Skip to content
2000
Volume 32, Issue 28
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Among all cancers in the world, the incidence rate of digestive system neoplasms accounts for about 25%, while the mortality rate accounts for about 35%. Difficulty in detecting early digestive system cancers and its poor prognosis are the two main reasons for the high mortality rate. Understanding of the basic cellular processes is of significance and autophagy is one of these processes. Considering the importance of autophagy in pathological state functions, the mechanism of autophagy was initially carried out. In this paper, we will review the molecular mechanisms and biological functions of autophagy-associated ncRNAs in different types of digestive system cancers. Autophagy is a process that supports nutrient cycling and metabolic adaptation accomplished through multi-step lysosomal degradation. It has been suggested that autophagy has a dual role in cancer, which limits tumorigenesis in some stages but promotes tumor progression in others. NcRNAs are also shown to modulate cellular autophagy and thus affect the development of digestive system neoplasms. More and more evidence suggests that the regulation of autophagy by ncRNAs plays a complex role in cancer initiation, progression, metastasis, recurrence, and treatment resistance, which might make ncRNAs therapeutic targets for digestive system neoplasms. While miRNAs participate mainly in post-transcriptional regulation, lncRNAs, and circRNAs usually serve as molecular sponges that have more diverse regulatory functions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673286057240311073143
2024-05-22
2025-09-06
Loading full text...

Full text loading...

References

  1. SlackF.J. ChinnaiyanA.M. The role of non-coding RNAs in oncology.Cell201917951033105510.1016/j.cell.2019.10.01731730848
    [Google Scholar]
  2. MattickJ.S. MakuninI.V. Non-coding RNA.Hum. Mol. Genet.200615Spec No 1R17R2910.1093/hmg/ddl04616651366
    [Google Scholar]
  3. YuanY. WeidhaasJ.B. Functional micro RNA binding site variants.Mol. Oncol.20191314810.1002/1878‑0261.1242130536617
    [Google Scholar]
  4. ChenL. WangC. SunH. WangJ. LiangY. WangY. WongG. The bioinformatics toolbox for circRNA discovery and analysis.Brief. Bioinform.20212221706172810.1093/bib/bbaa00132103237
    [Google Scholar]
  5. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  6. BhattacharyaA. CuiY. SomamiR 2.0: A database of cancer somatic mutations altering microRNA–ceRNA interactions.Nucleic Acids Res.201644D1D1005D101010.1093/nar/gkv122026578591
    [Google Scholar]
  7. TomczakK. CzerwińskaP. WiznerowiczM. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge.Contemp. Oncol.20151A1A687710.5114/wo.2014.4713625691825
    [Google Scholar]
  8. AnastasiadouE. JacobL.S. SlackF.J. Non-coding RNA networks in cancer.Nat. Rev. Cancer201818151810.1038/nrc.2017.9929170536
    [Google Scholar]
  9. GlickD. BarthS. MacleodK.F. Autophagy: Cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.269720225336
    [Google Scholar]
  10. AscenziF. De VitisC. Maugeri-SaccàM. NapoliC. CilibertoG. ManciniR. SCD1, autophagy and cancer: Implications for therapy.J. Exp. Clin. Cancer Res.202140126510.1186/s13046‑021‑02067‑634429143
    [Google Scholar]
  11. RogovV. DötschV. JohansenT. KirkinV. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy.Mol. Cell201453216717810.1016/j.molcel.2013.12.01424462201
    [Google Scholar]
  12. MizushimaN. KomatsuM. Autophagy: Renovation of cells and tissues.Cell2011147472874110.1016/j.cell.2011.10.02622078875
    [Google Scholar]
  13. EganD.F. ShackelfordD.B. MihaylovaM.M. GelinoS. KohnzR.A. MairW. VasquezD.S. JoshiA. GwinnD.M. TaylorR. AsaraJ.M. FitzpatrickJ. DillinA. ViolletB. KunduM. HansenM. ShawR.J. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy.Science2011331601645646110.1126/science.119637121205641
    [Google Scholar]
  14. KroemerG. MariñoG. LevineB. Autophagy and the integrated stress response.Mol. Cell201040228029310.1016/j.molcel.2010.09.02320965422
    [Google Scholar]
  15. CarlssonS.R. SimonsenA. Membrane dynamics in autophagosome biogenesis.J. Cell Sci.2015128219320525568151
    [Google Scholar]
