Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Liquiritin (LIQ), a bioactive flavonoid from Glycyrrhiza species, has shown significant potential in cancer therapy. LIQ exhibits potent inhibitory effects on various cancer cell types, including breast, lung, liver, and colon cancers, while demonstrating low toxicity towards healthy cells. Its anticancer mechanisms include inducing cell cycle arrest, promoting apoptosis, and modulating inflammation-related pathways. Additionally, LIQ impedes angiogenesis and enhances the efficacy of conventional chemotherapies through sensitization and synergistic effects with other natural compounds and targeted therapies. These multifaceted actions highlight LIQ as a promising candidate for further development as an anticancer agent. This abstract provides an overview of LIQ's chemistry, biological effects, and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673315699240805111122
2024-08-19
2025-09-09
Loading full text...

Full text loading...

References

  1. CasteloM. Sue-Chue-LamC. PaszatL. KishibeT. ScheerA.S. HansenB.E. BaxterN.N. Time to diagnosis and treatment in younger adults with colorectal cancer: A systematic review.PLoS One2022179e027339610.1371/journal.pone.027339636094913
    [Google Scholar]
  2. BhatA.A. ThapaR. AfzalO. AgrawalN. AlmalkiW.H. KazmiI. AlzareaS.I. AltamimiA.S.A. PrasherP. SinghS.K. DuaK. GuptaG. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review.Int. J. Biol. Macromol.2023242Pt 212483210.1016/j.ijbiomac.2023.12483237196719
    [Google Scholar]
  3. DuncanM. MoschopoulouE. HerringtonE. DeaneJ. RoylanceR. JonesL. BourkeL. MorganA. ChalderT. ThahaM.A. TaylorS.C. KorszunA. WhiteP.D. BhuiK. Review of systematic reviews of non-pharmacological interventions to improve quality of life in cancer survivors.BMJ Open2017711e01586010.1136/bmjopen‑2017‑01586029187408
    [Google Scholar]
  4. González-MolesM.Á. Keim-del PinoC. Ramos-GarcíaP. Hallmarks of cancer expression in oral Lichen Planus: A scoping review of systematic reviews and meta-analyses.Int. J. Mol. Sci.202223211309910.3390/ijms23211309936361889
    [Google Scholar]
  5. González-Palacios TorresC. Barrios-RodríguezR. Muñoz-BravoC. ToledoE. DierssenT. Jiménez- MoleónJ.J. Mediterranean diet and risk of breast cancer: An umbrella review.Clin. Nutr.202342460060810.1016/j.clnu.2023.02.01236893621
    [Google Scholar]
  6. TuominenL. StoltM. MeretojaR. Leino-KilpiH. Effectiveness of nursing interventions among patients with cancer: An overview of systematic reviews.J. Clin. Nurs.20192813-142401241910.1111/jocn.1476230585667
    [Google Scholar]
  7. HanX. YangY. ZhangM. LiL. XueY. JiaQ. WangX. GuanS. Liquiritin protects against cardiac fibrosis after myocardial infarction by inhibiting CCL5 expression and the NF-κB signaling pathway.Drug Des. Devel. Ther.2022164111412510.2147/DDDT.S38680536483459
    [Google Scholar]
  8. HanY.J. KangB. YangE.J. ChoiM.K. SongI.S. Simultaneous determination and pharmacokinetic characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in rat plasma following oral administration of Glycyrrhizae radix extract.Molecules20192491816
    [Google Scholar]
  9. KojomaM. HayashiS. ShibataT. YamamotoY. SekizakiH. Variation of glycyrrhizin and liquiritin contents within a population of 5-year-old licorice ( Glycyrrhiza uralensis ) plants cultivated under the same conditions.Biol. Pharm. Bull.20113481334133710.1248/bpb.34.133421804228
    [Google Scholar]
  10. LanX. OlaleyeO.E. LuJ. YangW. DuF. YangJ. ChengC. ShiY. WangF. ZengX. TianN. LiaoP. YuX. XuF. LiY. WangH. ZhangN. JiaW. LiC. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule.Acta Pharmacol. Sin.202142122155217210.1038/s41401‑021‑00651‑233931765
