Skip to content
2000
Volume 32, Issue 27
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Most patients with non-muscle invasive bladder cancer (NMIBC) have a high direction for recurrence and disease progression, which remains a significant unresolved challenge in bladder cancer patients. Therefore, a constant search is necessary for identifying appropriate and reliable biomarkers for early diagnosis of NMIBC. The current study has aimed to search for valuable diagnostic biomarkers in the tissue and urine specimens of NMIBC patients.

Methods

The changes of twelve candidate mRNAs in a screening phase (40 tissue samples of NMIBC patients and their corresponding 40 urine specimens) and a subsequent independent validation phase (40 urine specimens) were estimated using real-time polymerase chain reaction (RT-qPCR). The receiver operating characteristic (ROC) analysis was executed to determine the potential diagnostic values of mRNAs.

Results

The mRNA levels of seven candidate genes were markedly higher in tissue specimens relative to their neighboring tissues. Among them, four mRNAs, including ERBB2, CCND1, MKI67, and MAGEA6, were differentially expressed in urine samples of NMIBC patients relative to control subjects. Further, the expression of these four mRNAs was validated in the validation step. Combining these biomarkers showed better diagnostic performance than single biomarkers in the urine sample for non-invasive NMIBC detection. The combination of these mRNAs and cytology enhanced the sensitivity of cytology from 37% to 87%.

Conclusion

Our findings suggested that a four-mRNA panel may be promising in the non-invasive diagnosis of NMIBC, which deserves further investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673302140240627053904
2024-07-08
2025-09-06
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. DyrskjøtL. HanselD.E. EfstathiouJ.A. KnowlesM.A. GalskyM.D. TeohJ. TheodorescuD. Bladder cancer.Nat. Rev. Dis. Primers2023915810.1038/s41572‑023‑00468‑937884563
    [Google Scholar]
  3. MatulewiczR.S. SteinbergG.D. Non-muscle-invasive bladder cancer: Overview and contemporary treatment landscape of neoadjuvant chemoablative therapies.Rev. Urol.2020222435132760227
    [Google Scholar]
  4. SuF. GaoZ. LiuY. ZhouG. CuiY. DengC. LiuY. ZhangY. MaX. WangY. GuanL. ZhangY. LiuB. Integrated tissue and blood miRNA expression profiles identify novel biomarkers for accurate non-invasive diagnosis of breast cancer: Preliminary results and future clinical implications.Genes20221311193110.3390/genes1311193136360168
    [Google Scholar]
  5. JakusD. ŠolićI. JurićI. BorovacJ.A. ŠitumM. The impact of the initial clinical presentation of bladder cancer on histopathological and morphological tumor characteristics.J. Clin. Med.20231213425910.3390/jcm1213425937445294
    [Google Scholar]
  6. PowlesT. BellmuntJ. ComperatE. De SantisM. HuddartR. LoriotY. NecchiA. ValderramaB.P. RavaudA. ShariatS.F. SzabadosB. van der HeijdenM.S. GillessenS. Bladder cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up.Ann. Oncol.202233324425810.1016/j.annonc.2021.11.01234861372
    [Google Scholar]
  7. Messina, E.; Pecoraro, M.; Pisciotti, M.L.; Del Giudice, F.; Lucciola, S.; Bicchetti, M.; Laschena, L.; Roberto, M.; De Berardinis, E.; Franco, G. and Panebianco, V., 2023, January. Seeing is believing: state-of-the-art imaging of bladder cancer. In Seminars in Radiation Oncology, 2023, 33(1), pp. 12-20.
