Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Mangostins, a prominent component of , have been extensively studied for their biological activities and structural modifications. Chemical methods, including cyclization reactions under acidic conditions, have yielded many derivatives, which often exhibit enhanced pharmacological properties compared to itself. Enzymatic biotransformation, such as glycosylation and oxidation mediated by fungal species and enzymes like horseradish peroxidase, have provided regioselective pathways to functionalized mangostin derivatives. These studies highlight the versatility of mangostin as a scaffold for designing compounds with tailored biological functions. Overall, mangostin represent a promising platform for developing compounds with enhanced pharmacological activities, paving the way for innovative approaches in biomedicine and pharmaceutical sciences. This review provides a comprehensive examination of the chemistry of mangostins, detailing their total synthesis and the derivatives obtained through both chemical and enzymatic methodologies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312728241014025846
2024-11-01
2025-09-06
Loading full text...

Full text loading...

References

  1. Klein-JúniorL.C. CamposA. NieroR. CorrêaR. Vander HeydenY. FilhoV.C. Xanthones and cancer: From natural sources to mechanisms of action.Chem. Biodivers.2020172e190049910.1002/cbdv.201900499 31794156
    [Google Scholar]
  2. MastersK.S. BräseS. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis.Chem. Rev.201211273717377610.1021/cr100446h 22617028
    [Google Scholar]
  3. JeffersonA. QuillinanA.J. ScheinmannF. SimK.Y. Studies in the xanthone series. XVIII. Isolation of γ-mangostin from Garcinia mangostana, and preparation of the natural mangostins by selective demethylation.Aust. J. Chem.19702312253910.1071/CH9702539
    [Google Scholar]
  4. NazreM. NewmanM.F. PenningtonR.T. MiddletonD.J. Taxonomic revision of Garcinia section Garcinia (Clusiaceae).Phytotaxa20183731110.11646/phytotaxa.373.1.1
    [Google Scholar]
  5. KohJ.J. QiuS. ZouH. LakshminarayananR. LiJ. ZhouX. TangC. SaraswathiP. VermaC. TanD.T.H. TanA.L. LiuS. BeuermanR.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting.Biochim. Biophys. Acta Biomembr.20131828283484410.1016/j.bbamem.2012.09.004 22982495
    [Google Scholar]
  6. KaomongkolgitR. JamdeeK. ChaisomboonN. Antifungal activity of alpha-mangostin against Candida albicans.J. Oral Sci.200951340140610.2334/josnusd.51.401 19776506
    [Google Scholar]
  7. TarasukM. SongprakhonP. ChieochansinT. ChoomeeK. Na-BangchangK. YenchitsomanusP. Alpha-mangostin inhibits viral replication and suppresses nuclear factor kappa B (NF-κB)-mediated inflammation in dengue virus infection.Sci. Rep.20221211608810.1038/s41598‑022‑20284‑7 36168031
    [Google Scholar]
  8. JohnsonJ.J. PetiwalaS.M. SyedD.N. RasmussenJ.T. AdhamiV.M. SiddiquiI.A. KohlA.M. MukhtarH. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth.Carcinogenesis201233241341910.1093/carcin/bgr291 22159229
    [Google Scholar]
  9. Gutierrez-OrozcoF. ChitchumroonchokchaiC. LesinskiG.B. SuksamrarnS. FaillaM.L. α-Mangostin: Anti-inflammatory activity and metabolism by human cells.J. Agric. Food Chem.201361163891390010.1021/jf4004434 23578285
    [Google Scholar]
  10. KondoM. ZhangL. JiH. KouY. OuB. Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans.J. Agric. Food Chem.200957198788879210.1021/jf901012f 19807152