    [Google Scholar]
  11. LiK. YuanJ. SuW. Determination of liquiritin, naringin, hesperidin, thymol, imperatorin, honokiol, isoimperatorin, and magnolol in the traditional Chinese medicinal preparation Huoxiang-zhengqi liquid using high-performance liquid chromatography.Yakugaku Zasshi2006126111185119010.1248/yakushi.126.118517077620
    [Google Scholar]
  12. Sharifi-RadJ. QuispeC. Herrera-BravoJ. BelénL.H. KaurR. KregielD. UpretyY. BeyatliA. YeskaliyevaB. KırkınC. ÖzçelikB. SenS. AcharyaK. SharopovF. Cruz-MartinsN. KumarM. RazisA.F.A. SunusiU. KamalR.M. ShaheenS. SuleriaH.A.R. Glycyrrhiza Genus: Enlightening phytochemical components for pharmacological and health-promoting abilities.Oxid. Med. Cell. Longev.2021202112010.1155/2021/757113234349875
    [Google Scholar]
  13. LiX.Q. CaiL.M. LiuJ. MaY.L. KongY.H. LiH. JiangM. Liquiritin suppresses UVB-induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF-κB and MAPK/caspase signaling pathways.Int. J. Mol. Med.20184231445145910.3892/ijmm.2018.372029901082
    [Google Scholar]
  14. WeiF. JiangX. GaoH.Y. GaoS.H. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo .Int. J. Oncol.20175151383139410.3892/ijo.2017.413429048624
    [Google Scholar]
  15. TengL. MengQ. LuJ. XieJ. WangZ. LiuY. WangD. Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells.Mol. Med. Rep.201410281882410.3892/mmr.2014.228924888902
    [Google Scholar]
  16. WangY. WangX. LiY. XueZ. ShaoR. LiL. ZhuY. ZhangH. YangJ. Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/IL17A pathway.Pharmacol. Res.202217610608310.1016/j.phrs.2022.10608335033647
    [Google Scholar]
  17. MohammadR.M. MuqbilI. LoweL. YedjouC. HsuH.Y. LinL.T. SiegelinM.D. FimognariC. KumarN.B. DouQ.P. YangH. SamadiA.K. RussoG.L. SpagnuoloC. RayS.K. ChakrabartiM. MorreJ.D. ColeyH.M. HonokiK. FujiiH. GeorgakilasA.G. AmedeiA. NiccolaiE. AminA. AshrafS.S. HelferichW.G. YangX. BoosaniC.S. GuhaG. BhaktaD. CirioloM.R. AquilanoK. ChenS. MohammedS.I. KeithW.N. BilslandA. HalickaD. NowsheenS. AzmiA.S. Broad targeting of resistance to apoptosis in cancer.Semin. Cancer Biol.201535S78S10310.1016/j.semcancer.2015.03.00125936818
    [Google Scholar]
  18. YuanL. WangD. WuC. Protective effect of liquiritin on coronary heart disease through regulating the proliferation of human vascular smooth muscle cells via upregulation of sirtuin1.Bioengineered20221322840285010.1080/21655979.2021.202468735038972
    [Google Scholar]
  19. ZhongC. ChenC. GaoX. TanC. BaiH. NingK. Multi-omics profiling reveals comprehensive microbe- plant–metabolite regulation patterns for medicinal plant Glycyrrhiza uralensis Fisch.Plant Biotechnol. J.202220101874188710.1111/pbi.1386835668676
    [Google Scholar]
  20. YuJ.Y. HaJ. KimK.M. JungY.S. JungJ.C. OhS. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver.Molecules2015207130411305410.3390/molecules20071304126205049
    [Google Scholar]
  21. YanZ.Q. TanJ. GuoK. YaoL.G. Phytotoxic mechanism of allelochemical liquiritin on root growth of lettuce seedlings.Plant Signal. Behav.20201510179558110.1080/15592324.2020.179558132693669
    [Google Scholar]
  22. ThapaR. AfzalO. Alfawaz AltamimiA.S. GoyalA. AlmalkiW.H. AlzareaS.I. KazmiI. JakhmolaV. SinghS.K. DuaK. GilhotraR. GuptaG. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential.Chem. Biol. Interact.202337811048210.1016/j.cbi.2023.11048237044286
    [Google Scholar]
  23. WuY. WangD. YangX. FuC. ZouL. ZhangJ. TanX. Traditional chinese medicine Gegen Qinlian decoction ameliorates irinotecan chemotherapy-induced gut toxicity in mice.Biomed Pharmacother.20191092252226110.1016/j.biopha.2018.11.095.