  16. GalluzziL. BaehreckeE.H. BallabioA. BoyaP. Bravo-San PedroJ.M. CecconiF. ChoiA.M. ChuC.T. CodognoP. ColomboM.I. CuervoA.M. DebnathJ. DereticV. DikicI. EskelinenE.L. FimiaG.M. FuldaS. GewirtzD.A. GreenD.R. HansenM. HarperJ.W. JäätteläM. JohansenT. JuhaszG. KimmelmanA.C. KraftC. KtistakisN.T. KumarS. LevineB. Lopez-OtinC. MadeoF. MartensS. MartinezJ. MelendezA. MizushimaN. MünzC. MurphyL.O. PenningerJ.M. PiacentiniM. ReggioriF. RubinszteinD.C. RyanK.M. SantambrogioL. ScorranoL. SimonA.K. SimonH.U. SimonsenA. TavernarakisN. ToozeS.A. YoshimoriT. YuanJ. YueZ. ZhongQ. KroemerG. Molecular definitions of autophagy and related processes.EMBO J.201736131811183610.15252/embj.20179669728596378
    [Google Scholar]
  17. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑431969156
    [Google Scholar]
  18. DebnathJ. GammohN. RyanK.M. Autophagy and autophagy-related pathways in cancer.Nat. Rev. Mol. Cell Biol.202324856057510.1038/s41580‑023‑00585‑z36864290
    [Google Scholar]
  19. WhiteE. MehnertJ.M. ChanC.S. Autophagy, metabolism, and cancer.Clin. Cancer Res.201521225037504610.1158/1078‑0432.CCR‑15‑049026567363
    [Google Scholar]
  20. NazioF. BordiM. CianfanelliV. LocatelliF. CecconiF. Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications.Cell Death Differ.201926469070210.1038/s41418‑019‑0292‑y30728463
    [Google Scholar]
  21. FerroF. ServaisS. BessonP. RogerS. DumasJ.F. BrissonL. Autophagy and mitophagy in cancer metabolic remodelling.Semin. Cell Dev. Biol.20209812913810.1016/j.semcdb.2019.05.02931154012
    [Google Scholar]
  22. VempatiR.K. MallaR.R. Autophagy-induced drug resistance in liver cancer.Crit. Rev. Oncog.2020251213010.1615/CritRevOncog.202003496932865908
    [Google Scholar]
  23. WuQ. YangZ. NieY. ShiY. FanD. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches.Cancer Lett.2014347215916610.1016/j.canlet.2014.03.01324657660
    [Google Scholar]
  24. WuY. ZhangJ. LiQ. Autophagy, an accomplice or antagonist of drug resistance in HCC?Cell Death Dis.202112326610.1038/s41419‑021‑03553‑733712559
    [Google Scholar]
  25. YanY. ChenX. WangX. ZhaoZ. HuW. ZengS. WeiJ. YangX. QianL. ZhouS. SunL. GongZ. XuZ. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer.J. Exp. Clin. Cancer Res.201938117110.1186/s13046‑019‑1172‑531014370
    [Google Scholar]
  26. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  27. LiJ.P. ZhangH.M. LiuM.J. XiangY. LiH. HuangF. LiH.H. DaiZ.T. GuC.J. LiaoX.H. ZhangT.C. miR-133a-3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer.J. Cell. Biochem.20201215-63392340510.1002/jcb.2961331904151
    [Google Scholar]
  28. ZhangH.M. LiH. WangG.X. WangJ. XiangY. HuangY. ShenC. DaiZ.T. LiJ.P. ZhangT.C. LiaoX.H. MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells.Neoplasia202022522023010.1016/j.neo.2020.03.00132315812
    [Google Scholar]
  29. YuanY. ZhangY. HanL. SunS. ShuY. miR-183 inhibits autophagy and apoptosis in gastric cancer cells by targeting ultraviolet radiation resistance-associated gene.Int. J. Mol. Med.20184263562357010.3892/ijmm.2018.387130221685
    [Google Scholar]
  30. ChenJ. CaiS. GuT. SongF. XueY. SunD. MiR-140-3p impedes gastric cancer progression and metastasis by regulating BCL2/BECN1-mediated autophagy.Onco Targets Ther.2021142879289210.2147/OTT.S29923433953572
    [Google Scholar]
  31. WangJ. SunY. ZhangX. CaiH. ZhangC. QuH. LiuL. ZhangM. FuJ. ZhangJ. WangJ. ZhangG. Oxidative stress activates NORAD expression by H3K27ac and promotes oxaliplatin resistance in gastric cancer by enhancing autophagy flux via targeting the miR-433-3p.Cell Death Dis.20211219010.1038/s41419‑020‑03368‑y33462197
    [Google Scholar]
  32. LinY. ZhaoJ. WangH. CaoJ. NieY. miR-181a modulates proliferation, migration and autophagy in AGS gastric cancer cells and downregulates MTMR3.Mol. Med. Rep.20171552451245610.3892/mmr.2017.628928447759
    [Google Scholar]
  33. HendersonP. van LimbergenJ.E. WilsonD.C. SatsangiJ. RussellR.K. Genetics of childhood-onset inflammatory bowel disease.Inflamm. Bowel Dis.201117134636110.1002/ibd.2128320839313
    [Google Scholar]
  34. LiB. WangW. LiZ. ChenZ. ZhiX. XuJ. LiQ. WangL. HuangX. WangL. WeiS. SunG. ZhangX. HeZ. ZhangL. ZhangD. XuH. El-RifaiW. XuZ. MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression.Cancer Lett.201741021222710.1016/j.canlet.2017.09.03528965855
