Skip to content
2000
Volume 32, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The pursuit of novel treatment alternatives to address the accumulated resistance to antimicrobials over the years has prompted the scientific community to explore biodiversity, particularly animal venom, as a potential source of new antimicrobial drugs. Snake venoms, with their complex mixtures of components, are particularly promising targets for investigation in this regard. The search for novel molecules exhibiting antimicrobial activity against multidrug-resistant strains is of paramount importance for public health and numerous research groups worldwide. High expectations within the healthcare field are supported by the scientific literature, which highlights the potential development of innovative drugs through and application, depending on dose titration. Snake venoms and their molecules and peptides offer exponential possibilities for biotechnological applications as antimicrobial agents. However, many uncertainties and unexplored avenues remain, presenting opportunities for discoveries and research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673290981240416070550
2024-04-26
2025-10-08
Loading full text...

Full text loading...

References

  1. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.2019511728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  2. Centers for Disease Control and PreventionAntibiotic resistance threats in the United States.Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf 2019
  3. Office for National StatisticsCauses of death over 100 years.Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causesofdeathover100years/2017-09-18 2017
  4. ArmstrongG.L. ConnL.A. PinnerR.W. Trends in infectious disease mortality in the United States during the 20th century.JAMA19992811616610.1001/jama.281.1.619892452
    [Google Scholar]
  5. AslamB. KhurshidM. ArshadM.I. MuzammilS. RasoolM. YasmeenN. ShahT. ChaudhryT.H. RasoolM.H. ShahidA. XueshanX. BalochZ. Antibiotic resistance: One health one world outlook.Front. Cell. Infect. Microbiol.20211177151010.3389/fcimb.2021.77151034900756
    [Google Scholar]
  6. BlairJ.M.A. WebberM.A. BaylayA.J. OgboluD.O. PiddockL.J.V. Molecular mechanisms of antibiotic resistance.Nat. Rev. Microbiol.2015131425110.1038/nrmicro338025435309
    [Google Scholar]
  7. OMSGlobal priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.2017Available from: http://remed.org/wp-content/uploads/2017/03/lobal-priority-list-of-antibiotic-resistant-bacteria-2017.pdf (Accessed on: 3 Dec 2022).
  8. AlmeidaJ.R. PalaciosA.L.V. PatiñoR.S.P. MendesB. TeixeiraC.A.S. GomesP. da SilvaS.L. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance.Drug Dev. Res.2019801688510.1002/ddr.2145630255943
    [Google Scholar]
  9. RheubertJ.L. MeyerM.F. StrobelR.M. PasternakM.A. CharvatR.A. Predicting antibacterial activity from snake venom proteomes.PLOS ONE2020151e022680710.1371/journal.pone.0226807
    [Google Scholar]
  10. SamyP.R. StilesB.G. FrancoO.L. SethiG. LimL.H.K. Animal venoms as antimicrobial agents.Biochem. Pharmacol.201713412713810.1016/j.bcp.2017.03.00528288817
    [Google Scholar]
  11. SunagarK. MoranY. The rise and fall of an evolutionary innovation: Contrasting strategies of venom evolution in ancient and young animals.PLOS Genetics20151110e1005596
    [Google Scholar]
  12. CraikD.J. FairlieD.P. LirasS. PriceD. The future of peptide-based drugs.Chem. Biol. Drug Des.201381113614710.1111/cbdd.1205523253135
