Skip to content
2000
Volume 32, Issue 13
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Clinical endocrinology has observed emerging endocrine complications following COVID-19 vaccination, amidst successful reductions in COVID-19 hospitalizations and deaths. The Pfizer-BioNTech and Moderna mRNA vaccines have demonstrated efficacy. Reports indicate a potential association between SARS-CoV-2 vaccination and diabetes, exploring interactions with ACE-2 receptors and molecular mimicry. Additionally, altered liver and kidney function tests post-vaccination prompt investigation into their role in predicting type 2 diabetes. This study aims to explore these biochemical abnormalities in a case-control, single-centre prospective study.

Materials and Methods

This prospective study aimed to evaluate a total of five hundred healthy donors, out of which 203 qualified for final analysis. Participants were selected based on their vaccination status with a COVID-19 vaccine and prior exposure to the SARS-CoV-2 virus. Donors without prior SARS-CoV-2 infection were excluded from the study. Included participants were adults who had received three doses of the COVID-19 vaccine.

Results

A total of 203 individuals were included in the study, comprising 104 with type 2 diabetes mellitus (T2DM) and 99 without. Demographic characteristics including age, sex, nationality, Rh factors, ABO blood groups, liver function tests (LFT), kidney function tests (KFT), lactate dehydrogenase (LDH), and mineral ion levels were analysed. Among the participants, the distribution based on HbA1c levels showed 47.8% with HbA1c <7% classified as normal, 38.48% with HbA1c 8-10% classified as high, and 16.64% with HbA1c >10% classified as uncontrolled diabetes. Significant findings included a decrease in magnesium levels to 0.77±0.82 mmol/L (<0.04*), an increase in LDH levels to 420.70±356.26 µL (<0.01*), and elevated levels of alkaline phosphatase (143.22 ± 142.62 µL, <0.001), gamma-glutamyl transferase (GGT) (55.70 ± 32.20 µL, <0.001), and serum bilirubin (9.23 ± 4.87 µmol/L, <0.001). Creatinine levels were significantly lower at 116.75 ± 101.94 µmol/L (<0.001), while uric acid levels were significantly elevated at 305.92 ± 145.04 µmol/L (<0.001) in individuals with uncontrolled HbA1c >10%. A majority of these individuals belonged to the O+ blood group.

Conclusion

This study underscores significant shifts in serum biomarkers and their complex interplay with mRNA-based SARS-CoV-2 vaccination and diabetes, particularly in uncontrolled cases. The findings suggest potential autoimmune reactions triggered by the self-adjuvant properties of mRNA and polyethylene glycol lipid conjugates. Variations observed among different blood groups may correspond to racial disparities influencing molecular mimicry mechanisms. Despite these insights, the underlying pathophysiological mechanisms remain unclear, highlighting the critical need for further research to validate and expand upon these findings.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673296482240426111529
2024-07-15
2025-09-17
Loading full text...

Full text loading...

References

  1. PilishviliT. GierkeR. Fleming-DutraK.E. FarrarJ.L. MohrN.M. TalanD.A. KrishnadasanA. HarlandK.K. SmithlineH.A. HouP.C. LeeL.C. LimS.C. MoranG.J. KrebsE. SteeleM.T. BeiserD.G. FaineB. HaranJ.P. NandiU. SchradingW.A. ChinnockB. HenningD.J. LovecchioF. LeeJ. BarterD. BrackneyM. FridkinS.K. Marceaux-GalliK. LimS. PhippsE.C. DumyatiG. PierceR. MarkusT.M. AndersonD.J. DebesA.K. LinM.Y. MayerJ. KwonJ.H. SafdarN. FischerM. SingletonR. CheaN. MagillS.S. VeraniJ.R. SchragS.J. Vaccine Effectiveness among Healthcare Personnel Study Team Effectiveness of mRNA Covid-19 vaccine among US health care personnel.N. Engl. J. Med.202138525e9010.1056/NEJMoa210659934551224
    [Google Scholar]
  2. BragazziN.L. HejlyA. WatadA. AdawiM. AmitalH. ShoenfeldY. ASIA syndrome and endocrine autoimmune disorders.Best Pract. Res. Clin. Endocrinol. Metab.202034110141210.1016/j.beem.2020.10141232265102
    [Google Scholar]
  3. LarkinH. Wide variation in reported type 1 diabetes incidence in children around the world.JAMA2022328232295229510.1001/jama.2022.2307536538302
    [Google Scholar]