    [Google Scholar]
  24. WeiX. ZhangB. WeiF. DingM. LuoZ. HanX. TanX. Gegen Qinlian pills alleviate carrageenan-induced thrombosis in mice model by regulating the HMGB1/NF-κB/NLRP3 signaling.Phytomedicine202210015408310.1016/j.phymed.2022.15408335413645
    [Google Scholar]
  25. WeiW. GaoX. ZhaoL. ZhuangJ. JiaoY. XuF. Liquiritin apioside attenuates laryngeal chemoreflex but not mechanoreflex in rat pups.Am. J. Physiol. Lung Cell. Mol. Physiol.20203181L89L9710.1152/ajplung.00306.201931617735
    [Google Scholar]
  26. MengX. YangS. PiZ. SongF. JiangH. LiuZ. An investigation of the metabolism of liquiritin and the immunological effects of its metabolites.J. Liq. Chromatogr. Relat. Technol.201235111538154910.1080/10826076.2011.619042.
    [Google Scholar]
  27. KimH.J. LimJ.W. KimK.J. NohG.W. ParkS.Y. Characterization and transdermal delivery of ethosomes loaded with Liquiritigenin and Liquiritin.Applied Chemistry for Engineering2015
    [Google Scholar]
  28. FujiiS. MorinagaO. UtoT. NomuraS. ShoyamaY. Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products.J. Agric. Food Chem.201462153377338310.1021/jf404731z24621071
    [Google Scholar]
  29. FujiiS. MorinagaO. UtoT. NomuraS. ShoyamaY. Development of double eastern blotting for major licorice components, Glycyrrhizin and Liquiritin for chemical quality control of Licorice using anti-Glycyrrhizin and anti-Liquiritin monoclonal antibodies.J. Agric. Food Chem.20166451087109310.1021/acs.jafc.5b0473226765784
    [Google Scholar]
  30. ThuV.T. YenN.T.H. LyN.T.H. Liquiritin from Radix Glycyrrhizae protects cardiac mitochondria from hypoxia/reoxygenation damage.J. Anal. Methods Chem.2021202111110.1155/2021/185746434413986
    [Google Scholar]
  31. ZhuT. TianM. RowK.H. Comparison of adsorption equilibrium of glycyrrhizic acid and liquiritin on C18 column.J. Ind. Eng. Chem.201016692993410.1016/j.jiec.2010.09.005
    [Google Scholar]
  32. XuD. WangS. HouX. SunC. Preliminary studies on Liquiritin, Deoxyschizandrin, and Tanshinone II A as potential anti-neurodegenerative disease agent: Determination by reverse-phase liquid chromatography in Tianwang Buxin pills.J. Anal. Methods Chem.201920191810.1155/2019/315094231467767
    [Google Scholar]
  33. KhaitovB. KarimovA. KhaitbaevaJ. SindarovO. KarimovA. LiY. Perspectives of Licorice production in harsh environments of the aral sea regions.Int. J. Environ. Res. Public Health202219181177010.3390/ijerph19181177036142045
    [Google Scholar]
  34. LiW. LiS. LinL. BaiH. WangY. KatoH. AsadaY. ZhangQ. KoikeK. Bioassay-guided isolation and quantification of the α-Glucosidase inhibitory compound, Glycyrrhisoflavone, from Glycyrrhiza uralensis.Nat. Prod. Commun.2010571934578X100050010.1177/1934578X1000500713
    [Google Scholar]
  35. ChenY. AgnelloM. DinisM. ChienK.C. WangJ. HuW. ShiW. HeX. ZouJ. Lollipop containing Glycyrrhiza uralensis extract reduces Streptococcus mutans colonization and maintains oral microbial diversity in Chinese preschool children.PLoS One2019148e022175610.1371/journal.pone.022175631442287
    [Google Scholar]
  36. SongN. ZhangJ-T. Fuzzy C-Means Clustering Applied to the Classification of &Amp;lt;i>Glycyrrhiza Uralensis</I> Communities in North China.Automation Control and Intelligent Systems2017
    [Google Scholar]
  37. TangZ.H. LiT. TongY.G. ChenX.J. ChenX.P. WangY.T. LuJ.J. A systematic review of the anticancer properties of compounds isolated from Licorice (Gancao).Planta Med.201581181670168710.1055/s‑0035‑155822726695708