    [Google Scholar]
  13. AkefH.M. Anticancer, antimicrobial, and analgesic activities of spider venoms.Toxicol. Res.20187338139510.1039/c8tx00022k30090588
    [Google Scholar]
  14. FerreiraF.R.B. da SilvaP.M. SoaresT. MachadoG.L. de AraújoL.C.C. da SilvaT.G. de MelloG.S.V. da Rocha PittaG.M. de Melo RegoM.J.B. PontualE.V. ZingaliR.B. NapoleãoT.H. PaivaP.M.G. Evaluation of antimicrobial, cytotoxic, and hemolytic activities from venom of the spider Lasiodora sp.Toxicon201612211912610.1016/j.toxicon.2016.09.01927693304
    [Google Scholar]
  15. da CunhaB.D. SilvestriniP.A.V. da SilvaG.A.C. de Paula EstevamM.D. PollettiniF.L. de Oliveira NavarroJ. AlvesA.A. BerettaR.Z.A.L. BizzacchiA.J.M. PereiraL.C. MazziM.V. Mechanistic insights into functional characteristics of native crotamine.Toxicon201814611210.1016/j.toxicon.2018.03.00729574214
    [Google Scholar]
  16. AdadeC.M. CarvalhoA.L.O. TomazM.A. CostaT.F.R. GodinhoJ.L. MeloP.A. LimaA.P.C.A. RodriguesJ.C.F. ZingaliR.B. Souto-PadrónT. Crovirin, A snake venom cysteine-rich secretory protein (CRISP) with promising activity against Trypanosomes and Leishmania.PLoS Negl. Trop. Dis.2014810e325210.1371/journal.pntd.000325225330220
    [Google Scholar]
  17. ChanY.S. CheungR.C.F. XiaL. WongJ.H. NgT.B. ChanW.Y. Snake venom toxins: Toxicity and medicinal applications.Appl. Microbiol. Biotechnol.2016100146165618110.1007/s00253‑016‑7610‑927245678
    [Google Scholar]
  18. DannenbergL. WolffG. NaguibD. PöhlM. ZakoS. HeltenC. MourikisP. LevkauB. HohlfeldT. ZeusT. KelmM. SchulzeV. PolzinA. Safety and efficacy of Tirofiban in STEMI-patients.Int. J. Cardiol.2019274353910.1016/j.ijcard.2018.09.05230236502
    [Google Scholar]
  19. Garcia Soares Stockand StockandJ.D. Snake venoms in drug discovery: Valuable therapeutic tools for life saving.Toxins2019111056410.3390/toxins1110056431557973
    [Google Scholar]
  20. StockerK. Defibrinogenation with Thrombin-Like Snake Venom Enzymes. Fibrinolytics and Antifibrinolytics. In: Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology; Springer Berlin, Heidelberg, 1978, 46, pp. 451-484
    [Google Scholar]
  21. VuT.T. StaffordA.R. LeslieB.A. KimP.Y. FredenburghJ.C. WeitzJ.I. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin.J. Biol. Chem.201328823168621687110.1074/jbc.M113.46475023612970
    [Google Scholar]
  22. Plateltex® Line. 2016. Available from: http://www.plateltex. com/data/pdf/IFU4.3plateltexACTJUNE2016ENG.pdf
  23. KjaergardH.K. TrumbullH.R. Vivostat system autologous fibrin sealant: Preliminary study in elective coronary bypass grafting.Ann. Thorac. Surg.199866248248610.1016/S0003‑4975(98)00470‑69725389
    [Google Scholar]
  24. IacopinoD.G. GrazianoF. MaugeriR. BasileL. MeccioF. Aulogous fibrin sealant (Vivostat®) in the neurosurgical practice: Part II: Vertebro-spinal procedures.Surg. Neurol. Int.20167778210.4103/2152‑7806.17489426904371
    [Google Scholar]
  25. MarteF. SankarP. CassagnolM. Captopril.StatPearlsTreasure Island (FL)StatPearls Publishing202130571007
    [Google Scholar]
  26. ChenC. HuY. ShiX. TaoC. ZhengH. FeiW. HanS. ZhuJ. WeiY. LiF. A single-label fluorescent derivatization method for quantitative determination of neurotoxin in vivo by capillary electrophoresis coupled with laser-induced fluorescence detection.Analyst2016141144495450110.1039/C6AN00327C27175860
    [Google Scholar]
  27. FaruqiA. JainA. Enalapril.StatPearlsTreasure Island (FL)StatPearls Publishing202232491640
    [Google Scholar]
