mol. Cell201455688089010.1016/j.molcel.2014.07.00625132172
    [Google Scholar]
  65. FangN.N. NgA.H.M. MeasdayV. MayorT. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins.Nat. Cell Biol.201113111344135210.1038/ncb234321983566
    [Google Scholar]
  66. LetzringD.P. WolfA.S. BruleC.E. GrayhackE.J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.RNA20131991208121710.1261/rna.039446.11323825054
    [Google Scholar]
  67. SimmsC.L. YanL.L. ZaherH.S. Ribosome collision is critical for quality control during no-go decay.Mol. Cell2017682361373.e510.1016/j.molcel.2017.08.01928943311
    [Google Scholar]
  68. KurohaK. ZinovievA. HellenC.U.T. PestovaT.V. Release of ubiquitinated and non-ubiquitinated nascent chains from stalled mammalian ribosomal complexes by ANKZF1 and Ptrh1.Mol. Cell2018722286302.e810.1016/j.molcel.2018.08.02230244831
    [Google Scholar]
  69. IkeuchiK. TesinaP. MatsuoY. SugiyamaT. ChengJ. SaekiY. TanakaK. BeckerT. BeckmannR. InadaT. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways.EMBO J.2019385e10027610.15252/embj.201810027630609991
    [Google Scholar]
  70. WuC.C.C. PetersonA. ZinshteynB. RegotS. GreenR. Ribosome collisions trigger general stress responses to regulate cell fate.Cell20201822404416.e1410.1016/j.cell.2020.06.00632610081
    [Google Scholar]
  71. JuszkiewiczS. SpeldewindeS.H. WanL. SvejstrupJ.Q. HegdeR.S. The ASC-1 complex disassembles collided ribosomes.Mol Cell2020794603e60810.1016/j.molcel.2020.06.006.
    [Google Scholar]
  72. ShivaS. GharesouranJ. SabaieH. AsadiM.R. Arsang-JangS. TaheriM. RezazadehM. Expression analysis of ermin and listerin E3 ubiquitin protein ligase 1 genes in Autistic patients.Front. Mol. Neurosci.20211470197710.3389/fnmol.2021.70197734349621
    [Google Scholar]
  73. FarhangS. SabaieH. GharesouranJ. AsadiM.R. Arsang-JangS. Ghafouri-FardS. TaheriM. RezazadehM. Expression analysis of ermin and listerin e3 ubiquitin protein ligase 1 genes in the periphery of patients with schizophrenia.J. Mol. Neurosci.202272224625410.1007/s12031‑021‑01928‑134676516
    [Google Scholar]
  74. RimalS. LiY. VartakR. GengJ. TantrayI. LiS. HuhS. VogelH. GlabeC. GrinbergL.T. SpinaS. SeeleyW.W. GuoS. LuB. Inefficient quality control of ribosome stalling during APP synthesis generates CAT- tailed species that precipitate hallmarks of Alzheimer’s disease.Acta Neuropathol. Commun.20219116910.1186/s40478‑021‑01268‑634663454
    [Google Scholar]
  75. KleffmanK. LevinsonG. RoseI.V.L. BlumenbergL.M. ShadaloeyS.A.A. DhabariaA. WongE. Galán-EchevarríaF. KarzA. ArgibayD. Von ItterR. FloristánA. BaptisteG. EskowN.M. TranosJ.A. ChenJ. Vega y Saenz de MieraE.C. CallM. RogersR. JourG. WadghiriY.Z. OsmanI. LiY.M. MathewsP. DeMattosR.B. UeberheideB. RugglesK.V. LiddelowS.A. SchneiderR.J. HernandoE. Melanoma-secreted amyloid beta suppresses neuroinflammation and promotes brain metastasis.Cancer Discov.20221251314133510.1158/2159‑8290.CD‑21‑100635262173
    [Google Scholar]
  76. ParkJ. LeeJ. KimJ. LeeJ. ParkH. LimC. ZNF598 co-translationally titrates poly(GR) protein implicated in the pathogenesis of C9ORF72 -associated ALS/FTD.Nucleic Acids Res.20214919112941131110.1093/nar/gkab83434551427
    [Google Scholar]
  77. BalendraR. IsaacsA.M. C9orf72-mediated ALS and FTD: Multiple pathways to disease.Nat. Rev. Neurol.201814954455810.1038/s41582‑018‑0047‑230120348
    [Google Scholar]
  78. WuZ. WangY. LimJ. LiuB. LiY. VartakR. StankiewiczT. MontgomeryS. LuB. Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-Directed mitophagy.Cell Metab.2018281130144.e710.1016/j.cmet.2018.05.00729861391
    [Google Scholar]
  79. TopfU. Uszczynska-RatajczakB. ChacinskaA. Mitochondrial stress-dependent regulation of cellular protein synthesis.J. Cell Sci.20191328jcs22625810.1242/jcs.22625831028152
    [Google Scholar]
  80. MasiM. AttanzioA. RacchiM. WolozinB. BorellaS. BiundoF. BuosoE. Proteostasis deregulation in neurodegeneration and its link with stress granules: Focus on the scaffold and ribosomal protein RACK1.Cells20221116259010.3390/cells1116259036010666
    [Google Scholar]
  81. BattainiF. PascaleA. Protein kinase C signal transduction regulation in physiological and pathological aging.Ann. N. Y. Acad. Sci.20051057117719210.1196/annals.1356.01116399894