    [Google Scholar]
  35. ChenS. WuJ. JiaoK. WuQ. MaJ. ChenD. KangJ. ZhaoG. ShiY. FanD. ZhaoG. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer.Cell Death Dis.2018911107010.1038/s41419‑018‑0950‑x30341283
    [Google Scholar]
  36. ZhangY.F. LiC.S. ZhouY. LuX.H. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e- /ATG5 axis through suppressing autophagy in gastric cancer.Life Sci.202024411728010.1016/j.lfs.2020.11728031926239
    [Google Scholar]
  37. DuX. LiuB. LuanX. CuiQ. LiL. miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy.Exp. Ther. Med.201815159960529375703
    [Google Scholar]
  38. HombachS. KretzM. Non-coding RNAs: Classification, Biology and Functioning.Adv. Exp. Med. Biol.201693731710.1007/978‑3‑319‑42059‑2_127573892
    [Google Scholar]
  39. XuL. HuanL. GuoT. WuY. LiuY. WangQ. HuangS. XuY. LiangL. HeX. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α.Oncogene202039467005701810.1038/s41388‑020‑01512‑833060856
    [Google Scholar]
  40. WuQ. MaJ. WeiJ. MengW. WangY. ShiM. lncRNA SNHG11 promotes gastric cancer progression by activating the wnt/β-catenin pathway and oncogenic autophagy.Mol. Ther.20212931258127810.1016/j.ymthe.2020.10.01133068778
    [Google Scholar]
  41. YangF. PengZ. JiW. YuJ. QianC. LiuJ. FangG. LncRNA CCAT1 upregulates ATG5 to enhance autophagy and promote gastric cancer development by absorbing miR-140-3p.Dig. Dis. Sci.20226783725374110.1007/s10620‑021‑07187‑934417924
    [Google Scholar]
  42. WangQ. ChenC. XuX. ShuC. CaoC. WangZ. FuY. XuL. XuK. XuJ. XiaA. WangB. XuG. ZouX. SuR. KangW. XueY. MoR. SunB. WangS. APAF1-binding long noncoding rna promotes tumor growth and multidrug resistance in gastric cancer by blocking apoptosome assembly.Adv. Sci.2022928220188910.1002/advs.20220188935975461
    [Google Scholar]
  43. LuoY. ZhengS. WuQ. WuJ. ZhouR. WangC. WuZ. RongX. HuangN. SunL. BinJ. LiaoY. ShiM. LiaoW. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation.Autophagy202117124083410110.1080/15548627.2021.190120433764843
    [Google Scholar]
  44. ZhangC. KangT. WangX. WangJ. LiuL. ZhangJ. LiuX. LiR. WangJ. ZhangJ. LINC-PINT suppresses cisplatin resistance in gastric cancer by inhibiting autophagy activation via epigenetic silencing of ATG5 by EZH2.Front. Pharmacol.20221396822310.3389/fphar.2022.96822336091809
    [Google Scholar]
  45. XinL. ZhouQ. YuanY.W. ZhouL.Q. LiuL. LiS.H. liuC. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy.J. Cancer Res. Clin. Oncol.2019145102507251710.1007/s00432‑019‑03015‑w31485766
    [Google Scholar]
  46. YangJ. ZhangX. CaoJ. XuP. ChenZ. WangS. LiB. ZhangL. XieL. FangL. XuZ. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis.Cell Death Dis.2021121091010.1038/s41419‑021‑04216‑334611143
    [Google Scholar]
  47. SangH. ZhangW. PengL. WeiS. ZhuX. HuangK. YangJ. ChenM. DangY. ZhangG. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation.Cell Death Dis.20221315610.1038/s41419‑021‑04364‑635027539
    [Google Scholar]
  48. DiL. WuH. ZhuR. LiY. WuX. XieR. LiH. WangH. ZhangH. XiaoH. ChenH. ZhenH. ZhaoK. YangX. XieM. TuoB. Multi-disciplinary team for early gastric cancer diagnosis improves the detection rate of early gastric cancer.BMC Gastroenterol.201717114710.1186/s12876‑017‑0711‑929212444
    [Google Scholar]
  49. JiangY. ZhangY. ChuF. XuL. WuH. Circ_0032821 acts as an oncogene in cell proliferation, metastasis and autophagy in human gastric cancer cells in vitro and in vivo through activating MEK1/ERK1/2 signaling pathway.Cancer Cell Int.20202017410.1186/s12935‑020‑1151‑032165864
    [Google Scholar]
  50. FangL. LvJ. XuanZ. LiB. LiZ. HeZ. LiF. XuJ. WangS. XiaY. JiangT. ZhangL. WangL. ZhangD. XuH. YangL. XuZ. WangW. Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2-mediated autophagy.Clin. Transl. Med.2022121e70810.1002/ctm2.70835075806
    [Google Scholar]
  51. PengL. SangH. WeiS. LiY. JinD. ZhuX. LiX. DangY. ZhangG. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2.Mol. Cancer202019115610.1186/s12943‑020‑01270‑x33153478
    [Google Scholar]