    [Google Scholar]
  38. LiuQ. GuoS. ZhengX. ShenX. ZhangT. LiaoB. HeW. HuH. ChengR. XuJ. Licorice germplasm resources identification using DNA barcodes inner-variants.Plants20211010203610.3390/plants1010203634685843
    [Google Scholar]
  39. FuhrmanB. AviramM. Dietary Licorice-root antioxidants reduce heart diseases.Asia Pac. Biotech. News20048231303130510.1142/S0219030304002241
    [Google Scholar]
  40. SohailM. RakhaA. ButtM.S. AsgherM. Investigating the antioxidant potential of Licorice extracts obtained through different extraction modes.J. Food Biochem.2017
    [Google Scholar]
  41. Carbonell-BarrachinaÁ.A. AracilP. GarcíaE. BurlóF. Martínez-SánchezF. Source of arsenic in licorice confectionery products.J. Agric. Food Chem.20035161749175210.1021/jf026057h12617618
    [Google Scholar]
  42. KarvetiR. MishraS. A Conceptual Study on Yashtimadhu (Glycyrrhiza Glabra) – A Review Article.International Ayurvedic Medical Journal202110.46607/iamj13p5062021
    [Google Scholar]
  43. LiT. HuaS. MaJ. DongL. XuF. FuX. Spectrum- effect relationships of flavonoids in Glycyrrhiza uralensis Fisch.J. Anal. Methods Chem.2020202011110.1155/2020/883829033343964
    [Google Scholar]
  44. DuanL. ZhangZ.R. DengS.W. ChenH.F. The complete chloroplast genomes of rare medical herb Glycyrrhiza inflata and its relative G. aspera (Fabaceae).Mitochondrial DNA B Resour.2019424083408410.1080/23802359.2019.169106733366329
    [Google Scholar]
  45. ÇevikD. ErdoganS. SerttasR. KanY. KırmızıbekmezH. Cytotoxic and antimigratory activity of retrochalcones from Glycyrrhiza echinata L. on human cancer cells.Chem. Biodivers.2023201e20220058936448364
    [Google Scholar]
  46. AL-HmadiH.B. MajdoubS. Chaabane-BanaouesR. NardoniS. El MokniR. DhaouadiH. PirasA. BabbaH. PorceddaS. HammamiS. Chemical composition, antifungal and antibiofilm activities of essential oils from Glycyrrhiza foetida (Desf.) growing in Tunisia.Biomed. Chromatogr.2023375e559610.1002/bmc.559636740815
    [Google Scholar]
  47. ZhaoK. LiJ. ZhangX. ChenQ. LiuM. AoX. GuY. LiaoD. XuK. MaM. YuX. XiangQ. ChenJ. ZhangX. PenttinenP. Actinobacteria associated with Glycyrrhiza inflata Bat. are diverse and have plant growth promoting and antimicrobial activity.Sci. Rep.2018811366110.1038/s41598‑018‑32097‑830209357
    [Google Scholar]
  48. MaltsevaE.M. EgorovaI.N. PinchukL.G. Glycyrrhiza Pallidiflora Maxim..Medical & Pharmaceutical Journal Pulse20212934
    [Google Scholar]
  49. BurottoM. HartleyM.L. MarshallJ.L. PishvaianM.J. Future of targeted agents in metastatic colorectal cancer.Colorectal Cancer20121543344310.2217/crc.12.5224273599
    [Google Scholar]
  50. CoupsE.J. ManneS.L. MeropolN.J. WeinbergD.S. Multiple behavioral risk factors for colorectal cancer and colorectal cancer screening status.Cancer Epidemiol. Biomarkers Prev.200716351051610.1158/1055‑9965.EPI‑06‑014317372246
    [Google Scholar]
  51. CenterM.M. JemalA. SmithR.A. WardE. Worldwide variations in colorectal cancer.CA Cancer J. Clin.200959636637810.3322/caac.2003819897840
    [Google Scholar]
  52. van GeelR.M.J.M. BeijnenJ.H. BernardsR. SchellensJ.H.M. Treatment individualization in colorectal cancer.Curr. Colorectal Cancer Rep.201511633534410.1007/s11888‑015‑0288‑z26617477
    [Google Scholar]
