Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Beta-1-adrenergic receptor antibodies (β1-AAbs) function as arrhythmogenic molecules in autoimmune-related atrial fibrillation (AF). This study examined the potential impact of pioglitazone, an agonist for peroxisome proliferator-activated receptor-γ (PPAR-γ), on atrial remodeling induced by β1-AAbs.

Methods

An study was performed to confirm the protective effects of pioglitazone on β1-AAbs-induced atrial remodeling. GW9662, a PPAR-γ antagonist, was employed to identify the potential therapeutic target of pioglitazone. The rats were administered subcutaneous injections of the second extracellular loop peptide for 8 weeks to establish active immunization models. Pioglitazone was then administered orally for 2 weeks. Epicardial electrophysiologic studies, multielectrode array measurements, and echocardiography were conducted to examine atrial remodeling. Glucose metabolism products and key metabolic molecules were measured to evaluate the atrial substrate metabolism. Mitochondrial morphologies and function indices were tested to depict the underlying links between atrial metabolism and mitochondrial homeostasis under the pioglitazone treatment.

Results

Pioglitazone significantly reversed β1-AAbs-induced AF susceptibility, ameliorated atrial structural remodeling, decreased the global insulin resistance reflected in the plasma glucose and insulin levels, and increased the protein expressions of glycolipid uptake and transportation (GLUT1, CD36, and CPT1a). These trends were counterbalanced by the GW9662 intervention. Mechanistically, pioglitazone mitigated the atrial mitochondrial network damage and partly renovated the mitochondrial biogenesis, even the mitochondrial dynamics, which were reversed by inhibiting the PPAR-γ target.

Conclusion

Pioglitazone effectively reduced the AF vulnerability and recovered the atrial myocardial metabolism and mitochondrial damage. The potential anti-remodeling effect of pioglitazone on the atrium was associated with the moderately increased expression of key membrane proteins related to glucose transporter and fatty acid uptake, which may promote the increased myocardial preference for utilization of FA as the key cardiac oxidative fuel and ameliorate the atrial metabolic inflexibility.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673308673240527092317
2024-05-30
2025-09-07
Loading full text...

Full text loading...

References

  1. LippiG. Sanchis-GomarF. CervellinG. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge.Int. J. Stroke202116221722110.1177/174749301989787031955707
    [Google Scholar]
  2. WijesurendraR.S. CasadeiB. Mechanisms of atrial fibrillation.Heart2019105241860186710.1136/heartjnl‑2018‑31426731444267
    [Google Scholar]
  3. BrundelB.J.J.M. AiX. HillsM.T. KuipersM.F. LipG.Y.H. de GrootN.M.S. Atrial fibrillation.Nat. Rev. Dis. Primers2022812110.1038/s41572‑022‑00347‑935393446
    [Google Scholar]
  4. NattelS. HeijmanJ. ZhouL. DobrevD. Molecular basis of atrial fibrillation pathophysiology and therapy.Circ. Res.20201271517210.1161/CIRCRESAHA.120.31636332717172
    [Google Scholar]