  52. LuoM. DengX. ChenZ. HuY. Circular RNA circPOFUT1 enhances malignant phenotypes and autophagy-associated chemoresistance via sequestrating miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer.Cell Death Dis.20231411010.1038/s41419‑022‑05506‑036624091
    [Google Scholar]
  53. MaL. WangZ. XieM. QuanY. ZhuW. YangF. ZhaoC. FanY. FangN. JiangH. WangQ. WangS. ZhouJ. ChenX. ShuY. Silencing of circRACGAP1 sensitizes gastric cancer cells to apatinib via modulating autophagy by targeting miR-3657 and ATG7.Cell Death Dis.202011316910.1038/s41419‑020‑2352‑032139670
    [Google Scholar]
  54. WuJ. ZhuY. CongQ. XuQ. Non-coding RNAs: Role of miRNAs and lncRNAs in the regulation of autophagy in hepatocellular carcinoma (Review).Oncol. Rep.202349611310.3892/or.2023.855037083063
    [Google Scholar]
  55. XuW.P. LiuJ.P. FengJ.F. ZhuC.P. YangY. ZhouW.P. DingJ. HuangC.K. CuiY.L. DingC.H. ZhangX. LuB. XieW.F. miR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy.Gut20206971309132110.1136/gutjnl‑2019‑31883031727683
    [Google Scholar]
  56. ChangY. YanW. HeX. ZhangL. LiC. HuangH. NaceG. GellerD.A. LinJ. TsungA. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions.Gastroenterology20121431177187.e810.1053/j.gastro.2012.04.00922504094
    [Google Scholar]
  57. WangC. LiC. HaoR. miR-559 inhibits proliferation, autophagy, and angiogenesis of hepatocellular carcinoma cells by targeting PARD3.Mediators Inflamm.202220221910.1155/2022/312149236105681
    [Google Scholar]
  58. OuY. HeJ. LiuY. MiR-490-3p inhibits autophagy via targeting ATG7 in hepatocellular carcinoma.IUBMB Life201870646847810.1002/iub.171529676845
    [Google Scholar]
  59. HashemiM. NadafzadehN. ImaniM.H. RajabiR. ZiaolhaghS. BayanzadehS.D. NorouziR. RafieiR. KoohparZ.K. RaeiB. ZandiehM.A. SalimimoghadamS. EntezariM. TaheriazamA. AlexiouA. PapadakisM. TanS.C. Targeting and regulation of autophagy in hepatocellular carcinoma: Revisiting the molecular interactions and mechanisms for new therapy approaches.Cell Commun. Signal.20232113210.1186/s12964‑023‑01053‑z36759819
    [Google Scholar]
  60. ZhouY. ChenE. TangY. MaoJ. ShenJ. ZhengX. XieS. ZhangS. WuY. LiuH. ZhiX. MaT. NiH. ChenJ. ChaiK. ChenW. miR-223 overexpression inhibits doxorubicin-induced autophagy by targeting FOXO3a and reverses chemoresistance in hepatocellular carcinoma cells.Cell Death Dis.2019101184310.1038/s41419‑019‑2053‑831695022
    [Google Scholar]
  61. ZhangK. ChenJ. ZhouH. ChenY. ZhiY. ZhangB. ChenL. ChuX. WangR. ZhangC. PU.1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib.Cell Death Dis.20189331210.1038/s41419‑018‑0344‑029472524
    [Google Scholar]
  62. ChenC.Y. ChenJ. HeL. StilesB.L. PTEN: Tumor suppressor and metabolic regulator.Front. Endocrinol.2018933810.3389/fendo.2018.0033830038596
    [Google Scholar]
  63. LiangL. HuanL. WangJ. WuY. HuangS. HeX. LncRNA RP11-295G20.2 regulates hepatocellular carcinoma cell growth and autophagy by targeting PTEN to lysosomal degradation.Cell Discov.20217111810.1038/s41421‑021‑00339‑134903728
    [Google Scholar]
  64. WonK.B. LeeS.E. LeeB.K. ParkH.B. HeoR. RizviA. HadamitzkyM. KimY.J. SungJ.M. ConteE. AndreiniD. PontoneG. BudoffM.J. GottliebI. ChunE.J. CademartiriF. MaffeiE. MarquesH. LeipsicJ.A. ShinS. ChoiJ.H. VirmaniR. SamadyH. StoneP.H. BermanD.S. NarulaJ. ShawL.J. BaxJ.J. MinJ.K. ChangH.J. Longitudinal quantitative assessment of coronary plaque progression related to body mass index using serial coronary computed tomography angiography.Eur. Heart J. Cardiovasc. Imaging201920559159910.1093/ehjci/jey19230657884
    [Google Scholar]
  65. ShiJ. GuoC. MaJ. CCAT2 enhances autophagy-related invasion and metastasis via regulating miR-4496 and ELAVL1 in hepatocellular carcinoma.J. Cell. Mol. Med.202125188985899610.1111/jcmm.1685934409736
    [Google Scholar]
  66. XinX. WuM. MengQ. WangC. LuY. YangY. LiX. ZhengQ. PuH. GuiX. LiT. LiJ. JiaS. LuD. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.Mol. Cancer20181719410.1186/s12943‑018‑0843‑829895332
    [Google Scholar]
  67. ShengJ.Q. WangM.R. FangD. LiuL. HuangW.J. TianD.A. HeX.X. LiP.Y. LncRNA NBR2 inhibits tumorigenesis by regulating autophagy in hepatocellular carcinoma.Biomed. Pharmacother.202113311102310.1016/j.biopha.2020.11102333378941
    [Google Scholar]