  53. ZhuJ. HuangR. YangR. XiaoY. YanJ. ZhengC. XiaoW. HuangC. WangY. Licorice extract inhibits growth of non-small cell lung cancer by down-regulating CDK4-Cyclin D1 complex and increasing CD8+ T cell infiltration.Cancer Cell Int.202121152910.1186/s12935‑021‑02223‑034641869
    [Google Scholar]
  54. YehH.S. BerensonJ.R. Treatment for myeloma bone disease.Clin. Cancer Res.200612206279s6284s10.1158/1078‑0432.CCR‑06‑068117062714
    [Google Scholar]
  55. BerensonJ. RajdevL. BroderM. Managing bone complications of solid tumors.Cancer Biol. Ther.2006591086108910.4161/cbt.5.9.330816969120
    [Google Scholar]
  56. BerensonJ. RajdevL. BroderM. Pathophysiology of bone metastases.Cancer Biol. Ther.2006591078108110.4161/cbt.5.9.330617012831
    [Google Scholar]
  57. BerensonJ. RajdevL. BroderM. Treatment strategies for skeletal complications of cancer.Cancer Biol. Ther.2006591074107710.4161/cbt.5.9.330516969118
    [Google Scholar]
  58. NiH. XuM. XieK. FeiY. DengH. HeQ. WangT. LiuS. ZhuJ. XuL. YaoM. Liquiritin alleviates pain through inhibiting CXCL1/CXCR2 signaling pathway in bone cancer pain rat.Front. Pharmacol.20201143610.3389/fphar.2020.0043632390832
    [Google Scholar]
  59. GhimireB. MaroniR. VulkanD. ShahZ. GaynorE. TimoneyM. JonesL. ArvanitisR. LedsonM. LukehirstL. RutherfordP. ClarkeF. GardnerK. MarcusM.W. HillS. FidoeD. MasonS. SmithS.G. QuaifeS.L. FitzgeraldK. PoirierV. DuffyS.W. FieldJ.K. Evaluation of a health service adopting proactive approach to reduce high risk of lung cancer: The Liverpool healthy lung programme.Lung Cancer2019134667110.1016/j.lungcan.2019.05.026
    [Google Scholar]
  60. BhatA.A. ThapaR. GoyalA. SubramaniyanV. KumarD. GuptaS. SinghS.K. DuaK. GuptaG. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases.Future Med. Chem.202315758358610.4155/fmc‑2023‑004837140132
    [Google Scholar]
  61. MarcusM.W. ChenY. RajiO.Y. DuffyS.W. FieldJ.K. LLPi: Liverpool lung project risk prediction model for lung cancer incidence.Cancer Prev. Res. (Phila.)20158657057510.1158/1940‑6207.CAPR‑14‑043825873368
    [Google Scholar]
  62. BhatA.A. GuptaG. AlharbiK.S. AfzalO. AltamimiA.S.A. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. ChellappanD.K. SinghS.K. MacLoughlinR. OliverB.G. DuaK. Polysaccharide-based nanomedicines targeting lung cancer.Pharmaceutics202214122788
    [Google Scholar]
  63. CassidyA. DuffyS.W. MylesJ. LiloglouT. FieldJ.K. Lung cancer risk prediction: A tool for early detection.Int. J. Cancer200612011617058200
    [Google Scholar]
  64. BhatA.A. GilhotraR. SinghY. SharmaS. Jesus Andreoli PintoT. FerrazH.G. SinghS.K. DuaK. GuptaG. Advanced drug-delivery approaches in managing P53- mediated lung diseases remodeling.Nanomedicine (Lond.)202318758358710.2217/nnm‑2023‑003237194747
    [Google Scholar]
  65. LiM. ZhangC. DengS. LiL. LiuS. BaiJ. XuY. GuanY. XiaX. SunL. CarboneD.P. HuC. Lung cancer-associated T cell repertoire as potential biomarker for early detection of stage I lung cancer.Lung Cancer2021162162210.1016/j.lungcan.2021.09.01734649105
    [Google Scholar]
  66. BhatA.A. GuptaG. SinghS.K. YadavH.K.S. SainiM. SalfiR. SinghS.K. DuaK. Nanotechnology-based advancements in NF-κB pathway inhibition for the treatment of inflammatory lung diseases.Nanomedicine (Lond.)202217302209221310.2217/nnm‑2022‑022036802843
    [Google Scholar]
  67. WangT. DingL. JinH. ShiR. LiY. WuJ. LiY. ZhuL. MaY. Simultaneous quantification of catechin, epicatechin, liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, piperine and glycyrrhetinic acid in rat plasma by HPLC-MS/MS: application to a pharmacokinetic study of Longhu Rendan pills.Biomed. Chromatogr.20163081166117410.1002/bmc.366226613237