    [Google Scholar]
  11. HaoX.M. LiL.D. DuanC.L. LiY.J. Neuroprotective effect of α-mangostin on mitochondrial dysfunction and α-synuclein aggregation in rotenone-induced model of Parkinson’s disease in differentiated SH-SY5Y cells.J. Asian Nat. Prod. Res.201719883384510.1080/10286020.2017.1339349 28696167
    [Google Scholar]
  12. WathoniN. RusdinA. MotoyamaK. JoniI.M. LesmanaR. MuchtaridiM. Nanoparticle drug delivery systems for α-mangostin.Nanotechnol. Sci. Appl.202013233610.2147/NSA.S243017 32280205
    [Google Scholar]
  13. BuravlevE.V. Synthesis of new derivatives of α-mangostin (microreview).Chem. Heterocycl. Compd.201955111038104010.1007/s10593‑019‑02573‑8
    [Google Scholar]
  14. SaraswathyS.U.P. LalithaL.C.P. RahimS. GopinathC. HaleemaS. SarojiniAmma, S.; Aboul-Enein, H.Y. A review on synthetic and pharmacological potential of compounds isolated from Garcinia mangostana Linn.Phytomedicine Plus20222210025310.1016/j.phyplu.2022.100253
    [Google Scholar]
  15. WangM.H. ZhangK.J. GuQ.L. BiX.L. WangJ.X. Pharmacology of mangostins and their derivatives: A comprehensive review.Chin. J. Nat. Med.2017152819310.1016/S1875‑5364(17)30024‑9 28284429
    [Google Scholar]
  16. FeiX. JoM. LeeB. HanS.B. LeeK. JungJ.K. SeoS.Y. KwakY.S. Synthesis of xanthone derivatives based on α-mangostin and their biological evaluation for anti-cancer agents.Bioorg. Med. Chem. Lett.20142492062206510.1016/j.bmcl.2014.03.047 24717154
    [Google Scholar]
  17. JiangK. GaoB. YuJ. JiangL. NiuA. JiaY. MengT. ZhouL. WangJ. Design, synthesis, and biological evaluation of 1,3,6,7-tetrahydroxyxanthone derivatives as phosphoglycerate mutase 1 inhibitors.Bioorg. Med. Chem. Lett.20213612782010.1016/j.bmcl.2021.127820 33513389
    [Google Scholar]
  18. GokarajuG.R. GokarajuR.R. GolakotiT. SomepalliV. BhupathirajuK. Process for producing γ -mangostin. WO Patent 2009093259A22013
    [Google Scholar]
  19. GopalakrishnanG. BanumathiB. SureshG. Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives.J. Nat. Prod.199760551952410.1021/np970165u 9213587
    [Google Scholar]
  20. WangJ. YangK. A preparing method and uses of mangostin and mangostin analogues. CN Patent 106554341A,2017
    [Google Scholar]
  21. BoonnakN. ChantraprommaS. SathirakulK. KaewpiboonC. Modified tetra-oxygenated xanthones analogues as anti-MRSA and P. aeruginosa agent and their synergism with vancomycin.Bioorg. Med. Chem. Lett.2020302012749410.1016/j.bmcl.2020.127494 32795625
    [Google Scholar]
  22. XuD. NieY. LiangX. JiL. HuS. YouQ. WangF. YeH. WangJ. A concise and efficient total synthesis of α-mangostin and β-mangostin from Garcinia Mangostana.Nat. Prod. Commun.8810011103240791782013
    [Google Scholar]
  23. ChiX.Q. ZiC.T. LiH.M. YangL. LvY.F. LiJ.Y. HouB. RenF.C. HuJ.M. ZhouJ. Design, synthesis and structure–activity relationships of mangostin analogs as cytotoxic agents.RSC Advances2018872413774138810.1039/C8RA08409B 35559306
    [Google Scholar]
  24. NunnaS. HuangY.P. RasaM. KrepelovaA. AnnunziataF. AdamL. KäppelS. HsuM.H. NeriF. Characterization of novel α-mangostin and paeonol derivatives with cancer-selective cytotoxicity.Mol. Cancer Ther.202221225727010.1158/1535‑7163.MCT‑20‑0787 34789561
    [Google Scholar]