  5. HeijmanJ. MunaA.P. VelevaT. MolinaC.E. SutantoH. TekookM. WangQ. Abu-TahaI.H. GorkaM. KünzelS. El-ArmoucheA. ReichenspurnerH. KamlerM. NikolaevV. RavensU. LiN. NattelS. WehrensX.H.T. DobrevD. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation.Circ. Res.202012781036105510.1161/CIRCRESAHA.120.31671032762493
    [Google Scholar]
  6. TillyMJ GeurtsS ZhuF BosMM IkramMA de MaatMPM de GrootNMS KavousiM. Autoimmune diseases and new-onset atrial fibrillation: A UK Biobank study.Europace2023253804811
    [Google Scholar]
  7. ZygadłoJ. ProcykG. BalsamP. LodzińskiP. GrabowskiM. GąseckaA. Autoantibodies in atrial fibrillation-state of the art.Int. J. Mol. Sci.2023243185210.3390/ijms2403185236768174
    [Google Scholar]
  8. LiH. MurphyT. ZhangL. HuangB. VeitlaV. ScherlagB.J. KemD.C. YuX. β1-adrenergic and M2 muscarinic autoantibodies and thyroid hormone facilitate induction of atrial fibrillation in male rabbits.Endocrinology20161571162210.1210/en.2015‑165526517045
    [Google Scholar]
  9. GawałkoM. BalsamP. LodzińskiP. GrabowskiM. KrzowskiB. OpolskiG. KosiukJ. Cardiac arrhythmias in autoimmune diseases.Circ. J.202084568569410.1253/circj.CJ‑19‑070532101812
    [Google Scholar]
  10. ShangL. ZhangL. ShaoM. FengM. ShiJ. DongZ. GuoQ. XiaokeretiJ. XiangR. SunH. ZhouX. TangB. Elevated β1-adrenergic receptor autoantibody levels increase atrial fibrillation susceptibility by promoting atrial fibrosis.Front. Physiol.2020117610.3389/fphys.2020.0007632116783
    [Google Scholar]
  11. SunH. SongJ. LiK. LiY. ShangL. ZhouQ. LuY. ZongY. HeX. KariM. YangH. ZhouX. ZhangL. TangB. Increased β1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models.Clin. Sci.2023137219521710.1042/CS2022065436597894
    [Google Scholar]
  12. RitterhoffJ. TianR. Metabolism in cardiomyopathy: Every substrate matters.Cardiovasc. Res.2017113441142110.1093/cvr/cvx01728395011
    [Google Scholar]
  13. DoenstT. NguyenT.D. AbelE.D. Cardiac metabolism in heart failure: Implications beyond ATP production.Circ. Res.2013113670972410.1161/CIRCRESAHA.113.30037623989714
    [Google Scholar]
  14. KolwiczS.C.Jr PurohitS. TianR. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.Circ. Res.2013113560361610.1161/CIRCRESAHA.113.30209523948585
    [Google Scholar]
  15. QinX. ZhangY. ZhengQ. Metabolic inflexibility as a pathogenic basis for atrial fibrillation.Int. J. Mol. Sci.20222315829110.3390/ijms2315829135955426
    [Google Scholar]
  16. BarthA.S. MerkS. ArnoldiE. ZwermannL. KloosP. GebauerM. SteinmeyerK. BleichM. KääbS. HinterseerM. KartmannH. KreuzerE. DugasM. SteinbeckG. NabauerM. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature.Circ. Res.20059691022102910.1161/01.RES.0000165480.82737.3315817885
    [Google Scholar]
  17. WiersmaM. van MarionD.M.S. WüstR.C.I. HoutkooperR.H. ZhangD. GrootN.M.S. HenningR.H. BrundelB.J.J.M. Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation.Cells2019810120210.3390/cells810120231590355
    [Google Scholar]
  18. WuC. ZhangZ. ZhangW. LiuX. Mitochondrial dysfunction and mitochondrial therapies in heart failure.Pharmacol. Res.202217510603810.1016/j.phrs.2021.10603834929300
    [Google Scholar]