    [Google Scholar]
  68. ZhouQ. PanH. LiJ. Molecular insights into potential contributions of natural polyphenols to lung cancer treatment.Cancers (Basel)20191110156510.3390/cancers1110156531618955
    [Google Scholar]
  69. ZhouY. HoW.S. Combination of Liquiritin, Isoliquiritin and Isoliquirigenin induce apoptotic cell death through upregulating P53 and P21 in the A549 non-small cell lung cancer cells.Oncol. Rep.201431129830424247527
    [Google Scholar]
  70. NozakiI. HatoS. KobatakeT. OhtaK. KuboY. NishimuraR. KuritaA. Incidence of metachronous gastric cancer in the remnant stomach after synchronous multiple cancer surgery.Gastric Cancer201417616623624766
    [Google Scholar]
  71. TakatsuY. HikiN. NunobeS. OhashiM. HondaM. YamaguchiT. NakajimaT. SanoT. Clinicopathological features of gastric cancer in young patients.Gastric Cancer20161947247825752270
    [Google Scholar]
  72. ChoH. YamadaM. SekineS. TanabeN. UshiamaM. HirataM. OgawaG. GotohM. YoshidaT. YoshikawaT. SaitoY. OdaI. SuganoK. Gastric cancer is highly prevalent in lynch syndrome patients with Atrophic Gastritis.Gastric Cancer202128329132794040
    [Google Scholar]
  73. QuagliaA. Hepatocellular carcinoma: A review of diagnostic challenges for the pathologist.J. Hepatocell. Carcinoma201859910810.2147/JHC.S15980830519546
    [Google Scholar]
  74. SaccoR. ConteC. TuminoE. ParisiG. GiacomelliL. MetrangoloS. BresciG. CabibboG. MarcegliaS. EggenhoffnerR. Transarterial radioembolization for hepatocellular carcinoma: A review.J. Hepatocell. Carcinoma20163252910.2147/JHC.S5035927574589
    [Google Scholar]
  75. LafaroK.J. PawlikT.M. Fibrolamellar hepatocellular carcinoma: Current clinical perspectives.J. Hepatocell. Carcinoma2015215115727508204
    [Google Scholar]
  76. WangJ.R. LiT.Z. WangC. LiS.M. LuoY.H. PiaoX.J. FengY.C. ZhangY. XuW.T. ZhangY. ZhangT. WangS.N. XueH. WangH.X. CaoL.K. JinC.H. Liquiritin inhibits proliferation and induces apoptosis in HepG2 hepatocellular carcinoma cells via the ROS-mediated MAPK/AKT/NF-κB signaling pathway.Naunyn Schmiedebergs Arch. Pharmacol.2020393101987199910.1007/s00210‑019‑01763‑7
    [Google Scholar]
  77. SmallW.Jr BaconM.A. BajajA. ChuangL.T. FisherB.J. HarkenriderM.M. JhingranA. KitchenerH.C. MileshkinL.R. ViswanathanA.N. GaffneyD.K. Cervical cancer: A global health crisis.Cancer2017123132404241210.1002/cncr.3066728464289
    [Google Scholar]
  78. LimM.C. WonY.J. LimJ. KimY.J. SeoS.S. KangS. LeeE.S. OhJ.H. KimJ.Y. ParkS.Y. Second primary cancer after diagnosis and treatment of cervical cancer.Cancer Res. Treat.201648264164910.4143/crt.2014.32626194366
    [Google Scholar]
  79. HeS. LiuH. ZhouY. YueQ. Liquiritin (LT) exhibits suppressive effects against the growth of human cervical cancer cells through activating Caspase-3 in vitro and xenograft mice in vivo .Biomed. Pharmacother.20179221522810.1016/j.biopha.2017.05.02628544935
    [Google Scholar]
  80. YanX. LiuT. YuanX. XuY. YanH. HaoG. Chloroplast genomes and comparative analyses among thirteen Taxa within Myrsinaceae s.str. Clade (Myrsinoideae, Primulaceae).Int. J. Mol. Sci.20192018453410.3390/ijms2018453431540236
    [Google Scholar]
  81. BoseS. TraxelK.D. VuA.A. BandyopadhyayA. Clinical significance of three-dimensional printed biomaterials and biomedical devices.MRS Bull.201944649450410.1557/mrs.2019.12131371848