  4. FarshadpourF. TaherkhaniR. SaberiF. Molecular evaluation of hepatitis B virus infection and predominant mutations of pre-core, basal core promoter and S regions in an Iranian population with type 2 diabetes mellitus: a case-control study.BMC Infect. Dis.202222155310.1186/s12879‑022‑07528‑735715756
    [Google Scholar]
  5. YuL. Abd GhaniM.K. AghemoA. BarhD. BassettiM. CatenaF. GalloG. GholamrezanezhadA. KamalM.A. LalA. SahuK.K. SaxenaS.K. ElmoreU. RahimiF. RobbaC. SongY. XiaZ. YuB. SARS-CoV-2 infection, inflammation, immunonutrition, and pathogenesis of COVID-19.Curr. Med. Chem.202330394390440810.2174/092986733066623033009272536998130
    [Google Scholar]
  6. AydoğanB.İ. ÜnlütürkU. CesurM. Diagnosis of latent autoimmune diabetes after SARS–CoV-2 vaccination in adult patients previously diagnosed with type 2 diabetes mellitus.Int. J. Diabetes Dev. Ctries.20231510.1007/s13410‑023‑01261‑w
    [Google Scholar]
  7. Aluganti NarasimhuluC. SinglaD.K. Mechanisms of COVID-19 pathogenesis in diabetes.Am. J. Physiol. Heart Circ. Physiol.20223233H403H42010.1152/ajpheart.00204.202235776683
    [Google Scholar]
  8. YangJ.K. LinS.S. JiX.J. GuoL.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes.Acta Diabetol.201047319319910.1007/s00592‑009‑0109‑419333547
    [Google Scholar]
  9. BodduS.K. AurangabadkarG. KuchayM.S. New onset diabetes, type 1 diabetes and COVID-19.Diabetes Metab. Syndr.20201462211221710.1016/j.dsx.2020.11.01233395782
    [Google Scholar]
  10. VahabiM. GhazanfariT. SepehrniaS. Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection.Int. Immunopharmacol.202211210918310.1016/j.intimp.2022.10918336182877
    [Google Scholar]
  11. BeerakaN.M. TulimilliS.V. GreeshmaM.V. DallavalasaS. ZhangY. XiaoW. FanR. ZhaoD. BettadapuraA.D.S. NatarajS.M. MadhunapantulaS.V. LiuJ. COVID-19 effects on geriatric population and failures of aminoquinoline therapy: compilation of studies from EU, USA, and China; Safety and efficacy of vaccines in the prevention and treatment of COVID-19.Curr. Med. Chem.202229203601362110.2174/092986732966622030111314635232337
    [Google Scholar]
  12. BouwmansP. MesschendorpA.L. ImhofC. SandersJ.S.F. HilbrandsL.B. ReindersM.E.J. VartP. BemelmanF.J. AbrahamsA.C. van den DorpelR.M.A. Ten DamM.A.G.J. de VriesA.P.J. RispensT. SteenhuisM. GansevoortR.T. HemmelderM.H. ter MeulenR.C.G. ChengJ. KoningsC.J.A.M. PetersV.J.P. RemmerswaalE.B.M. FrölkeS.C. RotsN. van der KlisF. KonijnW.S. de RondeA. VervoortH.J.P.M. BraksM.H.J. KhoM.L. BaanC.C. MalahaR.S.R.K. JanssenW.M.T. TilE. ZwerinkM. BrinkmanJ.N. SiegertC. FritsenH.R. den BiggelaarL. Jan BosW. WillemsM. van der MolenR.G. DiavatopoulosD.A. van BaarleD. RECOVAC Collaborators Impact of immunosuppressive treatment and type of SARS-CoV-2 vaccine on antibody levels after three vaccinations in patients with chronic kidney disease or kidney replacement therapy.Clin. Kidney J.202316352854010.1093/ckj/sfac24936865021
    [Google Scholar]
  13. NaranjoC.A. BustoU. SellersE.M. SandorP. RuizI. RobertsE.A. JanecekE. DomecqC. GreenblattD.J. A method for estimating the probability of adverse drug reactions.Clin. Pharmacol. Ther.198130223924510.1038/clpt.1981.1547249508
    [Google Scholar]
  14. BerbudiA. RahmadikaN. TjahjadiA.I. RuslamiR. Type 2 diabetes and its impact on the immune system.Curr. Diabetes Rev.202016544244910.2174/18756417MTAxgODQqy31657690
    [Google Scholar]
  15. PawelecG. Age and immunity: What is “immunosenescence”?Exp. Gerontol.20181054910.1016/j.exger.2017.10.02429111233
    [Google Scholar]
  16. DubeyP. ThakurV. ChattopadhyayM. Role of minerals and trace elements in diabetes and insulin resistance.Nutrients2020126186410.3390/nu1206186432585827
    [Google Scholar]
  17. ChuN. ChanT.Y. ChuY.K. LingJ. HeJ. LeungK. MaR.C.W. ChanJ.C.N. ChowE. Higher dietary magnesium and potassium intake are associated with lower body fat in people with impaired glucose tolerance.Front. Nutr.202310116970510.3389/fnut.2023.116970537139459
    [Google Scholar]
  18. AljuraibahF. BacchettaJ. BrandiM.L. FlorenzanoP. JavaidM.K. MäkitieO. RaimannA. RodriguezM. SiggelkowH. TiosanoD. VervloetM. WagnerC.A. An expert perspective on phosphate dysregulation with a focus on chronic hypophosphatemia.J. Bone Miner. Res.2020371122010.1002/jbmr.448634870347
    [Google Scholar]