  28. BansalA.B. SattarY. JamilR.T. Eptifibatide.StatPearlsTreasure Island (FL)StatPearls Publishing202231082110
    [Google Scholar]
  29. GongJ. ShangJ. YuH. WanQ. SuD. SunZ. LiuG. Tirofiban for acute ischemic stroke: Systematic review and meta-analysis.Eur. J. Clin. Pharmacol.202076447548110.1007/s00228‑019‑02817‑831900544
    [Google Scholar]
  30. KalitaB. SaviolaA.J. SamuelS.P. MukherjeeA.K. State-of-the-art review - A review on snake venom-derived antithrombotics: Potential therapeutics for COVID-19-associated thrombosis?Int. J. Biol. Macromol.20211921040105710.1016/j.ijbiomac.2021.10.01534656540
    [Google Scholar]
  31. FerrazC.R. ArrahmanA. XieC. CasewellN.R. LewisR.J. KoolJ. CardosoF.C. Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis.Front. Ecol. Evol.2019721810.3389/fevo.2019.00218
    [Google Scholar]
  32. BocianA. HusK.K. Antibacterial properties of snake venom components.Chem. Pap.202074240741910.1007/s11696‑019‑00939‑y
    [Google Scholar]
  33. EstebanM.A. MacleodO.J.S. MaudlinI. KalogeropoulosK. JürgensenJ.A. CarringtonM. LaustsenA.H. Black-necked spitting cobra (Naja nigricollis) phospholipases A2 may cause Trypanosoma brucei death by blocking endocytosis through the flagellar pocket.Sci. Rep.2022121639410.1038/s41598‑022‑10091‑535430620
    [Google Scholar]
  34. TeixeiraS.C. da SilvaM.S. GomesA.A.S. MorettiN.S. LopesD.S. FerroE.A.V. RodriguesV.M. Panacea within a pandora’s box: The antiparasitic effects of phospholipases A2 (PLA2s) from snake venoms.Trends Parasitol.2022381809410.1016/j.pt.2021.07.00434364805
    [Google Scholar]
  35. AbdullahiZ.U. MusaS.S. HeD. BelloU.M. Antiprotozoal effect of snake venoms and their fractions: A systematic review.Pathogens20211012163210.3390/pathogens1012163234959587
    [Google Scholar]
  36. Juniord.O.N.G. Cardosoe.S.M.H. FrancoO.L. Snake venoms: Attractive antimicrobial proteinaceous compounds for therapeutic purposes.Cell. Mol. Life Sci.201370244645465810.1007/s00018‑013‑1345‑x23657358
    [Google Scholar]
  37. SamyP.R. GopalakrishnakoneP. ThwinM.M. ChowT.K.V. BowH. YapE.H. ThongT.W.J. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes.J. Appl. Microbiol.2007102365065910.1111/j.1365‑2672.2006.03161.x17309613
    [Google Scholar]
  38. StábeliR.G. MarcussiS. CarlosG.B. PietroR.C.L.R. de-AraújoS.H.S. GiglioJ.R. OliveiraE.B. SoaresA.M. Platelet aggregation and antibacterial effects of an l-amino acid oxidase purified from Bothrops alternatus snake venom.Bioorg. Med. Chem.200412112881288610.1016/j.bmc.2004.03.04915142548
    [Google Scholar]
  39. DemateiA. NunesJ.B. MoreiraD.C. JesusJ.A. LaurentiM.D. MengardaA.C.A. VieiraM.S. do AmaralC.P. DominguesM.M. de MoraesJ. PasseroL.F.D. BrandG. BessaL.J. WimmerR. KuckelhausS.A.S. TomásA.M. SantosN.C. PlácidoA. EatonP. LeiteJ.R.S.A. Mechanistic insights into the leishmanicidal and bactericidal activities of batroxicidin, a cathelicidin-related peptide from a South American viper (Bothrops atrox).J. Nat. Prod.20218461787179810.1021/acs.jnatprod.1c0015334077221
    [Google Scholar]
  40. de Melo Alves PaivaR. de Freitas FigueiredoR. AntonucciG.A. PaivaH.H. de Lourdes Pires BianchiM. RodriguesK.C. LucariniR. CaetanoR.C. PietroL.R.R.C. MartinsG.C.H. de AlbuquerqueS. SampaioS.V. Cell cycle arrest evidence, parasiticidal and bactericidal properties induced by l-amino acid oxidase from Bothrops atrox snake venom.Biochimie201193594194710.1016/j.biochi.2011.01.00921300133
    [Google Scholar]