  68. WeiH. HuJ. PuJ. TangQ. LiW. MaR. XuZ. TanC. YaoT. WuX. LongX. WangJ. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR- 5095/ATG12 axis in hepatocellular carcinoma cells.Int. Immunopharmacol.201973728010.1016/j.intimp.2019.04.04931082725
    [Google Scholar]
  69. ZhangW. LiuY. FuY. HanW. XuH. WenL. DengY. LiuK. RETRACTED: Long non-coding RNA LINC00160 functions as a decoy of microRNA-132 to mediate autophagy and drug resistance in hepatocellular carcinoma via inhibition of PIK3R3.Cancer Lett.2020478223310.1016/j.canlet.2020.02.01432067991
    [Google Scholar]
  70. ChenL. SunL. DaiX. LiT. YanX. ZhangY. XiaoH. ShenX. HuangG. XiangW. ZhangY. TanD. YangS. NieY. HuangX. LianJ. HeF. LncRNA CRNDE promotes ATG4B-mediated autophagy and alleviates the sensitivity of sorafenib in hepatocellular carcinoma cells.Front. Cell Dev. Biol.2021968752410.3389/fcell.2021.68752434409031
    [Google Scholar]
  71. LiX. ZhouY. YangL. MaY. PengX. YangS. LiH. LiuJ. LncRNA NEAT1 promotes autophagy via regulating miR-204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma.J. Cell. Physiol.202023543402341310.1002/jcp.2923031549407
    [Google Scholar]
  72. ChenC.K. ChengR. DemeterJ. ChenJ. Weingarten-GabbayS. JiangL. SnyderM.P. WeissmanJ.S. SegalE. JacksonP.K. ChangH.Y. Structured elements drive extensive circular RNA translation.Mol. Cell2021812043004318.e1310.1016/j.molcel.2021.07.04234437836
    [Google Scholar]
  73. WangZ. YangL. WuP. LiX. TangY. OuX. ZhangY. XiaoX. WangJ. TangH. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin.Mol. Cancer20222112910.1186/s12943‑022‑01498‑935073911
    [Google Scholar]
  74. ZhaoZ. HeJ. FengC. CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis.Immunol. Res.202270334135310.1007/s12026‑021‑09255‑835066780
    [Google Scholar]
  75. RumgayH. ArnoldM. FerlayJ. LesiO. CabasagC.J. VignatJ. LaversanneM. McGlynnK.A. SoerjomataramI. Global burden of primary liver cancer in 2020 and predictions to 2040.J. Hepatol.20227761598160610.1016/j.jhep.2022.08.02136208844
    [Google Scholar]
  76. KristensenL.S. JakobsenT. HagerH. KjemsJ. The emerging roles of circRNAs in cancer and oncology.Nat. Rev. Clin. Oncol.202219318820610.1038/s41571‑021‑00585‑y34912049
    [Google Scholar]
  77. WangX. DongF.L. WangY.Q. WeiH.L. LiT. LiJ. Exosomal circTGFBR2 promotes hepatocellular carcinoma progression via enhancing ATG5 mediated protective autophagy.Cell Death Dis.202314745110.1038/s41419‑023‑05989‑537474520
    [Google Scholar]
  78. ZhangN. HuX. DuY. DuJ. The role of miRNAs in colorectal cancer progression and chemoradiotherapy.Biomed. Pharmacother.202113411109910.1016/j.biopha.2020.11109933338745
    [Google Scholar]
  79. LongJ. HeQ. YinY. LeiX. LiZ. ZhuW. The effect of miRNA and autophagy on colorectal cancer.Cell Prolif.20205310e1290010.1111/cpr.1290032914514
    [Google Scholar]
  80. JuJ. FeslerA. LiuH. WuN. LiuF. LingP. Autophagy regulated by miRNAs in colorectal cancer progression and resistance.Cancer Transl. Med.2017339610010.4103/ctm.ctm_64_1628748218
    [Google Scholar]
  81. YangX. XuX. ZhuJ. ZhangS. WuY. WuY. ZhaoK. XingC. CaoJ. ZhuH. LiM. YeZ. PengW. miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts.Oncotarget2016748796177962810.18632/oncotarget.1287327793031
    [Google Scholar]
  82. LiaoD. LiT. YeC. ZengL. LiH. PuX. DingC. HeZ. HuangG.L. miR-221 inhibits autophagy and targets TP53INP1 in colorectal cancer cells.Exp. Ther. Med.20181521712171729434757
    [Google Scholar]
  83. QiaoP.F. YaoL. ZengZ.L. Catalpol-mediated microRNA-34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer.Oncol. Rep.20204341053106610.3892/or.2020.749432323786
    [Google Scholar]
  84. IsaksonP. BjøråsM. BøeS.O. SimonsenA. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein.Blood2010116132324233110.1182/blood‑2010‑01‑26104020574048
    [Google Scholar]
  85. HuangfuL. LiangH. WangG. SuX. LiL. DuZ. HuM. DongY. BaiX. LiuT. YangB. ShanH. miR-183 regulates autophagy and apoptosis in colorectal cancer through targeting of UVRAG.Oncotarget2016744735474510.18632/oncotarget.673226717041
    [Google Scholar]
  86. YilmazU. YilmazN. TanbekK. ErgenA. AksakalN. ZeybekU. Differential expression of miRNAs related to autophagy pathway in tissue and serum samples of colorectal cancer patients.Bratisl. Med. J.2022123963464010.4149/BLL_2022_10236039881