  8. SbizzeraM. DescotesF. ArberT. NeuvilleP. RuffionA. Bladder cancer detection in patients with neurogenic bladder: are cystoscopy and cytology effective, and are biomarkers pertinent as future diagnostic tools? A scoping review.World J. Urol.20224081897191310.1007/s00345‑022‑03943‑235119523
    [Google Scholar]
  9. ChaiC.A. YeohW.S. RajandramR. AungK.P. OngT.A. KuppusamyS. NazranA. KumaranK. RazackA.H.A. TeohJ.Y. Comparing CxBladder to urine cytology as adjunct to cystoscopy in surveillance of non-muscle invasive bladder cancer—a pilot study.Front. Surg.2021865929210.3389/fsurg.2021.65929234055868
    [Google Scholar]
  10. IgnatiadisM. SledgeG.W. JeffreyS.S. Liquid biopsy enters the clinic - implementation issues and future challenges.Nat. Rev. Clin. Oncol.202118529731210.1038/s41571‑020‑00457‑x33473219
    [Google Scholar]
  11. WangG. JinW. XuZ. JuL. ShanD. LiS. YuM. CaoX. LiuN. QianK. ZhangY. XiaoY. WangX. Urine-based liquid biopsy in bladder cancer: Opportunities and challenges.Clin. Transl. Discov.202331e17610.1002/ctd2.176
    [Google Scholar]
  12. SoorojeballyY. NeuzilletY. RoumiguiéM. LamyP.J. AlloryY. DescotesF. FerlicotS. Kassab-ChahmiD. OudardS. RébillardX. RoyC. LebretT. RouprêtM. AudenetF. Urinary biomarkers for bladder cancer diagnosis and NMIBC follow-up: a systematic review.World J. Urol.202341234535910.1007/s00345‑022‑04253‑336592175
    [Google Scholar]
  13. UrquidiV. NethertonM. Gomes-GiacoiaE. SerieD. Eckel-PassowJ. RosserC.J. GoodisonS. Urinary mRNA biomarker panel for the detection of urothelial carcinoma.Oncotarget2016725387313874010.18632/oncotarget.958727231851
    [Google Scholar]
  14. MengualL. RibalM.J. LozanoJ.J. Ingelmo-TorresM. BursetM. FernándezP.L. AlcarazA. Validation study of a noninvasive urine test for diagnosis and prognosis assessment of bladder cancer: evidence for improved models.J. Urol.2014191126126910.1016/j.juro.2013.06.08323831312
    [Google Scholar]
  15. WallaceE. HiguchiR. SatyaM. McCannL. SinM.L.Y. BridgeJ.A. WeiH. ZhangJ. WongE. HiarA. MachK.E. ScherrD. EgerdieR.B. OhtaS. SextonW.J. MengM.V. WeizerA.Z. WoodsM. JanszG.K. ZadraJ. LotanY. GoldfarbB. LiaoJ.C. Development of a 90-minute integrated noninvasive urinary assay for bladder cancer detection.J. Urol.2018199365566210.1016/j.juro.2017.09.14129061538
    [Google Scholar]
  16. Sikic, D.; Eckstein, M.; Weyerer, V.; Kubon, J.; Breyer, J.; Roghmann, F.; Kunath, F.; Keck, B.; Erben, P.; Hartmann, A. and Wirtz, R.M;, 2022, February. High expression of ERBB2 is an independent risk factor for reduced recurrence-free survival in patients with stage T1 non-muscle-invasive bladder cancer. In Urologic Oncology: Seminars and Original Investigations, 2022, 40(2) , pp. 63-e9.
  17. March-Villalba, J. A.; Ramos-Soler, D.; Soriano-Sarrió, P.; Hervás-Marín, D.; Martínez-García, L.; & Martínez-Jabaloyas, J. M. (2019, February). Immunohistochemical expression of Ki-67, Cyclin D1, p16INK4a, and Survivin as a predictive tool for recurrence and progression-free survival in papillary urothelial bladder cancer pTa/pT1 G2 (WHO 1973). In Urologic Oncology: Seminars and Original Investigations, 1973, 37(2), pp. 158-165.
  18. GültekinI.G. Timirci KahramanT.Ö. IşbilenM. DurmuşS. ÇakirT. Yaylimİ. IsbirT. Six potential biomarkers for bladder cancer: Key proteins in cell-cycle division and apoptosis pathways.J. Egypt. Natl. Canc. Inst.20223415410.1186/s43046‑022‑00153‑036529823
    [Google Scholar]
  19. BellmuntJ. Stem-like signature predicting disease progression in early stage bladder cancer. The role of E2F3 and SOX4.Biomedicines2018638510.3390/biomedicines603008530072631
    [Google Scholar]
  20. MinoliM. KienerM. ThalmannG.N. de JulioK.M. SeilerR. Evolution of urothelial bladder cancer in the context of molecular classifications.Int. J. Mol. Sci.20202116567010.3390/ijms2116567032784716
    [Google Scholar]