  19. SantosC.F.S. SantosB.C. de CarvalhoG.B. OliveiraJ.S. SantosC.B. ReisA.R. SantosR.K.F. Brandão-LimaP.N. da CostaS.S.L. dos SantosS.H. RochaV.S. PiresL.V. Magnesium status and dietary patterns associated with glycemic control in individuals with Type 2 Diabetes Mellitus.Biol. Trace Elem. Res.2023201115152516110.1007/s12011‑023‑03601‑736807884
    [Google Scholar]
  20. LinH.C. ChenY.J. WeiY.H. LinH.A. ChenC.C. LiuT.F. HsiehY.L. HuangK.Y. LinK.H. WangH.H. ChenL.C. Lactic acid fermentation is required for NLRP3 inflammasome activation.Front. Immunol.20211263038010.3389/fimmu.2021.63038033854503
    [Google Scholar]
  21. DmourH.H. KhreisatE.F. KhreisatA.F. HasanS.A. AtoomO. AlkhatibA.J. Assessment of lactate dehydrogenase levels among diabetic patients treated in the outpatient clinics at king hussein medical center, royal medical services, jordan.Med. Arch.2020745384
    [Google Scholar]
  22. SinghB. KumarA. SinghH. KaurS. AroraS. SinghB. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-κB, TNF -α and COX -2 proteins in rats.Phytother. Res.20223631338135210.1002/ptr.739235088468
    [Google Scholar]
  23. AbbasiZ. MoghadaciA. MohammadnahalL. SangrizehF.H. GholamiM.H. BaeelashakiR. HushmandiK. RaesiR. KhalilipourA. DashtiS. Investigating how interleukin 6 serum level, blood group type, and underlying diseases are associated in patients admitted to the COVID-19 Intensive Care Unit: A Retrospective study.Open Public Health J.2023161e18749445230919110.2174/0118749445258188230922115257
    [Google Scholar]
  24. EwaldD.R. SumnerS.C.J. Blood type biochemistry and human disease.Wiley Interdiscip. Rev. Syst. Biol. Med.20168651753510.1002/wsbm.135527599872
    [Google Scholar]
  25. ShibeebS. KhanA. ABO blood group association and COVID-19. COVID-19 susceptibility and severity: a review.Hematol. Transfus. Cell Ther.2022441707510.1016/j.htct.2021.07.00634541459
    [Google Scholar]
  26. PereiraE. FelipeS. de FreitasR. AraújoV. SoaresP. RibeiroJ. Henrique dos SantosL. AlvesJ.O. CanabravaN. van TilburgM. GuedesM.I. CeccattoV. ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms.Microb. Pathog.202216910565810.1016/j.micpath.2022.10565835764188
    [Google Scholar]
  27. LiJ. WangX. ChenJ. CaiY. DengA. YangM. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia.Br. J. Haematol.20201901242710.1111/bjh.1679732379894
    [Google Scholar]
  28. Muñiz-DiazE. LlopisJ. ParraR. RoigI. FerrerG. GrifolsJ. MillánA. EneG. RamiroL. MaglioL. GarcíaN. PinachoA. JaramilloA. PeróA. ArtazaG. VallésR. SauledaS. PuigL. ContrerasE. Relationship between the ABO blood group and COVID-19 susceptibility, severity and mortality in two cohorts of patients.Blood Transfus.2021191546333196417
    [Google Scholar]
  29. WuY. FengZ. LiP. YuQ. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19.Clin. Chim. Acta202050922022310.1016/j.cca.2020.06.02632562665
    [Google Scholar]
  30. GhamdiF.A. NaqviS. AlabassiF.A. AlhayyaniS. BaigM.R. KumarV. AnwarF. Alterations in clinical characteristics of blood donors post COVID-19 recovery.Curr. Pharm. Des.2022281298199210.2174/138161282866622032212322535319357
    [Google Scholar]
  31. YuanS. LiH. ChenC. WangF. WangD.W. Association of glycosylated haemoglobin HbA1c levels with outcome in patients with COVID-19: A Retrospective Study.J. Cell. Mol. Med.20212573484349710.1111/jcmm.1643133694276
    [Google Scholar]
  32. KnudsenJ.S. KnudsenS.S. HulmanA. WitteD.R. GreggE.W. LauritzenT. PedersenL. SørensenH.T. ThomsenR.W. Changes in type 2 diabetes incidence and mortality associated with introduction of HbA1c as diagnostic option: A Danish 24-year population-based study.Lancet Reg. Health Eur.20221410029110.1016/j.lanepe.2021.10029135024680
    [Google Scholar]
  33. LeeH.J. SajanA. TomerY. Hyperglycemic emergencies associated with COVID-19 vaccination: a case series and discussion.J. Endocr. Soc.2021511bvab14110.1210/jendso/bvab14134604689
    [Google Scholar]
  34. SasakiH. ItohA. WatanabeY. NakajimaY. SaishoY. IrieJ. MeguroS. ItohH. Newly developed type 1 diabetes after coronavirus disease 2019 vaccination: A case report.J. Diabetes Investig.20221361105110810.1111/jdi.1375735088548
    [Google Scholar]
  35. PatrizioA. FerrariS.M. AntonelliA. FallahiP. A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination.J. Autoimmun.202112510273810.1016/j.jaut.2021.10273834653776
    [Google Scholar]