  41. MelloC.P. LimaD.B. MenezesR.R.P.P.B. BandeiraI.C.J. TessaroloL.D. SampaioT.L. FalcãoC.B. BaptistaR.G. MartinsA.M.C. Evaluation of the antichagasic activity of batroxicidin, A cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland.Toxicon2017130566210.1016/j.toxicon.2017.02.03128246023
    [Google Scholar]
  42. CastilloJ. VargasL. SeguraC. GutiérrezJ. PérezJ. In vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake Bothrops asper.Toxins20124121500151610.3390/toxins412150023242318
    [Google Scholar]
  43. BrenesH. LoríaG.D. LomonteB. Potent virucidal activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper. Biologicals202063485210.1016/j.biologicals.2019.12.00231839332
    [Google Scholar]
  44. PáramoL. LomonteB. CerdáP.J. BengoecheaJ.A. GorvelJ.P. MorenoE. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom.Eur. J. Biochem.1998253245246110.1046/j.1432‑1327.1998.2530452.x9654096
    [Google Scholar]
  45. SilvaS.R. AlfonsoJ.J. GómezA.F. SobrinhoJ.C. KayanoA.M. de MedeirosD.S.S. TelesC.B.G. QuinteroA. FulyA.L. GómezC.V. PereiraS.S. da SilvaS.L. StábeliR.G. SoaresA.M. Synergism of in vitro plasmodicidal activity of phospholipase A2 isoforms isolated from panamanian Bothrops asper venom.Chem. Biol. Interact.202134610958110.1016/j.cbi.2021.10958134302801
    [Google Scholar]
  46. VitorinoK.A. AlfonsoJ.J. GómezA.F. SantosA.P.A. AntunesY.R. CaldeiraC.A.S. GómezC.V. TelesC.B.G. SoaresA.M. CalderonL.A. Antimalarial activity of basic phospholipases A2 isolated from paraguayan Bothrops diporus venom against Plasmodium falciparum. Toxicon X20208100056https://www.sciencedirect.com/science/article/pii/S259017102030034510.1016/j.toxcx.2020.10005632885164
    [Google Scholar]
  47. CostaT.R. MenaldoD.L. OliveiraC.Z. FilhoS.N.A. TeixeiraS.S. NomizoA. FulyA.L. MonteiroM.C. de SouzaB.M. PalmaM.S. StábeliR.G. SampaioS.V. SoaresA.M. Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: Cytotoxic effect on microorganism and tumor cells.Peptides200829101645165610.1016/j.peptides.2008.05.02118602430
    [Google Scholar]
  48. KayanoA.M. SilvaS.R. MedeirosP.S.M. MaltarolloV.G. HonorioK.M. OliveiraE. AlbericioF. da SilvaS.L. AguiarA.C.C. KrettliA.U. FernandesC.F.C. ZulianiJ.P. CalderonL.A. StábeliR.G. SoaresA.M. BbMP-1, A new metalloproteinase isolated from Bothrops brazili snake venom with in vitro antiplasmodial properties.Toxicon2015106304110.1016/j.toxicon.2015.09.00526363289
    [Google Scholar]
  49. CiscottoP. de AvilaM.R.A. CoelhoE.A.F. OliveiraJ. DinizC.G. FaríasL.M. de CarvalhoM.A.R. MariaW.S. SanchezE.F. BorgesA. OlórteguiC.C. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom.Toxicon200953333034110.1016/j.toxicon.2008.12.00419101583
    [Google Scholar]
  50. da MataÉ.C.G. MourãoC.B.F. RangelM. SchwartzE.F. Antiviral activity of animal venom peptides and related compounds.J. Venom. Anim. Toxins Incl. Trop. Dis.2017231310.1186/s40409‑016‑0089‑0280740895217322
    [Google Scholar]
  51. DeolindoP. FerreiraT.A.S. MeloE.J.T. ArnholdtA.C.V. SouzaW. AlvesE.W. DaMattaR.A. Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom.Mem. Inst. Oswaldo Cruz20051001333810.1590/S0074‑0276200500010000615867960
    [Google Scholar]
  52. GonçalvesA. SoaresM. de SouzaW. DaMattaR. AlvesE. Ultrastructural alterations and growth inhibition of Trypanosoma cruzi and Leishmania major induced by Bothrops jararaca venom.Parasitol. Res.200288759860210.1007/s00436‑002‑0626‑312107450
    [Google Scholar]