  19. HaemmerleG. MoustafaT. WoelkartG. BüttnerS. SchmidtA. van de WeijerT. HesselinkM. JaegerD. KienesbergerP.C. ZierlerK. SchreiberR. EichmannT. KolbD. KotzbeckP. SchweigerM. KumariM. EderS. SchoiswohlG. WongsirirojN. PollakN.M. RadnerF.P.W. Preiss-LandlK. KolbeT. RülickeT. PieskeB. TraunerM. LassA. ZimmermannR. HoeflerG. CintiS. KershawE.E. SchrauwenP. MadeoF. MayerB. ZechnerR. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1.Nat. Med.20111791076108510.1038/nm.243921857651
    [Google Scholar]
  20. MontaigneD. ButruilleL. StaelsB. PPAR control of metabolism and cardiovascular functions.Nat. Rev. Cardiol.2021181280982310.1038/s41569‑021‑00569‑634127848
    [Google Scholar]
  21. NestiL. TricòD. MengozziA. NataliA. Rethinking pioglitazone as a cardioprotective agent: A new perspective on an overlooked drug.Cardiovasc. Diabetol.202120110910.1186/s12933‑021‑01294‑734006325
    [Google Scholar]
  22. ZhangZ. ZhangX. MengL. GongM. LiJ. ShiW. QiuJ. YangY. ZhaoJ. SuoY. LiangX. WangX. TseG. JiangN. LiG. ZhaoY. LiuT. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway.Front. Pharmacol.20211265836210.3389/fphar.2021.65836234194324
    [Google Scholar]
  23. GuJ. LiuX. WangQ. GuoM. LiuF. SongZ. ZhangD. Beneficial effects of pioglitazone on atrial structural and electrical remodeling in vitro cellular models.J. Mol. Cell. Cardiol.2013651810.1016/j.yjmcc.2013.09.01624100253
    [Google Scholar]
  24. WölfelA. SätteleM. ZechmeisterC. NikolaevV.O. LohseM.J. BoegeF. JahnsR. Boivin-JahnsV. Unmasking features of the auto-epitope essential for β 1 -adrenoceptor activation by autoantibodies in chronic heart failure.ESC Heart Fail.2020741830184110.1002/ehf2.1274732436653
    [Google Scholar]
  25. BocchiE.A. BestettiR.B. ScanavaccaM.I. Cunha NetoE. IssaV.S. Chronic chagas heart disease management.J. Am. Coll. Cardiol.201770121510152410.1016/j.jacc.2017.08.00428911515
    [Google Scholar]
  26. LiuC. LiuR. FuH. LiJ. WangX. ChengL. KorantzopoulosP. TseG. LiG. LiuT. Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits.Cardiovasc. Ther.2017355e1228410.1111/1755‑5922.1228428665544
    [Google Scholar]
  27. LiJ. QuanX. ZhangY. YuT. LeiS. HuangZ. WangQ. SongW. YangX. XuP. PPARγ regulates triclosan induced placental dysfunction.Cells20211118610.3390/cells11010086
    [Google Scholar]
  28. LammersW.J. SchalijM.J. KirchhofC.J. AllessieM.A. Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias.Am. J. Physiol.19902594 Pt 2H1254H126310.1152/ajpheart.1990.259.4.H12541699438
    [Google Scholar]
  29. WangL. MylesR.C. De JesusN.M. OhlendorfA.K.P. BersD.M. RipplingerC.M. Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: Ryanodine receptor refractoriness during alternans and fibrillation.Circ. Res.201411491410142110.1161/CIRCRESAHA.114.30250524568740
    [Google Scholar]
  30. KatsuraH. SontakeV. TataA. KobayashiY. EdwardsC.E. HeatonB.E. KonkimallaA. AsakuraT. MikamiY. FritchE.J. LeeP.J. HeatonN.S. BoucherR.C. RandellS.H. BaricR.S. TataP.R. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction.Cell Stem Cell2020276890904.e810.1016/j.stem.2020.10.00533128895
    [Google Scholar]
  31. TaoY. ShaoF. CaiM. LiuZ. PengY. HuangQ. MengF. Activated pancreatic stellate cells enhance the warburg effect to cause the malignant development in chronic pancreatitis.Front. Oncol.20211171459810.3389/fonc.2021.71459834540683
    [Google Scholar]