    [Google Scholar]
  87. LanS.H. LinS.C. WangW.C. YangY.C. LeeJ.C. LinP.W. ChuM.L. LanK.Y. ZuchiniR. LiuH.S. WuS.Y. Autophagy upregulates miR-449a expression to suppress progression of colorectal cancer.Front. Oncol.20211173814410.3389/fonc.2021.73814434737955
    [Google Scholar]
  88. WangY. ZhangS. DangS. FangX. LiuM. Overexpression of microRNA-216a inhibits autophagy by targeting regulated MAP1S in colorectal cancer.OncoTargets Ther.2019124621462910.2147/OTT.S19699231354295
    [Google Scholar]
  89. ZhaoL. ChenH. ZhangQ. MaJ. HuH. XuL. ATF4-mediated microRNA-145/HDAC4/p53 axis affects resistance of colorectal cancer cells to 5-fluorouracil by regulating autophagy.Cancer Chemother. Pharmacol.202289559560710.1007/s00280‑021‑04393‑035312836
    [Google Scholar]
  90. BermúdezM. Aguilar-MedinaM. Lizárraga-VerdugoE. Avendaño-FélixM. Silva-BenítezE. López-CamarilloC. Ramos-PayánR. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer.Front. Oncol.20199100810.3389/fonc.2019.0100831632922
    [Google Scholar]
  91. SiY. YangZ. GeQ. YuL. YaoM. SunX. RenZ. DingC. Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer.Cell. Mol. Biol. Lett.20192415010.1186/s11658‑019‑0175‑831372165
    [Google Scholar]
  92. LiuC. JiL. SongX. Long non coding RNA UCA1 contributes to the autophagy and survival of colorectal cancer cells via sponging miR-185-5p to up-regulate the WISP2/β-catenin pathway.RSC Advances2019925141601416610.1039/C8RA10468A35519332
    [Google Scholar]
  93. WangY. LiZ. XuS. LiW. ChenM. JiangM. FanX. LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy.Cell Death Dis.20221329810.1038/s41419‑022‑04509‑135110535
    [Google Scholar]
  94. ZhengY. TanK. HuangH. Retracted : Long noncoding RNA HAGLROS regulates apoptosis and autophagy in colorectal cancer cells via sponging miR-100 to target ATG5 expression.J. Cell. Biochem.201912033922393310.1002/jcb.2767630430634
    [Google Scholar]
  95. ZhangW. YuanW. SongJ. WangS. GuX. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α.Biochimie2018144212710.1016/j.biochi.2017.10.00229017924
    [Google Scholar]
  96. WangX. LanZ. HeJ. LaiQ. YaoX. LiQ. LiuY. LaiH. GuC. YanQ. FangY. ZhangY. LiA. LiuS. LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells.Cancer Cell Int.201919123410.1186/s12935‑019‑0951‑631516391
    [Google Scholar]
  97. LiuF. AiF.Y. ZhangD.C. TianL. YangZ.Y. LiuS.J. LncRNA NEAT1 knockdown attenuates autophagy to elevate 5-FU sensitivity in colorectal cancer via targeting miR-34a.Cancer Med.2020931079109110.1002/cam4.274631802650
    [Google Scholar]
  98. ChenF. GuoL. DiJ. LiM. DongD. PeiD. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling.J. Genet. Genomics202148121091110310.1016/j.jgg.2021.07.01734416339
    [Google Scholar]
  99. YangB.L. LiuG.Q. LiP. LiX.H. Circular RNA CUL2 regulates the development of colorectal cancer by modulating apoptosis and autophagy via miR-208a-3p/PPP6C.Aging202214149750810.18632/aging.20382735027503
    [Google Scholar]
  100. PapatsirouM. ArtemakiP.I. ScorilasA. KontosC.K. The role of circular RNAs in therapy resistance of patients with solid tumors.Per. Med.202017646949010.2217/pme‑2020‑010333052780
    [Google Scholar]
  101. ZhangY. LiC. LiuX. WangY. ZhaoR. YangY. ZhengX. ZhangY. ZhangX. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637.EBioMedicine20194827728810.1016/j.ebiom.2019.09.05131631038
    [Google Scholar]
  102. PhatakP. NoeM. AsraniK. ChesnickI.E. GreenwaldB.D. DonahueJ.M. MicroRNA-141-3p regulates cellular proliferation, migration, and invasion in esophageal cancer by targeting tuberous sclerosis complex 1.Mol. Carcinog.202160212513710.1002/mc.2327433382472
    [Google Scholar]
  103. ChenY. LuY. RenY. YuanJ. ZhangN. KimballH. ZhouL. YangM. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma.Theranostics202010114983499610.7150/thno.4304632308763
    [Google Scholar]
  104. WangH. XuY. ZuoF. LiuJ. YangJ. Immune-based combination therapy for esophageal cancer.Front. Immunol.202213102029010.3389/fimmu.2022.102029036591219
    [Google Scholar]
  105. ChenH. YaoX. DiX. ZhangY. ZhuH. LiuS. ChenT. YuD. SunX. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma.Cancer Lett.202048311412610.1016/j.canlet.2020.01.03732014456