  25. LiangJ. HuangY.Y. ZhouQ. GaoY. LiZ. WuD. YuS. GuoL. ChenZ. HuangL. LiangS.H. HeX. WuR. LuoH.B. Discovery and optimization of α-mangostin derivatives as novel PDE4 inhibitors for the treatment of vascular dementia.J. Med. Chem.20206363370338010.1021/acs.jmedchem.0c00060 32115956
    [Google Scholar]
  26. MorelliC.F. BiagiottiM. PappalardoV.M. RabuffettiM. SperanzaG. Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia mangostana.Nat. Prod. Res.201529875075510.1080/14786419.2014.986729 25482370
    [Google Scholar]
  27. YatesP. StoutG.H. The structure of mangostin.J. Am. Chem. Soc.19588071691170010.1021/ja01540a046
    [Google Scholar]
  28. RenY. MatthewS. LantvitD.D. NinhT.N. ChaiH. FuchsJ.R. SoejartoD.D. de BlancoE.J.C. SwansonS.M. KinghornA.D. Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues.J. Nat. Prod.20117451117112510.1021/np200051j 21428375
    [Google Scholar]
  29. YangQ. WangY. YangJ. WuY. LiL. ChenF. WangE. LiL. YangY. YanY. WangL. GeL. YangL. YangX. Activation of phenolic oxygen atom using polyphosphoric acid: Synthesis of carbonyl-containing dihydrobenzofurans/dihydrobenzopyrans.Synth. Commun.20211810.1080/00397911.2021.1902537
    [Google Scholar]
  30. BalasubramanianK. RajagopalanK. Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B.Phytochemistry19882751552155410.1016/0031‑9422(88)80242‑5
    [Google Scholar]
  31. SenA.K. SarkarK.K. MazumderP.C. BanerjiN. UusvuoriR. HaseT.A. The structures of garcinones a, b and c: Three new xanthones from Garcinia mangostana.Phytochemistry19822171747175010.1016/S0031‑9422(82)85052‑8
    [Google Scholar]
  32. ChinY.W. KinghornA. Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement.Mini Rev. Org. Chem.20085435536410.2174/157019308786242223 21562610
    [Google Scholar]
  33. PintoM. CastanheiroR. Synthesis of prenylated xanthones: An overview.Curr. Org. Chem.200913121215124010.2174/138527209788921747
    [Google Scholar]
  34. LeeH.H. Synthesis of the mangostins.J. Chem. Soc., Perkin Trans. 11981320510.1039/p19810003205
    [Google Scholar]
  35. IikuboK. IshikawaY. AndoN. UmezawaK. NishiyamaS. The first direct synthesis of α-mangostin, a potent inhibitor of the acidic sphingomyelinase.Tetrahedron Lett.200243229129310.1016/S0040‑4039(01)02137‑2
    [Google Scholar]
  36. JeffersonA. StaceyC.I. ScheinmannF. Gas-liquid chromatography of naturally occurring xanthones and related derivatives.J. Chromatogr. A19715724725410.1016/0021‑9673(71)80037‑7
    [Google Scholar]
  37. KhawK.Y. KumarP. YusofS.R. RamanathanS. MurugaiyahV. Probing simple structural modification of α‐mangostin on its cholinesterase inhibition and cytotoxicity.Arch. Pharm. (Weinheim)202035311200015610.1002/ardp.202000156 32716578
    [Google Scholar]
  38. DongZ. MangaladosF.M. SongM. LiP. LiuK. ZhangM. 3,6-Diamide substituted alpha-mangostin derivative as well as preparation method and application thereof. CN Patent 115141171B,2023
    [Google Scholar]
  39. WangS. ZhangQ. PengM. XuJ. GuoY. Design, synthesis, biological evaluation, and preliminary mechanistic study of a novel mitochondrial-targeted xanthone.Molecules2023283101610.3390/molecules28031016 36770683
    [Google Scholar]
  40. LuY. GuanT. WangS. ZhouC. WangM. WangX. ZhangK. HanX. LinJ. TangQ. WangC. ZhouW. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms.Bioorg. Med. Chem.20238311723210.1016/j.bmc.2023.117232 36940608
    [Google Scholar]
  41. ChengK. ZhangG. QiuS. LiuY. WangY. LiuS. ShanY. YuB. LuY. Synthesis and antitumor activities of α-,γ-mangostin derivatives.Lett. Drug Des. Discov.201311558659310.2174/1570180811666131217003216