  36. EdwardsA.E. VathenenR. HensonS.M. FinerS. GunganahK. Acute hyperglycaemic crisis after vaccination against COVID-19: A case series.Diabet. Med.20213811e1463110.1111/dme.1463134185927
    [Google Scholar]
  37. RussellM.A. MorganN.G. The impact of anti-inflammatory cytokines on the pancreatic β-cell.Islets201463e95054710.4161/19382014.2014.95054725322830
    [Google Scholar]
  38. SoriniC. CosorichI. Lo ConteM. De GiorgiL. FacciottiF. LucianòR. RocchiM. FerrareseR. SanvitoF. CanducciF. FalconeM. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes.Proc. Natl. Acad. Sci. USA201911630151401514910.1073/pnas.181455811631182588
    [Google Scholar]
  39. MichaelP. BhakdiS. DesBoisM. HookerB. RasnickD. HollandM. FittsJ.C.A. The m RNA VACCINE : White paper and other documents. An interesting collection useful to better understand some phenomena and to generate hypotesys.Preprint2022
    [Google Scholar]
  40. NandakumarK.S. Vaccines and vaccine adjuvants for infectious diseases and autoimmune diseases.Vaccines2023112202
    [Google Scholar]
  41. AlphandéryE. Nano dimensions/adjuvants in COVID-19 vaccines.J. Mater. Chem. B Mater. Biol. Med.202210101520155210.1039/D1TB02408F35166754
    [Google Scholar]
  42. ShirakawaJ. Pancreatic β-cell fate in subjects with COVID-19.J. Diabetes Investig.202112122126212810.1111/jdi.1367134529355
    [Google Scholar]
  43. WuC.-T. LidskyP.V. XiaoY. LeeI.T. ChengR. NakayamaT. JiangS. DemeterJ. BevacquaR.J. ChangC.A. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment.Cell Metab.202133815651576
    [Google Scholar]
  44. LiuY. YangY. XuC. LiuJ. ChenJ. LiG. HuangB. PanY. ZhangY. WeiQ. PandolS.J. ZhangF. LiL. JinL. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity.Nat. Commun.202314135110.1038/s41467‑023‑35998‑z36681689
    [Google Scholar]
  45. PeñalozaH.F. LeeJ.S. RayP. Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease.PLoS Pathog.2021179e100985010.1371/journal.ppat.100985034473802
    [Google Scholar]
  46. RohmT.V. MeierD.T. OlefskyJ.M. DonathM.Y. Inflammation in obesity, diabetes, and related disorders.Immunity2022551315510.1016/j.immuni.2021.12.01335021057
    [Google Scholar]
  47. LiZ. ZhaoM. LiJ. LuoW. HuangJ. HuangG. XieZ. XiaoY. HuangJ. LiX. ZhaoB. ZhouZ. Elevated glucose metabolism driving pro-inflammatory response in B cells contributes to the progression of type 1 diabetes.Clin. Immunol.202325510972910.1016/j.clim.2023.10972937562723
    [Google Scholar]
  48. NussratS.W. Ad’hiahA.H. Interleukin-40 is a promising biomarker associated with type 2 diabetes mellitus risk.Immunol. Lett.20232541510.1016/j.imlet.2023.01.00636640967
    [Google Scholar]
  49. NikolajczykB.S. Jagannathan-BogdanM. ShinH. GyurkoR. State of the union between metabolism and the immune system in type 2 diabetes.Genes Immun.201112423925010.1038/gene.2011.1421390053
    [Google Scholar]
  50. KocyigitE. AkturkM. KoksalE. Relationships between serum and dietary magnesium, calcium, and metabolic parameters in women with type 2 diabetes mellitus.Clin. Nutr. ESPEN20235430431010.1016/j.clnesp.2023.01.03536963878
    [Google Scholar]
  51. AkyüzO. GücünM. DemirciR. CelikM. Relationship between serum magnesium level and insulin resistance in turkey non-obese adult population.Biol. Trace Elem. Res.202220073070307710.1007/s12011‑021‑02922‑934537919
    [Google Scholar]
  52. TrapaniV. RosanoffA. BaniasadiS. BarbagalloM. CastiglioniS. Guerrero-RomeroF. IottiS. MazurA. MickeO. PourdowlatG. ScarpatiG. WolfF.I. MaierJ.A. The relevance of magnesium homeostasis in COVID-19.Eur. J. Nutr.202261262563610.1007/s00394‑021‑02704‑y34687321
    [Google Scholar]
  53. EskanderM. RazzaqueM.S. Can maintaining optimal magnesium balance reduce the disease severity of COVID-19 patients?Front. Endocrinol. (Lausanne)20221384315210.3389/fendo.2022.84315235422757
    [Google Scholar]
  54. AshiqueS. KumarS. HussainA. MishraN. GargA. GowdaB.H.J. FaridA. GuptaG. DuaK. Taghizadeh-HesaryF. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer.J. Health Popul. Nutr.20234217410.1186/s41043‑023‑00423‑037501216
    [Google Scholar]
  55. FanL. ZhuX. ZhengY. ZhangW. SeidnerD.L. NessR. MurffH.J. YuC. HuangX. ShrubsoleM.J. HouL. DaiQ. Magnesium treatment on methylation changes of transmembrane serine protease 2 (TMPRSS2).Nutrition20218911134010.1016/j.nut.2021.11134034116393
    [Google Scholar]