    [Google Scholar]
  82. BelinS. BeghinA. Solano-GonzàlezE. BezinL. Brunet-ManquatS. TextorisJ. PratsA.C. MertaniH.C. DumontetC. DiazJ.J. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells.PLoS One200949e714710.1371/journal.pone.000714719779612
    [Google Scholar]
  83. MeyerD. KamesJ. BarH. KomarA.A. AlexakiA. IblaJ. HuntR.C. Santana-QuinteroL.V. GolikovA. DiCuccioM. Kimchi-SarfatyC. Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage.Genome Med.202113112210.1186/s13073‑021‑00935‑634321100
    [Google Scholar]
  84. ZhangY. LiuL. QiuQ. ZhouQ. DingJ. LuY. LiuP. Alternative polyadenylation: Methods, mechanism, function, and role in cancer.J. Exp. Clin. Cancer Res.20214015110.1186/s13046‑021‑01852‑733526057
    [Google Scholar]
  85. AnnibaldisG. DomanskiM. DreosR. ContuL. CarlS. KläyN. MühlemannO. Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay.Nucleic Acids Res.20204818102591027910.1093/nar/gkaa75832941650
    [Google Scholar]
  86. WangJ. ZhouJ. YangQ. GrayhackE.J. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting.eLife20187e3963710.7554/eLife.3963730465652
    [Google Scholar]
  87. SinhaN.K. OrdureauA. BestK. SabaJ.A. ZinshteynB. SundaramoorthyE. FulzeleA. GarshottD.M. DenkT. ThomsM. PauloJ.A. HarperJ.W. BennettE.J. BeckmannR. GreenR. EDF1 coordinates cellular responses to ribosome collisions.eLife20209e5882810.7554/eLife.5882832744497
    [Google Scholar]
  88. HuangB. ZhouH. LangX. LiuZ. siRNA-induced ABCE1 silencing inhibits proliferation and invasion of breast cancer cells.Mol. Med. Rep.20141041685169010.3892/mmr.2014.242425070080
    [Google Scholar]
  89. XingL. SunC. HanL. ZhuZ. The expression and effect of ABCE1 in gastric adenocarcinoma.Appl. Biochem. Biotechnol.2022194115292530410.1007/s12010‑022‑03986‑6.
    [Google Scholar]
  90. BuosoE. MasiM. LongA. ChiappiniC. TravelliC. GovoniS. RacchiM. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal receptor for activated c kinase 1 (RACK1) in breast cancer.Br. J. Pharmacol.2022179122813282810.1111/bph.1521832726469
    [Google Scholar]
  91. SajadiM. FaziltiM. NazemH. MahdevarM. GhaediK. The expression changes of transcription factors including ANKZF1, LEF1, CASZ1, and ATOH1 as a predictor of survival rate in colorectal cancer: A large-scale analysis.Cancer Cell Int.202222133910.1186/s12935‑022‑02751‑336344988
    [Google Scholar]
  92. ShinE.M. HuynhV.T. NejaS.A. LiuC.Y. RajuA. TanK. TanN.S. GunaratneJ. BiX. IyerL.M. AravindL. TergaonkarV. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer.Sci. Adv.2021712eabe247010.1126/sciadv.abe247033731348
    [Google Scholar]
  93. WanL. JuszkiewiczS. BlearsD. BajpeP.K. HanZ. FaullP. MitterR. StewartA. SnijdersA.P. HegdeR.S. SvejstrupJ.Q. Translation stress and collided ribosomes are co-activators of cGAS.Mol. Cell2021811328082822.e1010.1016/j.molcel.2021.05.01834111399
    [Google Scholar]
  94. MoonS.L. MorisakiT. StasevichT.J. ParkerR. Coupling of translation quality control and mRNA targeting to stress granules.J. Cell Biol.20202198e20200412010.1083/jcb.20200412032520986
    [Google Scholar]
  95. UdagawaT. SekiM. OkuyamaT. AdachiS. NatsumeT. NoguchiT. MatsuzawaA. InadaT. Failure to degrade cat-tailed proteins disrupts neuronal morphogenesis and cell survival.Cell Rep.202134110859910.1016/j.celrep.2020.10859933406423
    [Google Scholar]
  96. WuZ. TantrayI. LimJ. ChenS. LiY. DavisZ. SitronC. DongJ. GispertS. AuburgerG. BrandmanO. BiX. SnyderM. LuB. MISTERMINATE mechanistically links mitochondrial dysfunction with proteostasis failure.Mol. Cell2019754835848.e810.1016/j.molcel.2019.06.03131378462
    [Google Scholar]
  97. LvL. MoJ. QingY. WangS. ChenL. MeiA. XuR. HuangH. TanJ. LiY. LiuJ. NEMF-mediated Listerin-independent mitochondrial translational surveillance by E3 ligase Pirh2 and mitochondrial protease ClpXP.Cell Rep.202443311386010.1016/j.celrep.2024.11386038412092
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673317789240807055740
Loading
/content/journals/cmc/10.2174/0109298673317789240807055740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test