  32. TomitaI. KumeS. SugaharaS. OsawaN. YamaharaK. Yasuda-YamaharaM. TakedaN. Chin-KanasakiM. KanekoT. MayouxE. MarkM. YanagitaM. OgitaH. ArakiS. MaegawaH. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition.Cell Metab.2020323404419.e610.1016/j.cmet.2020.06.02032726607
    [Google Scholar]
  33. PolC.J. LieuM. DrosatosK. PPARs: Protectors or opponents of myocardial function?PPAR Res.2015201511910.1155/2015/83598526713088
    [Google Scholar]
  34. HaradaM. MelkaJ. SobueY. NattelS. Metabolic considerations in atrial fibrillation - mechanistic insights and therapeutic opportunities.Circ. J.201781121749175710.1253/circj.CJ‑17‑105829070758
    [Google Scholar]
  35. OpacicD. van BragtK.A. NasrallahH.M. SchottenU. VerheuleS. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation.Cardiovasc. Res.2016109452754110.1093/cvr/cvw00726786160
    [Google Scholar]
  36. MasonF.E. ProntoJ.R.D. AlhussiniK. MaackC. VoigtN. Cellular and mitochondrial mechanisms of atrial fibrillation.Basic Res. Cardiol.202011567210.1007/s00395‑020‑00827‑733258071
    [Google Scholar]
  37. WangJ. GuoT. Metabolic remodeling in chronic heart failure.J. Zhejiang Univ. Sci. B201314868869510.1631/jzus.B130013723897787
    [Google Scholar]
  38. ZhaoY. BaiY. LiY. DongY. GuoY. WangW. LiuH. Disturbance of myocardial metabolism participates in autoantibodies against β 1 -adrenoceptor-induced cardiac dysfunction.Clin. Exp. Pharmacol. Physiol.202148684685410.1111/1440‑1681.1348533565091
    [Google Scholar]
  39. LiuG. HouT. YuanY. HangP. ZhaoJ. SunL. ZhaoG. ZhaoJ. DongJ. WangX. ShiH. LiuY. ZhouJ. DongZ. LiuY. ZhanC. LiY. LiW. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway.Br. J. Pharmacol.201617361095110910.1111/bph.1343826787506
    [Google Scholar]
  40. SharmaA.K. SrinivasanB.P. Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats.Eur. J. Pharm. Sci.200938543344410.1016/j.ejps.2009.09.00419765654
    [Google Scholar]
  41. SharmaA.K. RaikwarS.K. KurmiM.K. SrinivasanB.P. Gemfibrozil and its combination with metformin on pleiotropic effect on IL-10 and adiponectin and anti-atherogenic treatment in insulin resistant type 2 diabetes mellitus rats.Inflammopharmacology201321213714510.1007/s10787‑012‑0154‑423111552
    [Google Scholar]
  42. LiaoR. JainM. CuiL. D’AgostinoJ. AielloF. LuptakI. NgoyS. MortensenR.M. TianR. Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice.Circulation2002106162125213110.1161/01.CIR.0000034049.61181.F312379584
    [Google Scholar]
  43. PereiraR.O. WendeA.R. OlsenC. SotoJ. RawlingsT. ZhuY. AndersonS.M. Dale AbelE. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction.J. Am. Heart Assoc.201325e00030110.1161/JAHA.113.00030124052497
    [Google Scholar]
  44. LuptakI. YanJ. CuiL. JainM. LiaoR. TianR. Long-term effects of increased glucose entry on mouse hearts during normal aging and ischemic stress.Circulation2007116890190910.1161/CIRCULATIONAHA.107.69125317679614
    [Google Scholar]
  45. PereiraR.O. WendeA.R. OlsenC. SotoJ. RawlingsT. ZhuY. RiehleC. AbelE.D. GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure.J. Mol. Cell. Cardiol.2014729510310.1016/j.yjmcc.2014.02.01124583251
    [Google Scholar]
  46. NagendranJ. PulinilkunnilT. KienesbergerP.C. SungM.M. FungD. FebbraioM. DyckJ.R.B. Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery.J. Mol. Cell. Cardiol.20136318018810.1016/j.yjmcc.2013.07.02023948483