  56. GommersL.M.M. EderveenT.H.A. WijstJ. Overmars-BosC. KortmanG.A.M. BoekhorstJ. BindelsR.J.M. BaaijJ.H.F. HoenderopJ.G.J. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia.FASEB J.20193310112351124610.1096/fj.201900839R31299175
    [Google Scholar]
  57. HouillierP. LievreL. HureauxM. Prot-BertoyeC. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia.Ann. N. Y. Acad. Sci.202315211143110.1111/nyas.1495336622354
    [Google Scholar]
  58. ZhuW. MaY. GuoW. LuJ. LiX. WuJ. QinP. ZhuC. ZhangQ. Serum level of lactate dehydrogenase is associated with cardiovascular disease risk as determined by the framingham risk score and arterial stiffness in a health-examined population in China.Int. J. Gen. Med.202215111710.2147/IJGM.S33751735018110
    [Google Scholar]
  59. HsiehY.S. YehM.C. LinY.Y. WengS.F. HsuC.H. HuangC.L. LinY.P. HanA.Y. Is the level of serum lactate dehydrogenase a potential biomarker for glucose monitoring with type 2 diabetes mellitus?Front. Endocrinol. (Lausanne)202213109980510.3389/fendo.2022.109980536589820
    [Google Scholar]
  60. SanchezP.K.M. KhazaeiM. GatineauE. GeravandiS. LupseB. LiuH. DringenR. WojtusciszynA. GilonP. MaedlerK. ArdestaniA. LDHA is enriched in human islet alpha cells and upregulated in type 2 diabetes.Biochem. Biophys. Res. Commun.202156815816610.1016/j.bbrc.2021.06.06534217973
    [Google Scholar]
  61. SchneiderM.R. ZettlerS. RathkolbB. DahlhoffM. TXNIP overexpression in mice enhances streptozotocin-induced diabetes severity.Mol. Cell. Endocrinol.202356511188510.1016/j.mce.2023.11188536773839
    [Google Scholar]
  62. FathM.K. NaderiM. HamzaviH. GanjiM. ShabaniS. ghahroodiF.N. KhalesiB. PourzardoshtN. HashemiZ.S. KhaliliS. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients.J. Trace Elem. Med. Biol.20227312704410.1016/j.jtemb.2022.12704435901669
    [Google Scholar]
  63. ZhuL. BaoX. BiJ. LinY. ShanC. FanX. BianJ. WangX. Serum magnesium in patients with severe acute respiratory syndrome coronavirus 2 from Wuhan, China.Magnes. Res.202134310311334642156
    [Google Scholar]
  64. MuraliR. WanjariU.R. MukherjeeA.G. GopalakrishnanA.V. KannampuzhaS. NamachivayamA. MadhyasthaH. RenuK. GanesanR. Crosstalk between COVID-19 infection and kidney diseases: A review on the metabolomic approaches.Vaccines (Basel)202311248910.3390/vaccines1102048936851366
    [Google Scholar]
  65. LaiX. DengS. HuL. ChenR. ChenM. LiangM. HouJ. HuangK. ZhangX. J-shaped associations and joint effects of fasting glucose with inflammation and cytokines on COVID-19 mortality.Int. J. Infect. Dis.202212228529410.1016/j.ijid.2022.05.06035661688
    [Google Scholar]
  66. MaloM.S. A high level of intestinal alkaline phosphatase is protective against type 2 diabetes mellitus irrespective of obesity.EBioMedicine20152122016202310.1016/j.ebiom.2015.11.02726844282
    [Google Scholar]
  67. NannipieriM. GonzalesC. BaldiS. PosadasR. WilliamsK. HaffnerS.M. SternM.P. FerranniniE. Liver enzymes, the metabolic syndrome, and incident diabetes: the Mexico City diabetes study.Diabetes Care20052871757176210.2337/diacare.28.7.175715983331
    [Google Scholar]
  68. NakanishiN. SuzukiK. TataraK. Serum γ-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men.Diabetes Care20042761427143210.2337/diacare.27.6.142715161799
    [Google Scholar]
  69. ter BraakeA.D. VervloetM.G. de BaaijJ.H.F. HoenderopJ.G.J. Magnesium to prevent kidney disease–associated vascular calcification: crystal clear?Nephrol. Dial. Transplant.202237342142910.1093/ndt/gfaa22233374019
    [Google Scholar]
  70. FadiniG.P. PaulettoP. AvogaroA. RattazziM. The good and the bad in the link between insulin resistance and vascular calcification.Atherosclerosis2007193224124410.1016/j.atherosclerosis.2007.05.01517606264
    [Google Scholar]
  71. DillingerJ.G. BenmessaoudF.A. PezelT. VoicuS. SiderisG. CherguiN. HamziL. ChauvinA. LeroyP. GautierJ.F. SèneD. HenryP. Coronary artery calcification and complications in patients with COVID-19.JACC Cardiovasc. Imaging202013112468247010.1016/j.jcmg.2020.07.00433153535
    [Google Scholar]
  72. SticchiA. CeredaA. ToselliM. EspositoA. PalmisanoA. VignaleD. NicolettiV. LeoneR. GnassoC. MonelloA. KhokharA.A. LaricchiaA. BiagiA. TurchioP. PetriniM. GalloneG. De CobelliF. PonticelliF. CasellaG. IannopolloG. NanniniT. TacchettiC. ColomboA. GianniniF. Diabetes and mortality in patients with COVID-19: Are we missing the link?Anatol. J. Cardiol.202125637637910.5152/AnatolJCardiol.2021.2913234100723