    [Google Scholar]
  42. AungT.T. YamJ.K.H. LinS. SallehS.M. GivskovM. LiuS. LwinN.C. YangL. BeuermanR.W. Biofilms of pathogenic nontuberculous mycobacteria targeted by new therapeutic approaches.Antimicrob. Agents Chemother.2016601243510.1128/AAC.01509‑15 26459903
    [Google Scholar]
  43. SudtaP. JiarawapiP. SuksamrarnA. HongmaneeP. SuksamrarnS. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs.Chem. Pharm. Bull. (Tokyo)201361219420310.1248/cpb.c12‑00874 23150066
    [Google Scholar]
  44. MahabusarakamW. ProudfootJ. TaylorW. CroftK. Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin.Free Radic. Res.200033564365910.1080/10715760000301161 11200095
    [Google Scholar]
  45. MahabusarakamW. KuahaK. WilairatP. TaylorW. Prenylated xanthones as potential antiplasmodial substances.Planta Med.2006721091291610.1055/s‑2006‑947190 16902859
    [Google Scholar]
  46. ChupromJ. SangkanuS. MitsuwanW. BoonhokR. MahabusarakamW. SinghL.R. DumkliangE. JitrangsriK. PaulA.K. SurinkaewS. WilairatanaP. PereiraM.L. RahmatullahM. WiartC. OliveiraS.M.R. NissapatornV. Anti- Acanthamoeba activity of a semi-synthetic mangostin derivative and its ability in removal of Acanthamoeba triangularis WU19001 on contact lens.PeerJ202210e1446810.7717/peerj.14468 36523474
    [Google Scholar]
  47. TaiN.V. QuanP.M. HaV.T. LuyenN.D. ChiH.K. CuongL.H. PhongL. ChinhL.V. Synthesis of propargyl compounds and their cytotoxic activity.Russ. J. Org. Chem.202157346246810.1134/S1070428021030192
    [Google Scholar]
  48. HaL.D. HansenP.E. VangO. DuusF. PhamH.D. NguyenL.H.D. Cytotoxic geranylated xanthones and O-alkylated derivatives of α-mangostin.Chem. Pharm. Bull. (Tokyo)200957883083410.1248/cpb.57.830 19652408
    [Google Scholar]
  49. SuphavanichK. MaitaradP. HannongbuaS. SudtaP. SuksamrarnS. TantirungrotechaiY. LimtrakulJ. CoMFA and CoMSIA studies on a new series of xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line.Monatsh. Chem.200914027328010.1007/s00706‑008‑0014‑5
    [Google Scholar]
  50. KimH.J. FeiX. ChoS.C. ChoiB.Y. AhnH.C. LeeK. SeoS.Y. KeumY.S. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.Bioorg. Med. Chem. Lett.201525235625563110.1016/j.bmcl.2015.10.034 26508549
    [Google Scholar]
  51. PaiB.R. NatarajanS. SugunaH. KameswaranL. ShankaranarayanD. GopalakrishnanC. Synthesis and pharmacology of mangostin-3,6-di-O-glucoside.J. Nat. Prod.197942436136510.1021/np50004a002
    [Google Scholar]
  52. ZouH. KohJ.J. LiJ. QiuS. AungT.T. LinH. LakshminarayananR. DaiX. TangC. LimF.H. ZhouL. TanA.L. VermaC. TanD.T.H. ChanH.S.O. SaraswathiP. CaoD. LiuS. BeuermanR.W. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity.J. Med. Chem.20135662359237310.1021/jm301683j 23441632
    [Google Scholar]
  53. KohJ.J. ZouH. LinS. LinH. SohR.T. LimF.H. KohW.L. LiJ. LakshminarayananR. VermaC. TanD.T.H. CaoD. BeuermanR.W. LiuS. Nonpeptidic amphiphilic xanthone derivatives: Structure–activity relationship and membrane-targeting properties.J. Med. Chem.201659117119310.1021/acs.jmedchem.5b01500 26681070
    [Google Scholar]
  54. LiJ. LiuS. KohJ.J. ZouH. LakshminarayananR. BaiY. PervushinK. ZhouL. VermaC. BeuermanR.W. A novel fragment based strategy for membrane active antimicrobials against MRSA.Biochim. Biophys. Acta Biomembr.2015184841023103110.1016/j.bbamem.2015.01.001 25582665
    [Google Scholar]