    [Google Scholar]
  82. AriasM. DaveyJ.W. MartinS. JigginsC. NadeauN. JoronM. LlaurensV. How do predators generalize warning signals in simple and complex prey communities? Insights from a videogame.Proceedings of the Royal Society2020202028719212020001410.1098/rspb.2020.0014
    [Google Scholar]
  83. Abdul JabbarS. SundaramurthiS. ElamuruganT.P. GoneppanavarM. Nelamangala RamakrishnaiahV.P. An Unusual Presentation of Pseudomembranous Colitis.Cureus2019114e457031281753
    [Google Scholar]
  84. NovignonJ. DjossouN.G. EnemarkU. Childhood mortality, intra-household bargaining power and fertility preferences among women in Ghana.Reprod. Health201916113910.1186/s12978‑019‑0798‑231500638
    [Google Scholar]
  85. KisB. PavelI.Z. AvramS. MoacaE.A. Herrero San JuanM. SchwiebsA. RadekeH.H. MunteanD. DiaconeasaZ. MindaD. OpreanC. BojinF. DeheleanC.A. SoicaC. DanciuC. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract.BMC Complement Med. Ther.20222217410.1186/s12906‑022‑03526‑z.
    [Google Scholar]
  86. ChangH.B. ChenB.H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.Int. J. Nanomedicine2015105059508026345201
    [Google Scholar]
  87. FalcãoS.I. DuarteD. DialloM. SantosJ. RibeiroE. ValeN. Vilas-BoasM. Improvement of the in vitro cytotoxic effect on HT-29 colon cancer cells by combining 5-Fluorouacil and Fluphenazine with green, red or brown propolis.Molecules2023288339310.3390/molecules2808339337110626
    [Google Scholar]
  88. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals (Basel)202114215710.3390/ph1402015733673021
    [Google Scholar]
  89. MeadowsG.G. ZhangH. Effects of alcohol on tumor growth, metastasis, immune response, and host survival.Alcohol Res.201537231132226695753
    [Google Scholar]
  90. PanY. CaoM. YouD. QinG. LiuZ. Research progress on the animal models of drug-induced liver injury: Current status and further perspectives.BioMed Res. Int.2019201911210.1155/2019/128382431119149
    [Google Scholar]
  91. PhilpottH.L. NandurkarS. LubelJ. GibsonP.R. Drug-induced gastrointestinal disorders.Frontline Gastroenterol.201451495710.1136/flgastro‑2013‑10031628839751
    [Google Scholar]
  92. SalahS. TaiebC. DemessantA.L. HaftekM. Prevalence of skin reactions and self-reported allergies in 5 countries with their social impact measured through quality of life impairment.Int. J. Environ. Res. Public Health2021189450110.3390/ijerph1809450133922720
    [Google Scholar]
  93. PastorinoG. CornaraL. SoaresS. RodriguesF. OliveiraM.B.P.P. Liquorice (Glycyrrhiza glabra ): A phytochemical and pharmacological review.Phytother. Res.201832122323233910.1002/ptr.617830117204
    [Google Scholar]
  94. QiaoH. ZhangX. WangT. LiangL. ChangW. XiaH. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration.Pharm. Biol.201452222823610.3109/13880209.2013.83233424102672
    [Google Scholar]
  95. ZhangL. XuH. ZhanL. Pharmacokinetic assessments of liquiritin, protocatechuic aldehyde and rosmarinic acid in rat plasma by UPLC–MS-MS after administration of zibupiyin recipe.J. Chromatogr. Sci.201856213914610.1093/chromsci/bmx09329186346
    [Google Scholar]
  96. LeeY. ChinY.W. BaeJ.K. SeoJ. ChoiY. Pharmacokinetics of isoliquiritigenin and its metabolites in rats: Low bioavailability is primarily due to the hepatic and intestinal metabolism.Planta Med.201379171656166510.1055/s‑0033‑135092424108436