    [Google Scholar]
  73. HouseL.M.II MorrisR.T. BarnesT.M. LantierL. CyphertT.J. McGuinnessO.P. OteroY.F. Tissue inflammation and nitric oxide-mediated alterations in cardiovascular function are major determinants of endotoxin-induced insulin resistance.Cardiovasc. Diabetol.20151415610.1186/s12933‑015‑0223‑225986700
    [Google Scholar]
  74. BooY.C. JoH. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.Am. J. Physiol. Cell Physiol.20032853C499C50810.1152/ajpcell.00122.200312900384
    [Google Scholar]
  75. MeyerK. PatraT. VijayamahanteshR.R. SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells.J. Virol.20219517e00794-2110.1128/JVI.00794‑2134160250
    [Google Scholar]
  76. LeeD.H. HaM.H. KimJ.H. ChristianiD.C. GrossM.D. SteffesM. BlomhoffR. JacobsD.R.Jr. Gamma-glutamyltransferase and diabetes-a 4 year follow-up study.Diabetologia200346335936410.1007/s00125‑003‑1036‑512687334
    [Google Scholar]
  77. GhielmettiM. SchaufelbergerH.D. Mieli-VerganiG. CernyA. DayerE. VerganiD. Terziroli Beretta-PiccoliB. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: A novel clinical entity?J. Autoimmun.202112310270610.1016/j.jaut.2021.10270634293683
    [Google Scholar]
  78. FimianoF. D’AmatoD. GambellaA. MarzanoA. SaraccoG.M. MorgandoA. Autoimmune hepatitis or drug-induced autoimmune hepatitis following COVID-19 vaccination?Liver Int.20224251204120510.1111/liv.1522435230737
    [Google Scholar]
  79. Zin TunG.S. GleesonD. Al-JoudehA. DubeA. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed.J. Hepatol.202276374774910.1016/j.jhep.2021.09.03134619252
    [Google Scholar]
  80. DaiH. ZhuL. PanB. LiH. DaiZ. SuX. The relationship between serum γ-glutamyltransferase (GGT) and diabetic nephropathy in patients with type 2 diabetes mellitus: a cross-sectional study.Clin. Exp. Med.20232373619363010.1007/s10238‑023‑00991‑936630069
    [Google Scholar]
  81. LiuM. YangH. MaoY. Magnesium and liver disease.Ann. Transl. Med.201972057810.21037/atm.2019.09.7031807559
    [Google Scholar]
  82. ZhuB. WuX. BiY. YangY. Effect of bilirubin concentration on the risk of diabetic complications: A meta-analysis of epidemiologic studies.Sci. Rep.2017714168110.1038/srep4168128134328
    [Google Scholar]
  83. VítekL. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases.Front. Pharmacol.201235510.3389/fphar.2012.0005522493581
    [Google Scholar]
  84. NdisangJ.F. LaneN. JadhavA. Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20092965E1029E104110.1152/ajpendo.90241.200819208858
    [Google Scholar]
  85. SharmaK. ZajcI. ŽibernaL. Dietary vitamin D equilibrium in serum ameliorates direct bilirubin associated diabetes mellitus.Chem. Biol. Interact.202133710939910.1016/j.cbi.2021.10939933503443
    [Google Scholar]
  86. YaoQ. JiangX. HuangZ.W. LanQ.H. WangL.F. ChenR. LiX.Z. KouL. XuH.L. ZhaoY.Z. Bilirubin improves the quality and function of hypothermic preserved islets by its antioxidative and anti-inflammatory effect.Transplantation2019103122486249610.1097/TP.000000000000288231365475
    [Google Scholar]
  87. TakeiR. InoueT. SonodaN. KohjimaM. OkamotoM. SakamotoR. InoguchiT. OgawaY. Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines.PLoS One20191410e022330210.1371/journal.pone.022330231577826
    [Google Scholar]
  88. JoJ. YunJ.E. LeeH. KimmH. JeeS.H. Total, direct, and indirect serum bilirubin concentrations and metabolic syndrome among the Korean population.Endocrine201139218218910.1007/s12020‑010‑9417‑221116740
    [Google Scholar]
  89. AbbasiA. DeetmanP.E. CorpeleijnE. GansevoortR.T. GansR.O.B. HillegeH.L. van der HarstP. StolkR.P. NavisG. AlizadehB.Z. BakkerS.J.L. Bilirubin as a potential causal factor in type 2 diabetes risk: a Mendelian randomization study.Diabetes20156441459146910.2337/db14‑022825368098
    [Google Scholar]
  90. XinS. ZhaoX. DingJ. ZhangX. Association between hemoglobin glycation index and diabetic kidney disease in type 2 diabetes mellitus in China: A cross- sectional inpatient study.Front. Endocrinol. (Lausanne)202314110806110.3389/fendo.2023.110806136967789
    [Google Scholar]
