Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background and objective

Based on comprehensive network-pharmacology and molecular docking analysis, this study was intended to unveil the multiple mechanisms of Si-Ni-San (SNS) in treating anxious insomnia.

Methods

The compounds of SNS were meticulously analyzed, selected and standardized with references to their pharmacological attributes. The components included chaihu (), baishao (), zhishi () and gancao (). We used the Traditional Chinese Medicine System Pharmacology (TCMSP) Database, Traditional Chinese Medicines Integrated Database (TCMID), GeneCards database, therapeutic target database (TTD) and comparative toxicogenomic database (CTD) to construct the components-compounds-targets networks and used Cytoscape 3.9.1 software to visualize the outcome. Afterwards, the STRING database and Cytoscape 3.9.1 software were utilized to construct and visualize the protein-protein interaction (PPI) network analysis. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also conducted through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The molecular docking program was carried out using AutoDock 4.2 software to understand interactions between target receptors and compound ligands selected for study.

Results

We thoroughly sorted and filtered 31 pharmacologically active compounds from SNS. Subsequently, several potential target genes were predicted, of which there were 59 target genes distinctly associated with anxious insomnia. The PPI analysis indicated that the core target proteins included AKT1, IL6, TNF, SLC6A4, MAOA and GABRA2. The results of our study indicated that SNS potentially remediates anxious insomnia by reducing inflammation, neurodegeneration, and cell apoptosis of neurons. In addition, GO and KEGG enrichment analysis results indicated that SNS could modulate multiple aspects of anxious insomnia through mechanisms related to pathways of neuroactive ligand-receptor interaction. These pathways include various kinds of synaptic transmission pathways, and anti-inflammatory activity associated with response pathways. When we compared the components-compounds-targets networks and the compounds-targets-synaptic pathways networks, the five active compounds, including beta-Sitosterol, Kaempferol, Tetramethoxyluteolin, Isorhamnetin and Shinpterocarpin, were selected to conduct molecular docking experiments. Eleven target proteins, (AKT1, SLC6A4, ADRB2, MAOA, ACHE, ESR1, CYP3A4, CHRNA7, GABRA2, HTR2A and NOS3), which also play significant roles in regulating serotonergic, cholinergic, dopaminergic and GABAergic systems in the PPI network, were selected to act as receptors in molecular docking trials. The results showed that docking pairs isorhamnetin-AKT1, isorhamnetin-SLC6A4, β-sitosterol-MAOA, β-sitosterol-ACHE, isorhamnetin-CHRNA7 and shinpterocarpin-GABRA2 provided the most stable conformations of ligand-receptor binding between key compounds and core target proteins in the SNS.

Conclusion

In the study, we offer a computational result, revealing that SNS may alleviate sleep disorders associated with anxiety through a “multi-compounds, multi-targets, and multi-pathways” mechanism. The network-pharmacology and molecular docking outcomes could theoretically confirm the anti-anxiety and anti-insomnia effects of SNS. Although this research is purely statistical and systematic without empirical validation, it serves as a stepping stone and cornerstone for subsequent experimental investigations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673299665240924090617
2024-08-09
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/13/CMC-32-13-10.html?itemId=/content/journals/cmc/10.2174/0109298673299665240924090617&mimeType=html&fmt=ahah

References