    [Google Scholar]
  97. LiuJ. BanuvarS. VianaM. BarengoltsE. ChenS.N. PauliG.F. van BreemenR.B. Pharmacokinetic interactions of a licorice dietary supplement with cytochrome P450 enzymes in female participants.Drug Metab. Dispos.202351219920410.1124/dmd.122.00105036328482
    [Google Scholar]
  98. LinW.H. BainesR.A. Regulation of membrane excitability: A convergence on voltage-gated sodium conductance.Mol. Neurobiol.2015511576710.1007/s12035‑014‑8674‑024677068
    [Google Scholar]
  99. MaoX. Ait-AissaK. LagrangeJ. YoucefG. LouisH. Hypertension, hypercoagulability and the metabolic syndrome: A cluster of risk factors for cardiovascular disease.Biomed. Mater. Eng.2012221-3354810.3233/BME‑2012‑068822766701
    [Google Scholar]
  100. ChurchyardG.J. SnowdenM.A. HokeyD. DheenadhayalanV. McClainJ.B. DouoguihM. PauM.G. SadoffJ. LandryB. The safety and immunogenicity of an adenovirus type 35-vectored TB vaccine in HIV-infected, BCG-vaccinated adults with CD4(+) T cell counts >350 cells/mm(3).Vaccine201533151890189610.1016/j.vaccine.2015.02.00425698492
    [Google Scholar]
  101. MorishitaY. KuboK. MikiA. IshibashiK. KusanoE. NagataD. Positive association of vigorous and moderate physical activity volumes with skeletal muscle mass but not bone density or metabolism markers in hemodialysis patients.Int. Urol. Nephrol.201446363363910.1007/s11255‑014‑0662‑924526334
    [Google Scholar]
  102. ChenG. SeukepA.J. GuoM. Recent Advances in molecular docking for the research and discovery of potential marine drugs.Mar. Drugs2020181154510.3390/md1811054533143025
    [Google Scholar]
  103. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  104. AlibakhshiA. MalekzadehR. HosseiniS.A. YaghoobiH. Investigation of the therapeutic role of native plant compounds against colorectal cancer based on system biology and virtual screening.Sci. Rep.20231311145110.1038/s41598‑023‑38134‑537454152
    [Google Scholar]
  105. SahihiM. GhayebY. An investigation of molecular dynamics simulation and molecular docking: Interaction of citrus flavonoids and bovine β-lactoglobulin in focus.Comput. Biol. Med.201451445010.1016/j.compbiomed.2014.04.02224880994
    [Google Scholar]
  106. RoyT. BoatengS.T. UddinM.B. Banang-MbeumiS. YadavR.K. BockC.R. FolahanJ.T. Siwe-NoundouX. WalkerA.L. KingJ.A. BuergerC. HuangS. ChamcheuJ.C. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds.Cells20231212167110.3390/cells1212167137371141
    [Google Scholar]
  107. ElkhalifaA.E.O. Al-ShammariE. KuddusM. AdnanM. SachidanandanM. AwadelkareemA.M. QattanM.Y. KhanM.I. AbduljabbarS.I. Sarwar BaigM. AshrafS.A. Structure-based multi-targeted molecular docking and dynamic simulation of soybean-derived isoflavone genistin as a potential breast cancer signaling proteins inhibitor.Life (Basel)2023138173910.3390/life1308173937629596
    [Google Scholar]
  108. WangX. LiuM. LiX. ZhangM. XuF. LiuH. WuH. Utilizing molecular docking and cell validation to explore the potential mechanisms of lupenone attenuating the inflammatory response via NF-κB pathway.Sci. Rep.202414162510.1038/s41598‑024‑51150‑338182871
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673315699240805111122
Loading
/content/journals/cmc/10.2174/0109298673315699240805111122
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; cancer; chemotherapies; glycyrrhiza; inflammation; Liquiritin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test