  91. DaiY. QuanJ. XiongL. LuoY. YiB. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: a systematic review and meta-analysis.Ren. Fail.202244186288010.1080/0886022X.2022.207952235611435
    [Google Scholar]
  92. TanB.W.L. TanB.W.Q. TanA.L.M. SchriverE.R. Gutiérrez-SacristánA. DasP. YuanW. HutchM.R. García BarrioN. Pedrera JimenezM. Abu-el-rubN. MorrisM. MoalB. VerdyG. ChoK. HoY-L. PatelL.P. DagliatiA. NeurazA. KlannJ.G. SouthA.M. VisweswaranS. HanauerD.A. MaidlowS.E. LiuM. MoweryD.L. BatugoA. MakoudjouA. TippmannP. ZöllerD. BratG.A. LuoY. AvillachP. BellazziR. ChiovatoL. MaloviniA. TibolloV. SamayamuthuM.J. Serrano BalazoteP. XiaZ. LohN.H.W. ChiudinelliL. BonzelC-L. HongC. ZhangH.G. WeberG.M. KohaneI.S. CaiT. OmennG.S. HolmesJ.H. NgiamK.Y. AaronJ.R. AgapitoG. AlbayrakA. AlbiG. AlessianiM. AlloniA. AmendolaD.F. AngoulvantF. AnthonyL.L.L.J. AronowB.J. AshrafF. AtzA. AvillachP. PanickanV.A. AzevedoP.S. BalshiJ. BatugoA. Beaulieu-JonesB.K. Beaulieu-JonesB.R. BellD.S. BellasiA. BellazziR. BenoitV. BeraghiM. Bernal-SobrinoJ.L. BernauxM. BeyR. BhatnagarS. Blanco-MartínezA. BoekerM. BonzelC-L. BoothJ. BosariS. BourgeoisF.T. BradfordR.L. BratG.A. BréantS. BrownN.W. BrunoR. BryantW.A. BucaloM. BucholzE. BurgunA. CaiT. CannataroM. CarmonaA. CattelanA.M. CaucheteuxC. ChampJ. ChenJ. ChenK.Y. ChiovatoL. ChiudinelliL. ChoK. CiminoJ.J. ColicchioT.K. CormontS. CossinS. CraigJ.B. Cruz-BermúdezJ.L. Cruz-RojoJ. DagliatiA. DaniarM. DanielC. DasP. DevkotaB. DionneA. DuanR. DubielJ. DuVallS.L. EsteveL. EstiriH. FanS. FollettR.W. GanslandtT. García-BarrioN. GarmireL.X. GehlenborgN. GetzenE.J. GevaA. GonzálezT.G. GradingerT. GramfortA. GriffierR. GriffonN. GriselO. Gutiérrez-SacristánA. GuzziP.H. HanL. HanauerD.A. HaverkampC. HazardD.Y. HeB. HendersonD.W. HilkaM. HoY-L. HolmesJ.H. HonerlawJ.P. HongC. HulingK.M. HutchM.R. IssittR.W. JannotA.S. JouhetV. KavuluruR. KellerM.S. KennedyC.J. KernanK.F. KeyD.A. KirchoffK. KlannJ.G. KohaneI.S. KrantzI.D. KraskaD. KrishnamurthyA.K. L’YiS. LeT.T. LeblancJ. LemaitreG. LenertL. LeprovostD. LiuM. Will LohN.H. LongQ. Lozano-ZahoneroS. LuoY. LynchK.E. MahmoodS. MaidlowS.E. MakoudjouA. MakwanaS. MaloviniA. MandlK.D. MaoC. MaramA. MaripuriM. MartelP. MartinsM.R. MarwahaJ.S. MasinoA.J. MazzitelliM. MazzottiD.R. MenschA. MilanoM. MinicucciM.F. MoalB. AhooyiT.M. MooreJ.H. MoraledaC. MorrisJ.S. MorrisM. MoshalK.L. MousaviS. MoweryD.L. MuradD.A. MurphyS.N. NaughtonT.P. Breda NetoC.T. NeurazA. NewburgerJ. NgiamK.Y. NjorogeW.F.M. NormanJ.B. ObeidJ. OkoshiM.P. OlsonK.L. OmennG.S. OrlovaN. OstasiewskiB.D. PalmerN.P. ParisN. PatelL.P. Pedrera-JiménezM. PfaffA.C. PfaffE.R. PillionD. PizzimentiS. PriyaT. ProkoschH.U. PrudenteR.A. PrunottoA. Quirós-GonzálezV. RamoniR.B. RaskinM. RiegS. Roig-DomínguezG. RojoP. Rubio-MayoP. SacchiP. SáezC. SalamancaE. SamayamuthuM.J. Sanchez-PintoL.N. SandrinA. SanthanamN. SantosJ.C.C. Sanz VidorretaF.J. SavinoM. SchriverE.R. SchubertP. SchuettlerJ. ScudellerL. SebireN.J. Serrano-BalazoteP. SerreP. Serret-LarmandeA. ShahM. Hossein AbadZ.S. SilvioD. SlizP. SonJ. SondayC. SouthA.M. SperottoF. SpiridouA. StrasserZ.H. TanA.L.M. TanB.W.Q. TanB.W.L. TanniS.E. TaylorD.M. Terriza-TorresA.I. TibolloV. TippmannP. TohE.M.S. TortiC. TrecarichiE.M. VallejosA.K. VaroquauxG. VellaM.E. VerdyG. VieJ-J. VisweswaranS. VitaccaM. WagholikarK.B. WaitmanL.R. WangX. WassermannD. WeberG.M. WolkewitzM. WongS. XiaZ. XiongX. YeY. YehyaN. YuanW. ZachariasseJ.M. ZahnerJ.J. ZambelliA. ZhangH.G. ZöllerD. ZuccaroV. ZuccoC. Long-term kidney function recovery and mortality after COVID-19-associated acute kidney injury: an international multi-centre observational cohort study.E Clin. Med.20235510172410.1016/j.eclinm.2022.10172436381999
    [Google Scholar]
  93. JaturapisanukulS. YuangtrakulN. WangcharoenrungD. KanchanaratK. RadeesriK. ManeeritJ. ManomaipiboonA. RojtangkomK. AnanthanalapaC. RungrojthanakitS. ThinpangngaP. AlviorJ. TrakarnvanichT. Follow-up evaluation of pulmonary function and computed tomography findings in chronic kidney disease patients after COVID-19 infection.PLoS One2023188e028683210.1371/journal.pone.028683237582084
    [Google Scholar]
  94. RafiullahM. SiddiquiK. Al-RubeaanK. Association between serum uric acid levels and metabolic markers in patients with type 2 diabetes from a community with high diabetes prevalence.Int. J. Clin. Pract.2020744e1346610.1111/ijcp.1346631854061
    [Google Scholar]