    [Google Scholar]
  106. FanJ.B. WuD. DingY. Bioinformatics analysis of autophagy-related lncrnas in esophageal carcinoma.Comb. Chem. High Throughput Screen.20222581374138410.2174/138620732466621062414345234170806
    [Google Scholar]
  107. LiuJ. LongS. WangH. LiuN. ZhangC. ZhangL. ZhangY. Blocking AMPK/ULK1-dependent autophagy promoted apoptosis and suppressed colon cancer growth.Cancer Cell Int.201919133610.1186/s12935‑019‑1054‑031871431
    [Google Scholar]
  108. HeW. WangQ. XuJ. XuX. PadillaM.T. RenG. GouX. LinY. Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation.Autophagy20128121811182110.4161/auto.2214523051914
    [Google Scholar]
  109. YangC. ShenS. ZhengX. YeK. GeH. SunY. LuY. Long non-coding RNA LINC00337 induces autophagy and chemoresistance to cisplatin in esophageal squamous cell carcinoma cells via upregulation of TPX2 by recruiting E2F4.FASEB J.20203456055606910.1096/fj.201900731RR32239565
    [Google Scholar]
  110. DonatiS. AuriliaC. PalminiG. FalsettiI. IantomasiT. BrandiM.L. Autophagy-related ncRNAs in pancreatic cancer.Pharmaceuticals20221512154710.3390/ph1512154736558998
    [Google Scholar]
  111. TianS. GuoX. YuC. SunC. JiangJ. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1.Oncotarget201787110711108210.18632/oncotarget.1436028052003
    [Google Scholar]
  112. ChenC. ZhouM. GeY. WangX. SIRT1 and aging related signaling pathways.Mech. Ageing Dev.202018711121510.1016/j.mad.2020.11121532084459
    [Google Scholar]
  113. SunL. HuL. CogdellD. LuL. GaoC. TianW. ZhangZ. KangY. FlemingJ.B. ZhangW. MIR506 induces autophagy-related cell death in pancreatic cancer cells by targeting the STAT3 pathway.Autophagy201713470371410.1080/15548627.2017.128021728121485
    [Google Scholar]
  114. YangY. SunY. WangH. LiH. ZhangM. ZhouL. MengX. WuY. LiuP. LiuX. ZhangJ. TanX. MicroRNA-221 induces autophagy through suppressing HDAC6 expression and promoting apoptosis in pancreatic cancer.Oncol. Lett.20181667295730110.3892/ol.2018.951330546469
    [Google Scholar]
  115. JiangP.C. BuS.R. Clinical value of circular RNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer.Hepatobiliary Pancreat. Dis. Int.201918651151610.1016/j.hbpd.2019.09.00931610988
    [Google Scholar]
  116. WangZ.C. HuangF.Z. XuH.B. SunJ.C. WangC.F. MicroRNA-137 inhibits autophagy and chemosensitizes pancreatic cancer cells by targeting ATG5.Int. J. Biochem. Cell Biol.2019111637110.1016/j.biocel.2019.01.02030710750
    [Google Scholar]
  117. WangP. ZhangJ. ZhangL. ZhuZ. FanJ. ChenL. ZhuangL. LuoJ. ChenH. LiuL. ChenZ. MengZ. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells.Gastroenterology2013145511331143.e1210.1053/j.gastro.2013.07.04823916944
    [Google Scholar]
  118. HuangL. HuC. CaoH. WuX. WangR. LuH. LiH. ChenH. MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy.Cell. Physiol. Biochem.201847274775810.1159/00049002729807360
    [Google Scholar]
  119. ParaskevopoulouM.D. VlachosI.S. KaragkouniD. GeorgakilasG. KanellosI. VergoulisT. ZagganasK. TsanakasP. FlorosE. DalamagasT. HatzigeorgiouA.G. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts.Nucleic Acids Res.201644D1D231D23810.1093/nar/gkv127026612864
    [Google Scholar]
  120. ZhouC. YiC. YiY. QinW. YanY. DongX. ZhangX. HuangY. ZhangR. WeiJ. AliD.W. MichalakM. ChenX.Z. TangJ. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes.Mol. Cancer202019111810.1186/s12943‑020‑01237‑y32727463
    [Google Scholar]
  121. LiuC. WangJ.O. ZhouW.Y. ChangX.Y. ZhangM.M. ZhangY. YangX.H. Long non-coding RNA LINC01207 silencing suppresses AGR2 expression to facilitate autophagy and apoptosis of pancreatic cancer cells by sponging miR-143-5p.Mol. Cell. Endocrinol.201949311042410.1016/j.mce.2019.04.00430991076
    [Google Scholar]
  122. ZhangX. ZhaoP. WangC. XinB. SNHG14 enhances gemcitabine resistance by sponging miR-101 to stimulate cell autophagy in pancreatic cancer.Biochem. Biophys. Res. Commun.2019510450851410.1016/j.bbrc.2019.01.10930737032
    [Google Scholar]
  123. ZhongY. DuY. YangX. MoY. FanC. XiongF. RenD. YeX. LiC. WangY. WeiF. GuoC. WuX. LiX. LiY. LiG. ZengZ. XiongW. Circular RNAs function as ceRNAs to regulate and control human cancer progression.Mol. Cancer20181717910.1186/s12943‑018‑0827‑829626935