  21. MohsenzadeganM. RazmiM. VafaeiS. AbolhasaniM. MadjdZ. ZanjaniS.L. SharifiL. Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer.Sci. Rep.202212159910.1038/s41598‑021‑04510‑235022469
    [Google Scholar]
  22. DuR. HuangC. LiuK. LiX. DongZ. Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy.Mol. Cancer20212011510.1186/s12943‑020‑01305‑333451333
    [Google Scholar]
  23. VermaS. ShankarE. LinS. SinghV. ChanE.R. CaoS. FuP. MacLennanG.T. PonskyL.E. GuptaS. Identification of key genes associated with progression and prognosis of bladder cancer through integrated bioinformatics analysis.Cancers20211323593110.3390/cancers1323593134885040
    [Google Scholar]
  24. BarthaÁ. GyőrffyB. TNMplot. com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues.Int. J. Mol. Sci.2021225262210.3390/ijms2205262233807717
    [Google Scholar]
  25. ChandrashekarD.S. KarthikeyanS.K. KorlaP.K. PatelH. ShovonA.R. AtharM. NettoG.J. QinZ.S. KumarS. ManneU. CreightonC.J. VaramballyS. UALCAN: An update to the integrated cancer data analysis platform.Neoplasia202225182710.1016/j.neo.2022.01.00135078134
    [Google Scholar]
  26. SanguedolceF. ZanelliM. PalicelliA. BisagniA. ZizzoM. AscaniS. PedicilloM.C. CormioA. FalagarioU.G. CarrieriG. CormioL. HER2 expression in bladder cancer: A focused view on its diagnostic, prognostic, and predictive role.Int. J. Mol. Sci.2023244372010.3390/ijms2404372036835131
    [Google Scholar]
  27. BlancaA. BeltranL.A. PorcheronL.K. GomezG.E. CimadamoreA. SilvaB.A. GognaR. MontironiR. ChengL. Risk classification of bladder cancer by gene expression and molecular subtype.Cancers2023157214910.3390/cancers1507214937046810
    [Google Scholar]
  28. ZhuS. YuW. YangX. WuC. ChengF. Traditional classification and novel subtyping systems for bladder cancer.Front. Oncol.20201010210.3389/fonc.2020.0010232117752
    [Google Scholar]
  29. FerroM. La CivitaE. LiottiA. CennamoM. TortoraF. BuonerbaC. CrocettoF. LucarelliG. BusettoG.M. Del GiudiceF. de CobelliO. CarrieriG. PorrecaA. CimminoA. TerraccianoD. Liquid biopsy biomarkers in urine: A route towards molecular diagnosis and personalized medicine of bladder cancer.J. Pers. Med.202111323710.3390/jpm1103023733806972
    [Google Scholar]
  30. ZhuC.Z. TingH.N. NgK.H. OngT.A. A review on the accuracy of bladder cancer detection methods.J. Cancer201910174038404410.7150/jca.2898931417648
    [Google Scholar]
  31. CrocettoF. BaroneB. FerroM. BusettoG.M. La CivitaE. BuonerbaC. Di LorenzoG. TerraccianoD. SchalkenJ.A. Liquid biopsy in bladder cancer: State of the art and future perspectives.Crit. Rev. Oncol. Hematol.202217010357710.1016/j.critrevonc.2022.10357734999017
    [Google Scholar]
  32. MaasM. BedkeJ. StenzlA. TodenhöferT. Can urinary biomarkers replace cystoscopy?World J. Urol.20193791741174910.1007/s00345‑018‑2505‑230283995
    [Google Scholar]
  33. ZengY. WangA. LvW. WangQ. JiangS. PanX. WangF. YangH. BolundL. LinC. HanP. LuoY. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring.Clin. Transl. Discov.202332e18310.1002/ctd2.183
    [Google Scholar]
  34. PanabièresA.C. PantelK. Liquid biopsy: From discovery to clinical application.Cancer Discov.202111485887310.1158/2159‑8290.CD‑20‑131133811121
    [Google Scholar]
  35. NikanjamM. KatoS. KurzrockR. Liquid biopsy: Current technology and clinical applications.J. Hematol. Oncol.202215113110.1186/s13045‑022‑01351‑y36096847
    [Google Scholar]
  36. LiL. ZhangL. MontgomeryK.C. JiangL. LyonC.J. HuT.Y. Advanced technologies for molecular diagnosis of cancer: State of pre-clinical tumor-derived exosome liquid biopsies.Mater. Today Bio20231810053810.1016/j.mtbio.2022.10053836619206
    [Google Scholar]
  37. GunasekaranP.M. LutherJ.M. ByrdJ.B. For what factors should we normalize urinary extracellular mRNA biomarkers?Biomol Detect. Quantif.20191710009010.1016/j.bdq.2019.10009031285998
    [Google Scholar]
  38. HuangM. LongY. JinY. YaW. MengD. QinT. SuL. ZhouW. WuJ. HuangC. HuangQ. Comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network for bladder cancer.Transl. Androl. Urol.20211031286130110.21037/tau‑21‑8133850763