  95. Rahimi-SakakF. MaroofiM. RahmaniJ. BellissimoN. HekmatdoostA. Serum uric acid and risk of cardiovascular mortality: a systematic review and dose-response meta-analysis of cohort studies of over a million participants.BMC Cardiovasc. Disord.201919121810.1186/s12872‑019‑1215‑z31615412
    [Google Scholar]
  96. Martínez-SánchezF.D. Vargas-AbonceV.P. Guerrero- CastilloA.P. Santos-VillavicencioM.D. Eseiza-AcevedoJ. Meza-AranaC.E. Gulias-HerreroA. Gómez-SámanoM.Á. Serum Uric Acid concentration is associated with insulin resistance and impaired insulin secretion in adults at risk for Type 2 Diabetes.Prim. Care Diabetes202115229329910.1016/j.pcd.2020.10.00633218916
    [Google Scholar]
  97. AlguwaihesA.M. AlhozaliA. YahiaM.M. Abdel-NabiT. Hassan HatahetM. AlbalkhiN.I. Al SifriS. The prevalence of cardiovascular disease in adults with type 2 diabetes mellitus in Saudi Arabia - CAPTURE study.Saudi Med. J.2023441576610.15537/smj.2023.44.1.2022040236634941
    [Google Scholar]
  98. YazdanpanahS. RabieeM. TahririM. AbdolrahimM. RajabA. JazayeriH.E. TayebiL. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review.Crit. Rev. Clin. Lab. Sci.201754421923210.1080/10408363.2017.129968428393586
    [Google Scholar]
  99. ChoiH.K. FordE.S. Haemoglobin A1c, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels-the third national health and nutrition examination survey.Rheumatology (Oxford)200847571371710.1093/rheumatology/ken06618390895
    [Google Scholar]
  100. ZhouY. FangL. JiangL. WenP. CaoH. HeW. DaiC. YangJ. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway.PLoS One201276e3973810.1371/journal.pone.003973822761883
    [Google Scholar]
  101. NazerianY. GhasemiM. YassaghiY. NazerianA. HashemiS.M. Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options.Int. Immunopharmacol.2022113Pt B10942810.1016/j.intimp.2022.10942836379152
    [Google Scholar]
  102. LiY. GongY. XuG. New insights into kidney disease after COVID-19 infection and vaccination: Histopathological and clinical findings.QJM20232024hcad159
    [Google Scholar]
  103. MazzaliM. HughesJ. KimY.-G. JeffersonJ.A. KangD.-H. GordonK.L. LanH.Y. KivlighnS. JohnsonR.J. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism.Hypertension200138511011106
    [Google Scholar]
  104. YangY. ZouS. XuG. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease.Front. Immunol.20221399953410.3389/fimmu.2022.99953436341356
    [Google Scholar]
  105. MemonB. AbdelalimE.M. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes.Acta Physiol. (Oxf.)20212334e1373310.1111/apha.1373334561952
    [Google Scholar]
  106. JohnsonR.J. NakagawaT. Sanchez-LozadaL.G. ShafiuM. SundaramS. LeM. IshimotoT. SautinY.Y. LanaspaM.A. Sugar, uric acid, and the etiology of diabetes and obesity.Diabetes201362103307331510.2337/db12‑181424065788
    [Google Scholar]
  107. HeubnerL. HattenhauerS. GüldnerA. PetrickP.L. RößlerM. SchmittJ. SchneiderR. HeldH.C. MehrholzJ. BodechtelU. RagallerM. KochT. SpiethP.M. Characteristics and outcomes of sepsis patients with and without COVID-19.J. Infect. Public Health202215667067610.1016/j.jiph.2022.05.00835617831
    [Google Scholar]
  108. ParamythiotisD. KarlaftiE. VeroplidouK. FafoutiM. KaiafaG. NettaS. MichalopoulosA. SavopoulosC. Drug-induced acute pancreatitis in hospitalized COVID-19 patients.Diagnostics (Basel)2023138139810.3390/diagnostics1308139837189499
    [Google Scholar]
  109. MaY. XuG. New-onset IgA nephropathy following COVID-19 vaccination.QJM20231161263910.1093/qjmed/hcac18535920797
    [Google Scholar]
  110. AdomakoE.A. YuA.S.L. Magnesium Disorders: Core Curriculum 2024.Am. J. Kidney Dis.2024S0272-6386(23)01002-838372687
    [Google Scholar]
  111. SouzaC.C. RiguetoL.G. SantiagoH.C. SeguroA.C. GirardiA.C.C. LuchiW.M. Multiple electrolyte disorders triggered by proton pump inhibitor-induced hypomagnesemia: Case reports with a mini-review of the literature.Clin. Nephrol. Case Stud.202412161110.5414/CNCS11128438222324
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673296482240426111529
Loading
/content/journals/cmc/10.2174/0109298673296482240426111529
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ABO blood group; hyperglycaemia; KFT; LDH; LFT; magnesium; post-vaccination; Serum shift
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test