  1. RuscioA.M. HallionL.S. LimC.C.W. Aguilar-GaxiolaS. Al-HamzawiA. AlonsoJ. AndradeL.H. BorgesG. BrometE.J. BuntingB. Caldas de AlmeidaJ.M. DemyttenaereK. FlorescuS. de GirolamoG. GurejeO. HaroJ.M. HeY. HinkovH. HuC. de JongeP. KaramE.G. LeeS. LepineJ.P. LevinsonD. MneimnehZ. Navarro-MateuF. Posada-VillaJ. SladeT. SteinD.J. TorresY. UdaH. WojtyniakB. KesslerR.C. ChatterjiS. ScottK.M. Cross-sectional comparison of the epidemiology of DSM-5 generalized anxiety disorder across the globe.JAMA Psychiatry201774546547510.1001/jamapsychiatry.2017.005628297020
    [Google Scholar]
  2. ShiY. DongJ.W. ZhaoJ.H. TangL.N. ZhangJ.J. Herbal insomnia medications that target GABAergic systems: A review of the psychopharmacological evidence.Curr. Neuropharmacol.201412328930210.2174/1570159X1166613122700124324851093
    [Google Scholar]
  3. MorinC.M. BencaR. Chronic insomnia.Lancet201237998211129114110.1016/S0140‑6736(11)60750‑222265700
    [Google Scholar]
  4. KaoC.C. HuangC.J. WangM.Y. TsaiP.S. Insomnia: Prevalence and its impact on excessive daytime sleepiness and psychological well-being in the adult Taiwanese population.Qual. Life Res.20081781073108010.1007/s11136‑008‑9383‑918752042
    [Google Scholar]
  5. BlinderH. MomoliF. BokhautJ. BacalV. GoldbergR. RadhakrishnanD. KatzS.L. Predictors of adherence to positive airway pressure therapy in children: A systematic review and meta-analysis.Sleep Med.202069193310.1016/j.sleep.2019.12.01532045851
    [Google Scholar]
  6. YpsilantiA. LazurasL. RobsonA. AkramU. Anxiety and depression mediate the relationship between self-disgust and insomnia disorder.Sleep Health20184434935110.1016/j.sleh.2018.06.001.
    [Google Scholar]
  7. LiC. XiaL. MaJ. LiS. LiangS. MaX. WangT. LiM. WenH. JiangG. Dynamic functional abnormalities in generalized anxiety disorders and their increased network segregation of a hyperarousal brain state modulated by insomnia.J. Affect. Disord.201924633834510.1016/j.jad.2018.12.07930597294
    [Google Scholar]
  8. BolstadC.J. NadorffM.R. What types of insomnia relate to anxiety and depressive symptoms in late life?Heliyon2020611e0531510.1016/j.heliyon.2020.e0531533163672
    [Google Scholar]
  9. GomezA.F. BarthelA.L. HofmannS.G. Comparing the efficacy of benzodiazepines and serotonergic anti-depressants for adults with generalized anxiety disorder: A meta-analytic review.Expert Opin. Pharmacother.201819888389410.1080/14656566.2018.147276729806492
    [Google Scholar]
  10. HallJ. KellettS. BerriosR. BainsM.K. ScottS. Efficacy of cognitive behavioral therapy for generalized anxiety disorder in older adults: Systematic review, meta-analysis, and meta-regression.Am. J. Geriatr. Psychiatry201624111063107310.1016/j.jagp.2016.06.00627687212
    [Google Scholar]
  11. DumanR.S. AghajanianG.K. SanacoraG. KrystalJ.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants.Nat. Med.201622323824910.1038/nm.405026937618
    [Google Scholar]
  12. WeissmanM.M. VerdeliH. GameroffM.J. BledsoeS.E. BettsK. MufsonL. FitterlingH. WickramaratneP. National survey of psychotherapy training in psychiatry, psychology, and social work.Arch. Gen. Psychiatry200663892593410.1001/archpsyc.63.8.92516894069
    [Google Scholar]
  13. ZhaoX. ZhangH. WuY. YuC. The efficacy and safety of St. John’s wort extract in depression therapy compared to SSRIs in adults: A meta-analysis of randomized clinical trials.Adv. Clin. Exp. Med.202332215116110.17219/acem/15294236226689
    [Google Scholar]
  14. JiangJ. ZhouC. XuQ. Alleviating effects of si-ni-san, a traditional Chinese prescription, on experimental liver injury and its mechanisms.Biol. Pharm. Bull.20032681089109410.1248/bpb.26.108912913256
    [Google Scholar]
  15. Taiwan Ministry of Health and WelfareTaiwan Herbal Pharmacopeia.2022
    [Google Scholar]
  16. ZhengY. ZhangJ. HuangW. ZhongL.L.D. WangN. WangS. YangB. WangX. PanB. SituH. LinY. LiuX. ShiY. WangZ. Sini San inhibits chronic psychological stress-induced breast cancer stemness by suppressing cortisol-mediated GRP78 activation.Front. Pharmacol.20211271416310.3389/fphar.2021.71416334912211