    [Google Scholar]
  47. SungM.M. ByrneN.J. KimT.T. LevasseurJ. MassonG. BoisvenueJ.J. FebbraioM. DyckJ.R.B. Cardiomyocyte-specific ablation of CD36 accelerates the progression from compensated cardiac hypertrophy to heart failure.Am. J. Physiol. Heart Circ. Physiol.20173123H552H56010.1152/ajpheart.00626.201628062415
    [Google Scholar]
  48. BaiF. TuT. QinF. MaY. LiuN. LiuY. LiaoX. ZhouS. LiuQ. Quantitative proteomics of changes in succinylated proteins expression profiling in left appendages tissue from valvular heart disease patients with atrial fibrillation.Clin. Chim Acta201949534535410.1016/j.cca.2019.05.002
    [Google Scholar]
  49. ZhangY. FuY. JiangT. LiuB. SunH. ZhangY. FanB. LiX. QinX. ZhengQ. Enhancing fatty acids oxidation via L-carnitine attenuates obesity-related atrial fibrillation and structural remodeling by activating AMPK signaling and alleviating cardiac lipotoxicity.Front. Pharmacol.20211277194010.3389/fphar.2021.77194034899326
    [Google Scholar]
  50. KarwiQ.G. UddinG.M. HoK.L. LopaschukG.D. Loss of metabolic flexibility in the failing heart.Front. Cardiovasc. Med.201856810.3389/fcvm.2018.0006829928647
    [Google Scholar]
  51. KangH. KimB. ParkJ. YounH. YounB. The Warburg effect on radioresistance: Survival beyond growth.Biochim. Biophys. Acta Rev. Cancer20231878618898810.1016/j.bbcan.2023.18898837726064
    [Google Scholar]
  52. LiuY. BaiF. LiuN. OuyangF. LiuQ. The Warburg effect: A new insight into atrial fibrillation.Clinica Chimica Acta201949941210.1016/j.cca.2019.08.029
    [Google Scholar]
  53. Martins PintoM. PaumardP. BouchezC. RansacS. Duvezin-CaubetS. MazatJ.P. RigouletM. DevinA. The Warburg effect and mitochondrial oxidative phosphorylation: Friends or foes?Biochim. Biophys. Acta Bioenerg.20231864114893110.1016/j.bbabio.2022.14893136367492
    [Google Scholar]
  54. ZhangY. ZhaoM. GaoH. YuG. ZhaoY. YaoF. YangW. MAPK signalling-induced phosphorylation and subcellular translocation of PDHE1α promotes tumour immune evasion.Nat. Metab.20224337438810.1038/s42255‑022‑00543‑735315437
    [Google Scholar]
  55. ZhangJ. ChenF. TianY. XuW. ZhuQ. LiZ. QiuL. LuX. PengB. LiuX. GanH. LiuB. XuX. ZhuW.G. PARylated PDHE1α generates acetyl-CoA for local chromatin acetylation and DNA damage repair.Nat. Struct. Mol. Biol.202330111719173410.1038/s41594‑023‑01107‑337735618
    [Google Scholar]
  56. Solano FonsecaR. MetangP. EggeN. LiuY. ZuurbierK.R. SivaprakasamK. ShiraziS. ChuahA. ArneaudS.L.B. KonopkaG. QianD. DouglasP.M. Glycolytic preconditioning in astrocytes mitigates trauma-induced neurodegeneration.eLife202110e6943810.7554/eLife.6943834473622
    [Google Scholar]
  57. YangW. PangD. ChenM. DuC. JiaL. WangL. HeY. JiangW. LuoL. YuZ. MaoM. YuanQ. TangP. XiaX. CuiY. JingB. PlateroA. LiuY. WeiY. WorleyP.F. XiaoB. Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation.Dev. Cell2021566811825.e610.1016/j.devcel.2021.02.02233725483
    [Google Scholar]
  58. WangL. LuK. HaoH. LiX. WangJ. WangK. WangJ. YanZ. ZhangS. DuY. LiuH. Decreased autophagy in rat heart induced by anti-β1-adrenergic receptor autoantibodies contributes to the decline in mitochondrial membrane potential.PLoS One2013811e8129610.1371/journal.pone.008129624278413
    [Google Scholar]