  53. ShinoharaL. de FreitasS.F. da SilvaR.J. GuimarãesS. In vitro effects of Crotalus durissus terrificus and Bothrops jararaca venoms on Giardia duodenalis trophozoites.Parasitol. Res.200698433934410.1007/s00436‑005‑0037‑316378220
    [Google Scholar]
  54. CaroneS.E.I. CostaT.R. BurinS.M. CintraA.C.O. ZoccalK.F. BianchiniF.J. TucciL.F.F. FrancoJ.J. TorquetiM.R. FaccioliL.H. AlbuquerqueS. CastroF.A. SampaioS.V. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities.Int. J. Biol. Macromol.2017103253510.1016/j.ijbiomac.2017.05.02528495622
    [Google Scholar]
  55. KleinR.C. KleinF.M.H. de OliveiraL.L. FeioR.N. MalouinF. RibonA.O.B. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms.PLoS One2015103e012051410.1371/journal.pone.012051425811661
    [Google Scholar]
  56. de BarrosN.B. MacedoS.R.A. FerreiraA.S. TagliariM.P. ZanchiF.B. KayanoA.M. SoaresA.M. NicoleteR. Liposomes containing an ASP49-phospholipase A2 from Bothrops jararacussu snake venom as experimental therapy against cutaneous leishmaniasis.Int. Immunopharmacol.20163622523110.1016/j.intimp.2016.04.02527174621
    [Google Scholar]
  57. SartimM.A. SampaioS.V. Snake venom galactoside-binding lectins: A structural and functional overview.J. Venom. Anim. Toxins Incl. Trop. Dis.20152113510.1186/s40409‑015‑0038‑326413085
    [Google Scholar]
  58. CecilioA. CaldasS. OliveiraR. SantosA. RichardsonM. NaumannG. SchneiderF. AlvarengaV. CostaE.M. FulyA. EbleJ. SanchezE. Molecular characterization of Lys49 and Asp49 phospholipases A2 from snake venom and their antiviral activities against Dengue virus.Toxins20135101780179810.3390/toxins510178024131891
    [Google Scholar]
  59. SouzaA.M.Â. de LorenaV.M.B. CorreiaD.S.M.T. de FigueiredoR.C.B.Q. In vitro effect of Bothrops leucurus lectin (BLL) against Leishmania amazonensis and Leishmania braziliensis infection.Int. J. Biol. Macromol.2018120Pt A43143910.1016/j.ijbiomac.2018.08.064
    [Google Scholar]
  60. de MenezesR.R.P.P.B. TorresA.F.C. da SilvaT.S.J. de SousaD.F. LimaD.B. NorjosaD.B. NogueiraN.A.P. OliveiraM.F. de OliveiraM.R. MonteiroH.S.A. MartinsA.M.C. Antibacterial and antiparasitic effects of Bothropoides lutzi venom.Nat. Prod. Commun.2012711934578X120070010.1177/1934578X120070012522428250
    [Google Scholar]
  61. TorresC.A.F. DantasR.T. ToyamaM.H. FilhoE.D. ZaraF.J. de QueirozR.M.G. NogueiraP.N.A. de OliveiraR.M. de Oliveira ToyamaD. MonteiroH.S.A. MartinsA.M.C. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and l-amino acid oxidase.Toxicon201055479580410.1016/j.toxicon.2009.11.01319944711
    [Google Scholar]
  62. GrabnerA.N. AlfonsoJ. KayanoA.M. DillM.L.S. dos SantosA.P.A. CaldeiraC.A.S. SobrinhoJ.C. GómezA. GrabnerF.P. CardosoF.F. ZulianiJ.P. FontesM.R.M. PimentaD.C. GómezC.V. TelesC.B.G. SoaresA.M. CalderonL.A. BmajPLA 2 -II, a basic Lys49-phospholipase A2 homologue from Bothrops marajoensis snake venom with parasiticidal potential.Int. J. Biol. Macromol.201710257158110.1016/j.ijbiomac.2017.04.01328390830
    [Google Scholar]
  63. OkuboB.M. SilvaO.N. MiglioloL. GomesD.G. PortoW.F. BatistaC.L. Evaluation of an antimicrobial l-amino acid oxidase and peptide derivatives from Bothropoides mattogrosensis pitviper venom.PLoS ONE201273e33639
    [Google Scholar]
  64. MouraA.A. KayanoA.M. OliveiraG.A. SetúbalS.S. RibeiroJ.G. BarrosN.B. NicoleteR. MouraL.A. FulyA.L. NomizoA. da SilvaS.L. FernandesC.F.C. ZulianiJ.P. StábeliR.G. SoaresA.M. CalderonL.A. Purification and biochemical characterization of three myotoxins from Bothrops mattogrossensis snake venom with toxicity against Leishmania and tumor cells.BioMed Res. Int.2014201411310.1155/2014/19535624724078