    [Google Scholar]
  17. LiY. LiuA. WangY. YanX. The efficacy study on si ni san freeze-dried powder on sleep phase in insomniac and normal rats.Evid. Based Complement. Alternat. Med.201320131610.1155/2013/94707523818936
    [Google Scholar]
  18. WuX. FengX. HaoW. Clinical observation on the treatment of 67 patients with insomnia with sini powder modified.Guide China Med2018102208210
    [Google Scholar]
  19. ChuX.F. The interventional effects of modified Sini San with Baihe Dihuang decoction on anxiety-related insomnia.J. Basic Clin. Med.202127812951298
    [Google Scholar]
  20. MuD. XueM. XuJ. HuY. ChenY. RenP. HuangX. Antidepression and prokinetic effects of paeoniflorin on rats in the forced swimming test via polypharmacology.Evid. Based Complement. Alternat. Med.202020201215357110.1155/2020/215357132733578
    [Google Scholar]
  21. DaX. YueL. LiX. ChenJ. YuanN. ChenJ. Potential therapeutic effect and methods of traditional Chinese medicine on COVID-19-induced depression: A review.Anat Rec (Hoboken)2021304112566257810.1002/ar.24758
    [Google Scholar]
  22. LiS. HuangM. WuG. HuangW. HuangZ. YangX. OuJ. WeiQ. LiuC. YuS. Efficacy of Chinese herbal formula Sini Zuojin decoction in treating gastroesophageal reflux disease: Clinical evidence and potential mechanisms.Front. Pharmacol.2020117610.3389/fphar.2020.0007632174826
    [Google Scholar]
  23. HanC. LiF. LiuY. MaJ. YuX. WuX. ZhangW. LiD. ChenD. DaiN. LinB. WuF. MaoM. Modified Si-Ni-San Decoction ameliorates central fatigue by improving mitochondrial biogenesis in the rat hippocampus.Evid. Based Complement. Alternat. Med.201820181945212710.1155/2018/945212730151021
    [Google Scholar]
  24. YangH. ZhangW. HuangC. ZhouW. YaoY. WangZ. LiY. XiaoW. WangY. A novel systems pharmacology model for herbal medicine injection: A case using reduning injection.BMC Complement. Altern. Med.201414143010.1186/1472‑6882‑14‑43025366653
    [Google Scholar]
  25. ZhangY. YuanT. LiY. WuN. DaiX. Network pharmacology analysis of the mechanisms of compound Herba sarcandrae (Fufang Zhongjiefeng) Aerosol in chronic pharyngitis treatment.Drug Des. Devel. Ther.2021152783280310.2147/DDDT.S30470834234411
    [Google Scholar]
  26. LinC.T. WuL.Y. TsaiF.S. Predictive analysis of Yi- Gai-San’s multifaceted mechanisms for tremor-dominant Parkinson’s disease via network pharmacology and molecular docking validation.Curr. Med. Chem.202431365989601210.2174/010929867329183824031107541538879763
    [Google Scholar]
  27. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional Chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.0012330846939
    [Google Scholar]
  28. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support.Bioinformatics199814865666410.1093/bioinformatics/14.8.6569789091
    [Google Scholar]
  29. ChenX. JiZ.L. ChenY.Z. TTD: Therapeutic target database.Nucleic Acids Res.200230141241510.1093/nar/30.1.41211752352
    [Google Scholar]
  30. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative toxicogenomics database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa89133068428
    [Google Scholar]
  31. WangY. ZhangS. LiF. ZhouY. ZhangY. WangZ. ZhangR. ZhuJ. RenY. TanY. QinC. LiY. LiX. ChenY. ZhuF. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics.Nucleic Acids Res.201948D1gkz98110.1093/nar/gkz98131691823
    [Google Scholar]
  32. GreenO. BaderD.A. Faster betweenness centrality based on data structure experimentation.Procedia Comput. Sci.20131839940810.1016/j.procs.2013.05.203
    [Google Scholar]
  33. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  34. Safari-AlighiarlooN. TaghizadehM. Rezaei-TaviraniM. GoliaeiB. PeyvandiA.A. Protein-protein interaction networks (PPI) and complex diseases.Gastroenterol. Hepatol. Bed Bench201471173125436094
    [Google Scholar]