  55. KohJ.J. ZouH. MukherjeeD. LinS. LimF. TanJ.K. TanD.Z. StockerB.L. TimmerM.S.M. CorkranH.M. LakshminarayananR. TanD.T.H. CaoD. BeuermanR.W. DickT. LiuS. Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties.Eur. J. Med. Chem.201612368470310.1016/j.ejmech.2016.07.068 27517813
    [Google Scholar]
  56. AungT.T. LiJ. KohJ-J. RajamaniL. BeuermanR. TanT.H.D. PeriayahM.H. VermaC.S. ChenS. BarkhamT. T. Molecular design of new antibiotics and antibiotic adjuvants against mcr strains. US Patent 20220281803A12022
    [Google Scholar]
  57. LinS. SinW.L.W. KohJ.J. LimF. WangL. CaoD. BeuermanR.W. RenL. LiuS. Semisynthesis and biological evaluation of xanthone amphiphilics as selective, highly potent antifungal agents to combat fungal resistance.J. Med. Chem.20176024101351015010.1021/acs.jmedchem.7b01348 29155590
    [Google Scholar]
  58. KohJ.J. LinS. AungT.T. LimF. ZouH. BaiY. LiJ. LinH. PangL.M. KohW.L. SallehS.M. LakshminarayananR. ZhouL. QiuS. PervushinK. VermaC. TanD.T.H. CaoD. LiuS. BeuermanR.W. Amino acid modified xanthone derivatives: Novel, highly promising membrane-active antimicrobials for multidrug-resistant gram-positive bacterial infections.J. Med. Chem.201558273975210.1021/jm501285x 25474410
    [Google Scholar]
  59. Cardozo-MuñozJ. Cuca-SuárezL.E. Prieto-RodríguezJ.A. Lopez-VallejoF. Patiño-LadinoO.J. Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase.Molecules20222710328310.3390/molecules27103283 35630761
    [Google Scholar]
  60. KhawK.Y. ChoiS.B. TanS.C. WahabH.A. ChanK.L. MurugaiyahV. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.Phytomedicine201421111303130910.1016/j.phymed.2014.06.017 25172794
    [Google Scholar]
  61. OkudairaC. IkedaY. KondoS. FuruyaS. HirabayashiY. KoyanoT. SaitoY. UmezawaK. Inhibition of acidic sphingomyelinase by xanthone compounds isolated from Garcinia speciosa.J. Enzyme Inhib.200015212913810.1080/14756360009030346 10938539
    [Google Scholar]
  62. NarasimhanS. MaheshwaranS. Abu-YousefI. MajdalawiehA. RethavathiJ. DasP. PoltronieriP. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana.Molecules201722227510.3390/molecules22020275 28208680
    [Google Scholar]
  63. NishiyamaS. NishihamaY. OgaminoT. Lei ShiW. Cha, B-Y.; Yonezawa, T.; Teruya, T.; Nagai, K.; Suenaga, K.; Woo, J-T. Synthetic studies of mangostin derivatives with an inhibitory activity on PDGF-induced human aortic smooth cells proliferation.Heterocycles200977275910.3987/COM‑08‑S(F)65
    [Google Scholar]
  64. PyaeN.Y.L. MaiuthedA. PhongsopitanunW. OuengwanaratB. SukmaW. SrimongkolpithakN. PengonJ. RattanajakR. KamchonwongpaisanS. EiZ.Z. ChunhachaP. WilasluckP. DeetanyaP. WangkanontK. HengphasatpornK. ShigetaY. RungrotmongkolT. ChamniS. N-containing α-mangostin analogs via smiles rearrangement as the promising cytotoxic, antitrypanosomal, and SARS-COV-2 main protease inhibitory agents.Molecules2023283110410.3390/molecules28031104 36770770
    [Google Scholar]
  65. LeT.T. PandeyR.P. GurungR.B. DhakalD. SohngJ.K. Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against gram-positive bacteria.Appl. Microbiol. Biotechnol.201498208527853810.1007/s00253‑014‑5947‑5 25038930
    [Google Scholar]
  66. KimT.S. LeT.T. NguyenH.T. ChoK.W. SohngJ.K. Mutational analyses for product specificity of YjiC towards α-mangostin mono-glucoside.Enzyme Microb. Technol.2018118768210.1016/j.enzmictec.2018.08.001 30143203
    [Google Scholar]