    [Google Scholar]
  65. AlfonsoJ.J. KayanoA.M. GarayA.F.G. SilvaS.R. SobrinhoJ.C. VourliotisS. SoaresA.M. CalderonL.A. GómezM.C.V. Isolation, biochemical characterization and antiparasitic activity of BmatTX-IV, A Basic Lys49-Phospholipase A2 from the venom of Bothrops mattogrossensis from Paraguay.Curr. Top. Med. Chem.201919222041204810.2174/156802661966619072315475631340737
    [Google Scholar]
  66. SilveiraL.B. SalvadorM.D.P. FilhoS.N.A. SilvaF.P.Jr MarcussiS. FulyA.L. NomizoA. da SilvaS.L. StábeliR.G. ArantesE.C. SoaresA.M. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom.J. Pharm. Biomed. Anal.201373354310.1016/j.jpba.2012.04.00822571953
    [Google Scholar]
  67. BarbosaL.G. CostaT.R. BorgesI.P. CostaM.S. CarneiroA.C. BorgesB.C. SilvaM.J.B. AmorimF.G. QuintonL. YoneyamaK.A.G. de Melo RodriguesV. SampaioS.V. RodriguesR.S. A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms.Int. J. Biol. Macromol.202116726727810.1016/j.ijbiomac.2020.11.14633242552
    [Google Scholar]
  68. MartinsG.G. de Jesus HolandaR. AlfonsoJ. GarayG.A.F. dos SantosA.P.A. de LimaA.M. FranciscoA.F. TelesG.C.B. ZanchiF.B. SoaresA.M. Identification of a peptide derived from a Bothrops moojeni metalloprotease with in vitro inhibitory action on the Plasmodium falciparum purine nucleoside phosphorylase enzyme (PfPNP).Biochimie20191629710610.1016/j.biochi.2019.04.00930978375
    [Google Scholar]
  69. StábeliR.G. AmuiS.F. Sant’AnaC.D. PiresM.G. NomizoA. MonteiroM.C. RomãoP.R.T. SáG.R. VieiraC.A. GiglioJ.R. FontesM.R.M. SoaresA.M. Bothrops moojeni myotoxin-II, A Lys49-phospholipase A2 homologue: An example of function versatility of snake venom proteins.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20061423-437138110.1016/j.cbpc.2005.11.02016442348
    [Google Scholar]
  70. TemponeA.G. AndradeH.F.Jr SpencerP.J. LourençoC.O. RogeroJ.R. NascimentoN. Bothrops moojeni venom kills Leishmania spp. with hydrogen peroxide generated by its L-amino acid oxidase.Biochem. Biophys. Res. Commun.2001280362062410.1006/bbrc.2000.417511162565
    [Google Scholar]
  71. BastosL.M. JúniorR.J.O. SilvaD.A.O. MineoJ.R. VieiraC.U. TeixeiraD.N.S. BrandeburgoH.M.I. RodriguesV.M. HamaguchiA. Toxoplasma gondii: Effects of neuwiedase, A metalloproteinase from Bothrops neuwiedi snake venom, on the invasion and replication of human fibroblasts in vitro.Exp. Parasitol.2008120439139610.1016/j.exppara.2008.09.00818823981
    [Google Scholar]
  72. CorrêaE.A. KayanoA.M. SousaD.R. SetúbalS.S. ZanchiF.B. ZulianiJ.P. MatosN.B. AlmeidaJ.R. ResendeL.M. MarangoniS. da SilvaS.L. SoaresA.M. CalderonL.A. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothrops neuwiedi urutu with bactericidal potential.Toxicon2016115132110.1016/j.toxicon.2016.02.02126927324
    [Google Scholar]
  73. SulcaM.A. RemuzgoC. CárdenasJ. KiyotaS. ChengE. BemquererM.P. MachiniM.T. Venom of the Peruvian snake Bothriopsis oligolepis: Detection of antibacterial activity and involvement of proteolytic enzymes and C-type lectins in growth inhibition of Staphylococcus aureus.Toxicon2017134304010.1016/j.toxicon.2017.05.01928549866
    [Google Scholar]
  74. RodriguesJ.P. AzevedoV.F.V.P. ZoiaM.A.P. MaiaL.P. CorreiaL.I.V. Costa-CruzJ.M. de Melo RodriguesV. GoulartL.R. The anthelmintic effect on strongyloides venezuelensis induced by BnSP- 6, a lys49-phospholipase A2 homologue from Bothrops pauloensis venom.Curr. Top. Med. Chem.201919222032204010.2174/156802661966619072315252031340738