    [Google Scholar]
  39. MatuszczakM. KiljańczykA. SalagierskiM. A liquid biopsy in bladder cancer-the current landscape in urinary biomarkers.Int. J. Mol. Sci.20222315859710.3390/ijms2315859735955727
    [Google Scholar]
  40. WangQ. HuL. MaW. MengZ. LiP. ZhangX. WangY. LuY. SunY. WuY. RenW. SongK. ChenJ. WuS. XuQ. HuangD. ZhangD. ShenY. YeD. UriBLAD.J. Mol. Diagn.2021231617010.1016/j.jmoldx.2020.10.00533122139
    [Google Scholar]
  41. HuangH. DuJ. JinB. PangL. DuanN. HuangC. HouJ. YuW. HaoH. LiH. Combination of urine exosomal mRNAs and lncRNAs as novel diagnostic biomarkers for bladder cancer.Front. Oncol.20211166721210.3389/fonc.2021.66721233987102
    [Google Scholar]
  42. SongY. JinD. OuN. LuoZ. ChenG. ChenJ. YangY. LiuX. Gene expression profiles identified novel urine biomarkers for diagnosis and prognosis of high- grade bladder urothelial carcinoma.Front. Oncol.20201039410.3389/fonc.2020.0039432292720
    [Google Scholar]
  43. YinH. ZhangC. GouX. HeW. GanD. Identification of a 13-mRNA signature for predicting disease progression and prognosis in patients with bladder cancer.Oncol. Rep.202043237939431894276
    [Google Scholar]
  44. BreyerJ. OttoW. WirtzR.M. WullichB. KeckB. ErbenP. KriegmairM.C. StoehrR. EcksteinM. LaibleM. SchlombsK. EidtS. DenzingerS. BurgerM. HartmannA. ERBB2 expression as potential risk-stratification for early cystectomy in patients with pT1 bladder cancer and concomitant carcinoma in situ. Urol. Int.201798328228910.1159/00045367027992871
    [Google Scholar]
  45. HeY. WangN. ZhouX. WangJ. DingZ. ChenX. DengY. Prognostic value of ki67 in BCG-treated non- muscle invasive bladder cancer: A meta-analysis and systematic review.BMJ Open201884e01963510.1136/bmjopen‑2017‑01963529666128
    [Google Scholar]
  46. De CarloC. ValeriM. CorbittD.N. CieriM. ColomboP. Non-muscle invasive bladder cancer biomarkers beyond morphology.Front. Oncol.20221294744610.3389/fonc.2022.94744635992775
    [Google Scholar]
  47. KoK. JeongC.W. KwakC. KimH.H. KuJ.H. Significance of Ki-67 in non-muscle invasive bladder cancer patients: A systematic review and meta-analysis.Oncotarget201785910061410063010.18632/oncotarget.2189929246006
    [Google Scholar]
  48. XuH. YuS. LiuQ. YuanX. ManiS. PestellR.G. WuK. Recent advances of highly selective CDK4/6 inhibitors in breast cancer.J. Hematol. Oncol.20171019710.1186/s13045‑017‑0467‑228438180
    [Google Scholar]
  49. KopparapuP.K. BoorjianS.A. RobinsonB.D. DownesM. GudasL.J. MonganN.P. PerssonJ.L. Expression of cyclin d1 and its association with disease characteristics in bladder cancer.Anticancer Res.201333125235524224324055
    [Google Scholar]
  50. LiuM. LiJ. WangY. GhaffarM. YangY. WangM. LiC. MAGEA6 positively regulates MSMO1 and promotes the migration and invasion of oesophageal cancer cells.Exp. Ther. Med.202223320410.3892/etm.2022.1112735126707
    [Google Scholar]
  51. LiR. GongJ. XiaoC. ZhuS. HuZ. LiangJ. LiX. YanX. ZhangX. LiD. LiuW. ChongY. JieY. A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma.Genomics202011265101511410.1016/j.ygeno.2020.09.02632941982
    [Google Scholar]
  52. TsangY.H. WangY. KongK. GrzeskowiakC. ZagorodnaO. DogrulukT. LuH. VillafaneN. BhavanaV.H. MorenoD. ElseaS.H. LiangH. MillsG.B. ScottK.L. Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression.eLife20209e4896310.7554/eLife.4896332270762
    [Google Scholar]
  53. KhabazM.N. BuhmeidaA. GhabrahT. QureshiI.A. ButtN.S. Al-MaghrabiB. Cyclin D1 expression is associated with stage, grade and survival in urinary bladder carcinoma.Int. J. Clin. Exp. Med.20169122348223490
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673302140240627053904
Loading
/content/journals/cmc/10.2174/0109298673302140240627053904
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Bladder cancer; cytology; diagnosis; gene expression; non-invasive; urine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test