  35. SzklarczykD. MorrisJ.H. CookH. KuhnM. WyderS. SimonovicM. SantosA. DonchevaN.T. RothA. BorkP. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible.Nucleic Acids Res201745D1D362D36810.1093/nar/gkw937
    [Google Scholar]
  36. von MeringC. JensenL.J. SnelB. HooperS.D. KruppM. FoglieriniM. JouffreN. HuynenM.A. BorkP. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms.Nucleic Acids Res.2004331D433D43710.1093/nar/gki00515608232
    [Google Scholar]
  37. HuangD.W. ShermanB.T. TanQ. KirJ. LiuD. BryantD. GuoY. StephensR. BaselerM.W. LaneH.C. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res200735W1697510.1093/nar/gkm415
    [Google Scholar]
  38. HarrisM.A. ClarkJ. IrelandA. LomaxJ. AshburnerM. FoulgerR. EilbeckK. LewisS. MarshallC. MungallC. The gene ontology (GO) database and informatics resource.Nucleic Acids Res200432D2586110.1093/nar/gkh036
    [Google Scholar]
  39. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  40. ThomasC.C. DeakM. AlessiD.R. van AaltenD.M.F. High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate.Curr. Biol.200212141256126210.1016/S0960‑9822(02)00972‑712176338
    [Google Scholar]
  41. YangD. GouauxE. Illumination of serotonin transporter mechanism and role of the allosteric site.Sci. Adv.2021749eabl385710.1126/sciadv.abl385734851672
    [Google Scholar]
  42. GauleT.G. SmithM.A. TychK.M. PirratP. TrinhC.H. PearsonA.R. KnowlesP.F. McPhersonM.J. Oxygen activation switch in the copper amine oxidase of Escherichia coli.Biochemistry201857365301531410.1021/acs.biochem.8b0063330110143
    [Google Scholar]
  43. SansonB. NachonF. ColletierJ.P. FromentM.T. TokerL. GreenblattH.M. SussmanJ.L. AshaniY. MassonP. SilmanI. WeikM. Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime.J. Med. Chem.200952237593760310.1021/jm900433t19642642
    [Google Scholar]
  44. TalleyT.T. HarelM. HibbsR.E. RadićZ. TomizawaM. CasidaJ.E. TaylorP. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore.Proc. Natl. Acad. Sci. USA2008105217606761110.1073/pnas.080219710518477694
    [Google Scholar]
  45. LavertyD. ThomasP. FieldM. AndersenO.J. GoldM.G. BigginP.C. GielenM. SmartT.G. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.Nat. Struct. Mol. Biol.2017241197798510.1038/nsmb.347728967882
    [Google Scholar]
  46. CherezovV. RosenbaumD.M. HansonM.A. RasmussenS.G.F. ThianF.S. KobilkaT.S. ChoiH.J. KuhnP. WeisW.I. KobilkaB.K. StevensR.C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.Science200731858541258126510.1126/science.115057717962520
    [Google Scholar]
  47. LiY. ZhaoJ. GutgesellL.M. ShenZ. RatiaK. DyeK. DubrovskyiO. ZhaoH. HuangF. TonettiD.A. ThatcherG.R.J. XiongR. Novel pyrrolopyridone bromodomain and extra-terminal motif (BET) inhibitors effective in endocrine-resistant ER+ breast cancer with acquired resistance to fulvestrant and palbociclib.J. Med. Chem.202063137186721010.1021/acs.jmedchem.0c0045632453591
    [Google Scholar]
  48. SevrioukovaI.F. High-level production and properties of the cysteine-depleted cytochrome P450 3A4.Biochemistry201756243058306710.1021/acs.biochem.7b0033428590129
    [Google Scholar]
  49. CaoD. YuJ. WangH. LuoZ. LiuX. HeL. QiJ. FanL. TangL. ChenZ. LiJ. ChengJ. WangS. Structure-based discovery of nonhallucinogenic psychedelic analogs.Science2022375657940341110.1126/science.abl861535084960
    [Google Scholar]
  50. VasuD. LiH. HardyC.D. PoulosT.L. SilvermanR.B. 2-Aminopyridines with a shortened amino sidechain as potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors.Bioorg. Med. Chem.20226911687810.1016/j.bmc.2022.11687835772285
    [Google Scholar]
  51. KleywegtG.J. Alwyn JonesT. Model building and refinement practice.Methods Enzymol.199727720823010.1016/S0076‑6879(97)77013‑718488311
    [Google Scholar]
  52. ReadR.J. AdamsP.D. ArendallW.B. BrungerA.T. EmsleyP. JoostenR.P. KleywegtE.B. LüttekeT. OtwinowskiZ. PerrakisA. A new generation of crystallographic validation tools for the protein data bank.Europe PMC201119101395141210.1016/j.str.2011.08.006.