  67. YangY. DengY. ZhangG. XuX. XiongX. YuS. PengF. TianX. YeW. ChenH. YuB. LiuZ. HeX. HuangZ. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance.Mol. Immunol.202416611011810.1016/j.molimm.2023.11.013 38280829
    [Google Scholar]
  68. HuangC. HeX. Mangostin derivative compound as well as preparation method and application thereof. CN113816936B2023
    [Google Scholar]
  69. SanthanakrishnanV.P. VarunE. BandayJ.A. RajeshS. RajamaniK. Studies on the invitro anticancer activity of mangostin and acetylated mangostin against MCF-7 cell lines.Chemical Data Collections20202810047610.1016/j.cdc.2020.100476
    [Google Scholar]
  70. ShibataM.A. HamaokaH. MorimotoJ. KanayamaT. MaemuraK. ItoY. IinumaM. KondoY. Synthetic α‐mangostin dilaurate strongly suppresses wide‐spectrum organ metastasis in a mouse model of mammary cancer.Cancer Sci.201810951660167110.1111/cas.13590 29601143
    [Google Scholar]
  71. TranV.A. Thi VoT.T. NguyenM.N.T. Duy DatN. DoanV.D. NguyenT.Q. VuQ.H. LeV.T. TongT.D. Novel α-mangostin derivatives from mangosteen (Garcinia mangostana L.) peel extract with antioxidant and anticancer potential.J. Chem.2021202111210.1155/2021/9985604
    [Google Scholar]
  72. MardianingrumR. HarionoM. RuswantoR. YusufM. MuchtaridiM. Synthesis, anticancer activity, structure–activity relationship, and molecular modeling studies of α-mangostin derivatives as hERα inhibitor.J. Chem. Inf. Model.202262215305531610.1021/acs.jcim.1c00926 34854302
    [Google Scholar]
  73. ZhaoY. YuW. LiuJ. WangH. DuR. YanZ. Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism.Phytochem. Lett.20224717417910.1016/j.phytol.2021.12.006
    [Google Scholar]
  74. de Alcântara PintoD.C. Pitasse-SantosP. de SouzaG.A. CastroR.N. Freire de LimaM.E. Peracetylation of polyphenols under rapid and mild reaction conditions.Nat. Prod. Res.202337132279228410.1080/14786419.2022.2031186 35073791
    [Google Scholar]
  75. MarkowiczJ. UramŁ. WołowiecS. RodeW. Biotin transport-targeting polysaccharide-modified PAMAM G3 dendrimer as system delivering α-mangostin into cancer cells and C. elegans worms.Int. J. Mol. Sci.202122231292510.3390/ijms222312925 34884739
    [Google Scholar]
  76. MarkowiczJ. WołowiecS. RodeW. UramŁ. Synthesis and properties of α-mangostin and vadimezan conjugates with glucoheptoamidated and biotinylated 3rd generation poly (amidoamine) dendrimer, and conjugation effect on their anticancer and anti-nematode activities.Pharmaceutics202214360610.3390/pharmaceutics14030606 35335982
    [Google Scholar]
  77. NishihamaY. AmanoY. OgaminoT. NishiyamaS. Oxidation of mangostins, the naturally occurring xanthone derivatives carrying diverse biological activities.Electrochemistry (Tokyo)200674860961110.5796/electrochemistry.74.609
    [Google Scholar]
  78. ChiX.Q. HouB. YangL. ZiC.T. LvY.F. LiJ.Y. RenF.C. YuanM.Y. HuJ.M. ZhouJ. Design, synthesis and cholinesterase inhibitory activity of α -mangostin derivatives.Nat. Prod. Res.202034101380138810.1080/14786419.2018.1510925 30456989
    [Google Scholar]
  79. BennettG.J. LeeH.H. DasN.P. Biosynthesis of mangostin. Part 1. The origin of the xanthone skeleton.J. Chem. Soc., Perkin Trans. 1199010267110.1039/p19900002671
    [Google Scholar]
  80. YatesP. AultA. Dimethylmangostin hydrochloride.Tetrahedron19672383307332010.1016/S0040‑4020(01)92298‑7
    [Google Scholar]
  81. BuravlevE.V. ShevchenkoO.G. KutchinA.V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position.Bioorg. Med. Chem. Lett.201525482682910.1016/j.bmcl.2014.12.075 25592715