  59. PoolL. WijdeveldL.F.J.M. de GrootN.M.S. BrundelB.J.J.M. The role of mitochondrial dysfunction in atrial fibrillation: Translation to druggable target and biomarker discovery.Int. J. Mol. Sci.20212216846310.3390/ijms2216846334445167
    [Google Scholar]
  60. CreweC. FunckeJ.B. LiS. JoffinN. GliniakC.M. GhabenA.L. AnY.A. SadekH.A. GordilloR. AkgulY. ChenS. SamovskiD. Fischer-PosovszkyP. KusminskiC.M. KleinS. SchererP.E. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes.Cell Metab.202133918531868.e1110.1016/j.cmet.2021.08.00234418352
    [Google Scholar]
  61. EmelyanovaL. AsharyZ. CosicM. NegmadjanovU. RossG. RizviF. OletS. KressD. SraJ. TajikA.J. HolmuhamedovE.L. ShiY. JahangirA. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation.Am. J. Physiol. Heart Circ. Physiol.20163111H54H6310.1152/ajpheart.00699.201527199126
    [Google Scholar]
  62. ZhangD. WuC.T. QiX. MeijeringR.A.M. Hoogstra-BerendsF. TadevosyanA. Cubukcuoglu DenizG. DurduS. AkarA.R. SibonO.C.M. NattelS. HenningR.H. BrundelB.J.J.M. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation.Circulation2014129334635810.1161/CIRCULATIONAHA.113.00530024146251
    [Google Scholar]
  63. LinP.H. LeeS.H. SuC.P. WeiY.H. Oxidative damage to mitochondrial DNA in atrial muscle of patients with atrial fibrillation.Free Radic. Biol. Med.200335101310131810.1016/j.freeradbiomed.2003.07.00214607530
    [Google Scholar]
  64. MuszyńskiP. BondaT.A. Mitochondrial dysfunction in atrial fibrillation-Mechanisms and pharmacological interventions.J. Clin. Med.20211011238510.3390/jcm1011238534071563
    [Google Scholar]
  65. WilliamsN.C. O’NeillL.A.J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation.Front. Immunol.2018914110.3389/fimmu.2018.0014129459863
    [Google Scholar]
  66. SonN.H. ParkT.S. YamashitaH. YokoyamaM. HugginsL.A. OkajimaK. HommaS. SzabolcsM.J. HuangL.S. GoldbergI.J. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice.J. Clin. Invest.2007117102791280110.1172/JCI3033517823655
    [Google Scholar]
  67. LuptakI. BalschiJ.A. XingY. LeoneT.C. KellyD.P. TianR. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization.Circulation2005112152339234610.1161/CIRCULATIONAHA.105.53459416203912
    [Google Scholar]
  68. KhanD. AraT. RaviV. RajagopalR. TandonH. ParvathyJ. GonzalezE.A. Asirvatham-JeyarajN. KrishnaS. MishraS. RaghuS. BhatiA.S. TamtaA.K. DasguptaS. Kolthur-SeetharamU. EtchegarayJ.P. MostoslavskyR. RaoP.S.M. SrinivasanN. SundaresanN.R. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ.Cell Rep.202135910919010.1016/j.celrep.2021.10919034077730
    [Google Scholar]
  69. ChenT. ZhangY. LiuY. ZhuD. YuJ. LiG. SunZ. WangW. JiangH. HongZ. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling.Aging (Albany NY)201911187510752410.18632/aging.10226331562809
    [Google Scholar]
  70. LegchenkoE. ChouvarineP. BorchertP. Fernandez- GonzalezA. SnayE. MeierM. MaegelL. MitsialisS.A. Rog-ZielinskaE.A. KourembanasS. JonigkD. HansmannG. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.Sci. Transl. Med.201810438eaao030310.1126/scitranslmed.aao030329695452
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673308673240527092317
Loading
/content/journals/cmc/10.2174/0109298673308673240527092317
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test