    [Google Scholar]
  53. HangJ. DussaultP. A concise synthesis of β-sitosterol and other phytosterols.Steroids2010751287988310.1016/j.steroids.2010.05.01620685279
    [Google Scholar]
  54. LiaoP.C. LaiM.H. HsuK.P. KuoY.H. ChenJ. TsaiM.C. LiC.X. YinX.J. JeyashokeN. ChaoL.K.P. Identification of β-Sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera.J. Agric. Food Chem.20186641107481075910.1021/acs.jafc.8b0455530280897
    [Google Scholar]
  55. ShiC. WuF. ZhuX. XuJ. Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling.Biochim. Biophys. Acta, Gen. Subj.2013183032538254410.1016/j.bbagen.2012.12.01223266618
    [Google Scholar]
  56. RenJ. LuY. QianY. ChenB. WuT. JiG. Recent progress regarding kaempferol for the treatment of various diseases (Review).Exp. Ther. Med.20191842759277610.3892/etm.2019.788631572524
    [Google Scholar]
  57. LiuW.L. WuB.F. ShangJ.H. WangX.F. ZhaoY.L. HuangA.X. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism.Pharm. Biol.202260181082410.1080/13880209.2022.205620735587996
    [Google Scholar]
  58. GongG. GuanY.Y. ZhangZ.L. RahmanK. WangS.J. ZhouS. LuanX. ZhangH. Isorhamnetin: A review of pharmacological effects.Biomed. Pharmacother.202012811030110.1016/j.biopha.2020.11030132502837
    [Google Scholar]
  59. PatelA.B. TsilioniI. WengZ. TheoharidesT.C. TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin.Exp. Dermatol.201827213514310.1111/exd.1346129105195
    [Google Scholar]
  60. ChoS.M. ShimizuM. LeeC.J. HanD.S. JungC.K. JoJ.H. KimY.M. Hypnotic effects and binding studies for GABAA and 5-HT2C receptors of traditional medicinal plants used in Asia for insomnia.J. Ethnopharmacol.2010132122523210.1016/j.jep.2010.08.00920804838
    [Google Scholar]
  61. LaiW.S. XuB. WestphalK.G.C. PaterliniM. OlivierB. PavlidisP. KarayiorgouM. GogosJ.A. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning.Proc. Natl. Acad. Sci. USA200610345169061691110.1073/pnas.060499410317077150
    [Google Scholar]
  62. ZhangM. ZhangY. SunH. NiH. SunJ. YangX. ChenW. ZhaoW. ZhongX. HeC. AoH. HeS. Sinisan protects primary hippocampal neurons against corticosterone by inhibiting autophagy via the PI3K/Akt/mTOR Pathway.Front. Psychiatry20211262705610.3389/fpsyt.2021.62705634122166
    [Google Scholar]
  63. HuB. XuG. ZhangX. XuL. ZhouH. MaZ. ShenX. ZhuJ. ShenR. Paeoniflorin attenuates inflammatory pain by inhibiting microglial activation and Akt-NF-κB signaling in the central nervous system.Cell. Physiol. Biochem.201847284285010.1159/00049007629807368
    [Google Scholar]
  64. BaiD. UenoL. VogtP.K. Akt-mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt.Int. J. Cancer2009125122863287010.1002/ijc.2474819609947
    [Google Scholar]
  65. NiraulaA. WitcherK.G. SheridanJ.F. GodboutJ.P. Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety.Biol. Psychiatry201985867968910.1016/j.biopsych.2018.09.03030447911
    [Google Scholar]
  66. CaiY. LiX. HanQ. BaiJ. ZhengQ. SunR. LiuR. Si–Ni-San improves experimental colitis by favoring Akkermensia colonization.J. Ethnopharmacol.202330511606710.1016/j.jep.2022.11606736586523
    [Google Scholar]