    [Google Scholar]
  75. NunesD.C.O. FigueiraM.M.N.R. LopesD.S. De SouzaD.L.N. IzidoroL.F.M. FerroE.A. SouzaM.A. RodriguesR.S. RodriguesV.M. YoneyamaK.A.G. BnSP-7 toxin, A basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis.Parasitology2013140784485410.1017/S003118201300001223442579
    [Google Scholar]
  76. BorgesI.P. CastanheiraL.E. BarbosaB.F. de SouzaD.L.N. da SilvaR.J. MineoJ.R. TudiniK.A.Y. RodriguesR.S. FerroE.A.V. de Melo RodriguesV. Anti- parasitic effect on Toxoplasma gondii induced by BnSP-7, A Lys49-phospholipase A2 homologue from Bothrops pauloensis venom.Toxicon2016119849110.1016/j.toxicon.2016.05.01027212627
    [Google Scholar]
  77. BorgesI.P. SilvaM.F. SantiagoF.M. de FariaL.S. JúniorÁ.F. da SilvaR.J. CostaM.S. de FreitasV. YoneyamaK.A.G. FerroE.A.V. LopesD.S. RodriguesR.S. de Melo RodriguesV. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom.Int. J. Biol. Macromol.201811233334210.1016/j.ijbiomac.2018.01.17829391226
    [Google Scholar]
  78. CastanheiraL. de SouzaN.D.L. SilvaR.J. BarbosaB. MineoJ.R. TudiniK.A. RodriguesR. FerroE.V. de Melo RodriguesV. Insights into anti-parasitism induced by a C-type lectin from Bothrops pauloensis venom on Toxoplasma gondii.Int. J. Biol. Macromol.20157456857410.1016/j.ijbiomac.2014.11.03525541358
    [Google Scholar]
  79. RodriguesR.S. da SilvaJ.F. FrançaB.J. FonsecaF.P.P. OtavianoA.R. SilvaH.F. HamaguchiA. MagroA.J. BrazA.S.K. dos SantosJ.I. BrandeburgoH.M.I. FontesM.R. FulyA.L. SoaresA.M. RodriguesV.M. Structural and functional properties of Bp-LAAO, A new l-amino acid oxidase isolated from Bothrops pauloensis snake venom.Biochimie200991449050110.1016/j.biochi.2008.12.00419135502
    [Google Scholar]
  80. LazoF. Vivas-RuizD.E. SandovalG.A. RodríguezE.F. KozlovaE.E.G. Costal-OliveiraF. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.Toxicon20171397486
    [Google Scholar]
  81. IzidoroL.F.M. AlvesL.M. RodriguesV.M. SilvaD.A.O. MineoJ.R. Bothrops pirajai snake venom L-amino acid oxidase: In vitro effects on infection of Toxoplasma gondii in human foreskin fibroblasts.Rev. Bras. Farmacogn.201121347748510.1590/S0102‑695X2011005000108
    [Google Scholar]
  82. SousaD.R. CaldeiraC.A.S. PereiraS.S. Da SilvaS.L. FernandesP.A. TeixeiraL.M.C. ZulianiJ.P. SoaresA.M. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates.Int. J. Biol. Macromol.202323812435710.1016/j.ijbiomac.2023.12435737028634
    [Google Scholar]
  83. MacedoJ.M. de LimaA.M. KayanoA.M. SouzaM.F. da Silva OliveiraI. GarayG.A.F. RochaA.M. ZulianiJ.P. SoaresA.M. Literature review on Crotalus durissus terrificus toxins: From a perspective of structural biology and therapeutic applications.Curr. Protein Pept. Sci.202324753655010.2174/138920372466623060710535537287292
    [Google Scholar]
  84. DiasE.H.V. de Sousa SimamotoB.B. da Cunha PereiraD.F. RibeiroM.S.M. SantiagoF.M. de OliveiraF. YokosawaJ. MamedeC.C.N. Effect of BaltPLA2, a phospholipase A2 from Bothrops alternatus snake venom, on the viability of cells infected with dengue virus.Toxicol. In Vitro20238810556210.1016/j.tiv.2023.10556236690282
    [Google Scholar]
  85. CassaniN.M. SantosI.A. GroscheV.R. FerreiraG.M. VegaG.M. RosaR.B. PenaL.J. JuniorN.N. CintraA.C.O. MineoT.P. SilvaS.R. SampaioS.V. JardimA.C.G. Roles of Bothrops jararacussu toxins I and II: Antiviral findings against Zika virus.Int. J. Biol. Macromol.202322763064010.1016/j.ijbiomac.2022.12.10236529220
    [Google Scholar]