    [Google Scholar]
  82. BuravlevE.V. ShevchenkoO.G. AnisimovA.A. SuponitskyK.Y. Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity.Eur. J. Med. Chem.2018152102010.1016/j.ejmech.2018.04.022 29684706
    [Google Scholar]
  83. BuravlevE.V. ShevchenkoO.G. Novel mannich bases of α‐mangostin bearing methoxyphenyl moieties with antioxidant and membrane‐protective activity.ChemistrySelect2022736e20220247410.1002/slct.202202474
    [Google Scholar]
  84. ChenY.L. ChenY.C. XiongL.A. HuangQ.Y. GongT.T. ChenY. MaL.F. FangL. ZhanZ.J. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke.Eur. J. Med. Chem.202325111525110.1016/j.ejmech.2023.115251 36921528
    [Google Scholar]
  85. KarunakaranT. EeG.C.L. IsmailI.S. Mohd NorS.M. ZamakshshariN.H. Acetyl- and O -alkyl- derivatives of β-mangostin from Garcinia mangostana and their anti-inflammatory activities.Nat. Prod. Res.201832121390139410.1080/14786419.2017.1350666 28715912
    [Google Scholar]
  86. YatesP. BhatH.B. Structure of β-mangostin.Can. J. Chem.196846233770377210.1139/v68‑626
    [Google Scholar]
  87. DharmaratneH.R.W. SakagamiY. PiyasenaK.G.P. ThevanesamV. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure–activity relationship studies.Nat. Prod. Res.2013271093894110.1080/14786419.2012.678348 22494050
    [Google Scholar]
  88. LinS. ZhuC. LiH. ChenY. LiuS. Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against Gram-positive bacteria with destructive effect on bacterial membrane.Biochim. Biophys. Acta Biomembr.20201862918335310.1016/j.bbamem.2020.183353 32407778
    [Google Scholar]
  89. YatesP. BhatH.B. Acid-catalyzed cyclization of mangostin.Can. J. Chem.197048468068410.1139/v70‑109
    [Google Scholar]
  90. MahabusarakamW. PakawatchaiC. WiriyachitraP. TaylorW.C. SkeltonB.W. WhiteA.H. Bicyclomangostin: A new acid-catalysed cyclization product from mangostin.Aust. J. Chem.199851324910.1071/C97069
    [Google Scholar]
  91. SenA.K. SarkarK.K. MazumderP.C. BanerjiN. UusvuoriR. HasetT.A. A xanthone from Garcinia mangostana.Phytochemistry198019102223222510.1016/S0031‑9422(00)82235‑9
    [Google Scholar]
  92. ChenY. BianY. WangJ.W. GongT.T. YingY.M. MaL.F. ShanW.G. XieX.Q. ZhanZ.J. Effects of α-mangostin derivatives on the Alzheimer’s disease model of rats and their mechanism: A combination of experimental study and computational systems pharmacology analysis.ACS Omega20205179846986310.1021/acsomega.0c00057 32391472
    [Google Scholar]
  93. ZhanZ.-J. ShanW.-G. ChenY. WangJ.-W. MaL.-F. α-mangostin derivative and preparation method and application thereof. WO2019114501A12019
    [Google Scholar]
  94. WangJ.-W. ChenB. ShanW.-G. ZhanZ.-J. XuH. Alpha-mangostin derivative and preparation method and application thereof. CN110183459B2020
    [Google Scholar]
  95. HeX. LuoH.-B. LiangJ. HuangY.-Y. YuS. Alpha-mangostin derivative and application thereof. CN Patent 111253412B,2022
    [Google Scholar]
  96. HeX. HuangY.-Y. DengJ. LiangJ. Alpha-mangostin derivative, preparation method and application thereof. CN113620967B2023
    [Google Scholar]
  97. HuangY.Y. DengJ. TianY.J. LiangJ. XieX. HuangY. ZhuJ. ZhuZ. ZhouQ. HeX. LuoH.B. Mangostanin derivatives as novel and orally active phosphodiesterase 4 inhibitors for the treatment of idiopathic pulmonary fibrosis with improved safety.J. Med. Chem.20216418137361375110.1021/acs.jmedchem.1c01085 34520193