  67. FanH.J. XieZ.P. LuZ.W. TanZ.B. BiY.M. XieL.P. WuY.T. ZhangW.T. Liu-KotK. LiuB. ZhouY.C. Anti-inflammatory and immune response regulation of Si-Ni-San in 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin dysfunction.J. Ethnopharmacol.201822211010.1016/j.jep.2018.04.03229698775
    [Google Scholar]
  68. JaśkiewiczA. DomoradzkiT. PająkB. Targeting the JAK2/STAT3 pathway-Can we compare it to the two faces of the God Janus?Int. J. Mol. Sci.20202121826110.3390/ijms2121826133158194
    [Google Scholar]
  69. LiX.J. MaQ.Y. JiangY.M. BaiX.H. YanZ.Y. LiuQ. PanQ.X. LiuY.Y. ChenJ.X. Xiaoyaosan exerts anxiolytic-like effects by down-regulating the TNF-α/JAK2-STAT3 pathway in the rat hippocampus.Sci. Rep.20177135310.1038/s41598‑017‑00496‑y28336920
    [Google Scholar]
  70. VgontzasA.N. ZoumakisM. PapanicolaouD.A. BixlerE.O. ProloP. LinH.M. Vela-BuenoA. KalesA. ChrousosG.P. Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime.Metabolism200251788789210.1053/meta.2002.3335712077736
    [Google Scholar]
  71. BurgosI. RichterL. KleinT. FiebichB. FeigeB. LiebK. VoderholzerU. RiemannD. Increased nocturnal interleukin-6 excretion in patients with primary insomnia: A pilot study.Brain Behav. Immun.200620324625310.1016/j.bbi.2005.06.00716084689
    [Google Scholar]
  72. HaririA.R. MattayV.S. TessitoreA. KolachanaB. FeraF. GoldmanD. EganM.F. WeinbergerD.R. Serotonin transporter genetic variation and the response of the human amygdala.Science2002297558040040310.1126/science.107182912130784
    [Google Scholar]
  73. DeuschleM. SchredlM. SchillingC. WüstS. FrankJ. WittS.H. RietschelM. BuckertM. Meyer-LindenbergA. SchulzeT.G. Association between a serotonin transporter length polymorphism and primary insomnia.Sleep201033334334710.1093/sleep/33.3.34320337192
    [Google Scholar]
  74. RahmanH. PalayyanM. MuthiahhA. Inhibition of AChE and antioxidant activities are probable mechanism of Nardostacys jatamansi DC in sleep deprived Alzheimer’s mice model.Int. J. PharmTech. Res.20113318071816
    [Google Scholar]
  75. SunX. MingQ. ZhongX. DongD. LiC. XiongG. ChengC. CaoW. HeJ. WangX. YiJ. YaoS. The MAOA gene influences the neural response to psychosocial stress in the human brain.Front. Behav. Neurosci.2020146510.3389/fnbeh.2020.0006532499684
    [Google Scholar]
  76. ZieglerC. DomschkeK. Epigenetic signature of MAOA and MAOB genes in mental disorders.J. Neural. Transm. (Vienna)2018125111581158810.1007/s00702‑018‑1929‑6
    [Google Scholar]
  77. LiuY.J. MengF.T. WangL.L. ZhangL.F. ChengX.P. ZhouJ.N. Apolipoprotein E influences melatonin biosynthesis by regulating NAT and MAOA expression in C6 cells.J. Pineal Res.201252439740210.1111/j.1600‑079X.2011.00954.x22225631
    [Google Scholar]
  78. EnginE. LiuJ. RudolphU. α2-containing GABAA receptors: A target for the development of novel treatment strategies for CNS disorders.Pharmacol. Ther.2012136214215210.1016/j.pharmthera.2012.08.00622921455
    [Google Scholar]
  79. AdamsC.E. YonchekJ.C. SchulzK.M. GrawS.L. StitzelJ. TeschkeP.U. StevensK.E. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: Implications for neuropsychiatric diseases.Neuroscience201220727428210.1016/j.neuroscience.2012.01.03322314319