    [Google Scholar]
  124. LiZ. YanfangW. LiJ. JiangP. PengT. ChenK. ZhaoX. ZhangY. ZhenP. ZhuJ. LiX. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer.Cancer Lett.201843223725010.1016/j.canlet.2018.04.03529709702
    [Google Scholar]
  125. HeZ. CaiK. ZengZ. LeiS. CaoW. LiX. Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression.Cell Death Dis.202213323310.1038/s41419‑022‑04677‑035288538
    [Google Scholar]
  126. YangT. ShenP. ChenQ. WuP. YuanH. GeW. MengL. HuangX. FuY. ZhangY. HuW. MiaoY. LuZ. JiangK. FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma.J. Exp. Clin. Cancer Res.202140126110.1186/s13046‑021‑02063‑w34416910
    [Google Scholar]
  127. FanT. WangX. ZhangS. DengP. JiangY. LiangY. JieS. WangQ. LiC. TianG. ZhangZ. RenZ. LiB. ChenY. HeZ. LuoY. ChenM. WuH. YuZ. PiH. ZhouZ. ZhangZ. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy.Signal Transduct. Target. Ther.20227113010.1038/s41392‑022‑00939‑735462576
    [Google Scholar]
  128. ErfanparastL. TaghizadiehM. ShekarchiA.A. Non-coding RNAs and oral cancer: Small molecules with big functions.Front. Oncol.20221291459310.3389/fonc.2022.91459335898889
    [Google Scholar]
  129. ChowdhuryR.M. SinghG. JoshiA. SinghD.K. BhatiaS. GoswamiS. Autophagy and oral cancers: A short review.J. Stomatol. Oral Maxillofac. Surg.20181191373910.1016/j.jormas.2017.11.00129128597
    [Google Scholar]
  130. JiangL. GeW. CuiY. WangX. The regulation of long non-coding RNA 00958 (LINC00958) for oral squamous cell carcinoma (OSCC) cells death through absent in melanoma 2 (AIM2) depending on microRNA-4306 and Sirtuin1 (SIRT1) in vitro.Bioengineered20211215085509810.1080/21655979.2021.195556134384029
    [Google Scholar]
  131. LiZ. Overexpression of lncRNA HOXA-AS2 promotes the progression of oral squamous cell carcinoma by mediating SNX5 expression.BMC Mol. Cell Biol.20222315910.1186/s12860‑022‑00457‑y36528556
    [Google Scholar]
  132. ChenJ. ChenX. FuL. ChenJ. ChenY. LiuF. LncRNA GACAT1 targeting miRNA-149 regulates the molecular mechanism of proliferation, apoptosis and autophagy of oral squamous cell carcinoma cells.Aging (Albany NY)20211316203592037110.18632/aging.20341634460438
    [Google Scholar]
  133. LuX. ChenL. LiY. HuangR. MengX. SunF. Long non-coding RNA LINC01207 promotes cell proliferation and migration but suppresses apoptosis and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate dehydrogenase isoform A axis.Bioengineered20211217780779310.1080/21655979.2021.197278434463208
    [Google Scholar]
  134. CuiL. HuangC. ZhouD. Overexpression of circCDR1as drives oral squamous cell carcinoma progression.Oral Dis.202329395796710.1111/odi.1408534817912
    [Google Scholar]
  135. GaoL. DouZ.C. RenW.H. LiS.M. LiangX. ZhiK.Q. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK½/mTOR signaling pathways in oral squamous cell carcinomas.Cell Death Dis.2019101074510.1038/s41419‑019‑1971‑931582727
    [Google Scholar]
  136. MengX. LouQ.Y. YangW.Y. WangY.R. ChenR. WangL. XuT. ZhangL. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential.Cancer Commun.20214110981100610.1002/cac2.1219434289530
    [Google Scholar]
  137. GharatS.A. MominM. BhavsarC. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy.Crit. Rev. Ther. Drug Carrier Syst.201633436340010.1615/CritRevTherDrugCarrierSyst.201601627227910740
    [Google Scholar]
  138. GaoL. ZhangQ. LiS. ZhengJ. RenW. ZhiK. Circ-PKD2 promotes Atg13-mediated autophagy by inhibiting miR-646 to increase the sensitivity of cisplatin in oral squamous cell carcinomas.Cell Death Dis.202213219210.1038/s41419‑021‑04497‑835220397
    [Google Scholar]
  139. WenhaoR. YaliC. ShaomingL. JingjingZ. LingG. KeqianZ. circAP1M2 activates ATG9A-associated autophagy by inhibiting miR-1249-3p to promote cisplatin resistance in oral squamous cell carcinoma.J. Cell. Physiol.2023238112612262410.1002/jcp.3111637661341
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673286057240311073143
Loading
/content/journals/cmc/10.2174/0109298673286057240311073143
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Autophagy; circRNA; digestive system neoplasms; lncRNA; miRNA; molecular sponge
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test