    [Google Scholar]
  98. DengJ. HuangY. LiangJ. ZhuJ. YuS. LiuH. LuoH-B. HuangY-Y. HeX. Synthesis of α-mangostin derivatives and evaluation of their inhibitory activities towards phosphodiesterase 4.Acta Sci. Natur. Univ. Sunyatseni20226135361
    [Google Scholar]
  99. LiuH. WangQ. HuangY. DengJ. XieX. ZhuJ. YuanY. HeY.M. HuangY.Y. LuoH.B. HeX. Discovery of novel PDE4 inhibitors targeting the M-pocket from natural mangostanin with improved safety for the treatment of Inflammatory Bowel Diseases.Eur. J. Med. Chem.202224211463110.1016/j.ejmech.2022.114631 35985255
    [Google Scholar]
  100. LocksleyH.D. QuillinanA.J. ScheinmannF. Extractives from Guttiferae. Part XXIII. An unambiguous synthesis of 6-deoxyjacareubin and related 3,3- and 1,1-dimethylallyl and annulated xanthones.J. Chem. Soc. C19713804381410.1039/J39710003804
    [Google Scholar]
  101. WuJ.J. MaT. WangZ.M. XuW.J. YangX.L. LuoJ.G. KongL.Y. WangX.B. Polycyclic xanthones via pH-switched biotransformation of α-mangostin catalysed by horseradish peroxidase exhibited cytotoxicity against hepatoblastoma cells in vitro.J. Funct. Foods20172820521410.1016/j.jff.2016.11.022
    [Google Scholar]
  102. StoutG.H. KrahnM.M. YatesP. BhatH.B. The structure of mangostin.Chem. Commun. (Camb.)1968421110.1039/C19680000211
    [Google Scholar]
  103. ArunrattiyakornP. SuksamrarnS. SuwannasaiN. KanzakiH. Microbial metabolism of α-mangostin isolated from Garcinia mangostana L.Phytochemistry201172873073410.1016/j.phytochem.2011.02.007 21377704
    [Google Scholar]
  104. ArunrattiyakornP. SuwannasaiN. AreeT. KanokmedhakulS. ItoH. KanzakiH. Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12.J. Mol. Catal., B Enzym.201410217417910.1016/j.molcatb.2014.02.010
    [Google Scholar]
  105. ArunrattiyakornP. KunoM. AreeT. LaphookhieoS. SriyatepT. KanzakiH. Garcia ChavezM.A. WangY.A. AndersenR.J. Biotransformation of β-mangostin by an endophytic fungus of Garcinia mangostana to furnish xanthenes with an unprecedented heterocyclic skeleton.J. Nat. Prod.201881102244225010.1021/acs.jnatprod.8b00519 30350994
    [Google Scholar]
  106. AshaS. VidyavathiM. Cunninghamella – A microbial model for drug metabolism studies – A review.Biotechnol. Adv.2009271162910.1016/j.biotechadv.2008.07.005 18775773
    [Google Scholar]
  107. HeL. ZhuC. YuanY. XuZ. QiuS. Specific glycosylated metabolites of α-mangostin by Cunninghamella blakesleana.Phytochem. Lett.2014917517810.1016/j.phytol.2014.06.009
    [Google Scholar]
  108. HeL. ZhuC. SuZ. Two new γ-mangostin glycosides through microbial transformation by Cunninghamella blakesleana.Chem. Nat. Compd.202157228528810.1007/s10600‑021‑03338‑6
    [Google Scholar]
  109. LeT.T. TrangN.T. PhamV.T.T. QuangD.N. Phuong HoaL.T. Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions.R. Soc. Open Sci.202310823067610.1098/rsos.230676 37593716
    [Google Scholar]
  110. KarageorgisG. FoleyD.J. LaraiaL. WaldmannH. Principle and design of pseudo-natural products.Nat. Chem.202012322723510.1038/s41557‑019‑0411‑x 32015480
    [Google Scholar]
  111. GrigalunasM. BrakmannS. WaldmannH. Chemical evolution of natural product structure.J. Am. Chem. Soc.202214483314332910.1021/jacs.1c11270 35188375
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312728241014025846
Loading
/content/journals/cmc/10.2174/0109298673312728241014025846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test