    [Google Scholar]
  80. WangH. LiuJ. HeJ. HuangD. XiY. XiaoT. OuyangQ. ZhangS. WanS. ChenX. Potential mechanisms underlying the therapeutic roles of sinisan formula in depression: Based on network pharmacology and molecular docking study.Front. Psychiatry202213106348910.3389/fpsyt.2022.1063489
    [Google Scholar]
  81. HuangH. LiuH. YanR. HuM. PI3K/Akt and ERK/MAPK signaling promote different aspects of neuron survival and axonal regrowth following rat facial nerve axotomy.Neurochem. Res.201742123515352410.1007/s11064‑017‑2399‑128993995
    [Google Scholar]
  82. HjorthO.R. FrickA. GingnellM. HoppeJ.M. FariaV. HultbergS. AlaieI. MånssonK.N.T. WahlstedtK. JonassonM. LubberinkM. AntoniG. FredriksonM. FurmarkT. Expression and co-expression of serotonin and dopamine transporters in social anxiety disorder: A multitracer positron emission tomography study.Mol. Psychiatry20212683970397910.1038/s41380‑019‑0618‑731822819
    [Google Scholar]
  83. BenammiH. El HibaO. RomaneA. GamraniH. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: Involvement of serotonin.Acta Histochem.2014116592092510.1016/j.acthis.2014.03.00224721902
    [Google Scholar]
  84. ZhuS. NovielloC.M. TengJ. WalshR.M.Jr KimJ.J. HibbsR.E. Structure of a human synaptic GABAA receptor.Nature20185597712677210.1038/s41586‑018‑0255‑329950725
    [Google Scholar]
  85. FengJ. ZhangQ. ZhangC. WenZ. ZhouX. The effect of sequential bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum level of BDNF and GABA in patients with primary insomnia.Brain Behav.201992e0120610.1002/brb3.120630609300
    [Google Scholar]
  86. HuS. HuangL. MengL. SunH. ZhangW. XuY. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways.Mol. Med. Rep.20151256745675110.3892/mmr.2015.426926502751
    [Google Scholar]
  87. ZhaiT. ZhangX. HeiZ. JinL. HanC. KoA.T. YuX. WangJ. Isorhamnetin inhibits human gallbladder cancer cell proliferation and metastasis via PI3K/AKT signaling pathway inactivation.Front Pharmacol20211262862110.3389/fphar.2021.628621.
    [Google Scholar]
  88. BariW.U. ZahoorM. ZebA. KhanI. NazirY. KhanA. RehmanN.U. UllahR. ShahatA.A. MahmoodH.M. Anticholinesterase, antioxidant potentials, and molecular docking studies of isolated bioactive compounds from Grewia optiva.Int. J. Food Prop.20192211386139610.1080/10942912.2019.1650763
    [Google Scholar]
  89. BanerjeeS. YadavS. AggarwalP. KhanF. KhodveG. PadhyD.S. YadavP. β-sitosterol protects against aluminium chloride-mediated neurotoxicity.Curr. Alzheimer Res.2023201293710.2174/156720502066623030815144336892031
    [Google Scholar]
  90. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑030941682
    [Google Scholar]
  91. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑833516447
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673299665240924090617
Loading
/content/journals/cmc/10.2174/0109298673299665240924090617
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anxious insomnia; gene oncology; IL6; molecular docking; network pharmacology; Si-Ni-San
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test