  86. AyussoG.M. LimaM.L.D. da Silva SanchesP.R. SantosI.A. MartinsD.O.S. da ConceiçãoP.J.P. CarvalhoT. da CostaV.G. BittarC. MeritsA. FilhoS.N.A. CilliE.M. JardimA.C.G. de Freitas CalmonM. RahalP. The dimeric peptide (KKYRYHLKPF)2K shows broad-spectrum antiviral activity by inhibiting different steps of chikungunya and zika virus infectionViruses2023155116810.3390/v1505116837243254
    [Google Scholar]
  87. BialvesT.S. JuniorB.C.L.Q. CordeiroM.F. BoyleR.T. Snake venom, A potential treatment for melanoma. A systematic review.Int. J. Biol. Macromol.202323112336710.1016/j.ijbiomac.2023.12336736690229
    [Google Scholar]
  88. SánchezS.M.J. GómezM.A. ValenciaO.D. SánchezM.L. EscuderoM.M. CharrisJ.E. Exploring the safety of Pllans-II and antitumoral potential of its recombinant isoform in cervical cancer therapy.Cells20231224281210.3390/cells1224281238132131
    [Google Scholar]
  89. AlmeidaT.C. SilvaR.L.M. de OliveiraB.A.M. LopesF.S.R. Sant’AnnaM.B. PicoloG. Cytotoxic effect of crotoxin on cancer cells and its antitumoral effects correlated to tumor microenvironment: A review.Int. J. Biol. Macromol.2023242Pt 212489210.1016/j.ijbiomac.2023.12489237196721
    [Google Scholar]
  90. MarinhoA.D. da SilvaL.E. de Sousa PortilhoJ.A. de OliveiraL.B.L. BezerraC.A.E. NogueiraM.D.B. AraújoL.M. AlvesL.M.M. NetoC.C.. FerreiraS.R.Jr Nunesd.F.A.M.C. de MoraesE.A.M. JorgeR.J.B. MontenegroR.C. Three snake venoms from bothrops genus induced apoptosis and cell cycle arrest in k562 human leukemic cell line.Toxicon202423810754710.1016/j.toxicon.2023.10754738065258
    [Google Scholar]
  91. SenS. SamatR. JashM. GhoshS. RoyR. MukherjeeN. GhoshS. SarkarJ. GhoshS. Potential broad-spectrum antimicrobial, wound healing, and disinfectant cationic peptide crafted from snake venom.J. Med. Chem.20236616115551157210.1021/acs.jmedchem.3c0115037566805
    [Google Scholar]
  92. de Melo FernandesA.T. CostaR.T. de Paula MenezesR. de SouzaA.M. MartinsG.C.H. JuniorN.N. AmorimG.F. QuintonL. PolloniL. TeixeiraS.C. FerroA.V.E. SoaresA.M. de Melo Rodrigues ÁvilaV. Bothrops snake venom L-amino acid oxidases impair biofilm formation of clinically relevant bacteria.Toxicon202423810756910.1016/j.toxicon.2023.10756938122835
    [Google Scholar]
  93. GrittiM.A. GonzálezK.Y. TavaresF.L. TeiblerG.P. PeichotoM.E. Exploring the antibacterial potential of venoms from Argentinian animals.Arch. Microbiol.2023205412110.1007/s00203‑023‑03465‑436934358
    [Google Scholar]
  94. de Melo FernandesT.A. TeixeiraS.C. CostaT.R. RosiniA.M. de SouzaG. PolloniL. BarbosaB.F. SilvaM.J.B. FerroE.A.V. ÁvilaV.M.R. BjussuLAAO-II, an l-amino acid oxidase from Bothrops jararacussu snake venom, impairs Toxoplasma gondii infection in human trophoblast cells and villous explants from the third trimester of pregnancy.Microbes Infect.202325610512310.1016/j.micinf.2023.10512336870599
    [Google Scholar]
  95. KhanN.A. AmorimF.G. DunbarJ.P. LeonardD. RedureauD. QuintonL. DugonM.M. BoydA. Inhibition of bacterial biofilms by the snake venom proteome.Biotechnol. Rep.202339e0081010.1016/j.btre.2023.e0081037559690
    [Google Scholar]
  96. EcheverríaS.M. de VeldeV.A.C. LuqueD.E. CardozoC.M. KraemerS. PereiraG.M.C. GayC.C. Platelet aggregation inhibitors from Bothrops alternatus snake venom.Toxicon202322310701410.1016/j.toxicon.2022.10701436610603
    [Google Scholar]
  97. OfforB.C. PiaterL.A. Snake venom toxins: Potential anticancer therapeutics.J. Appl. Toxicol.202310.1002/jat.454437697914
    [Google Scholar]
  98. TruongN.V. PhanT.T.T. HsuT.S. Phu DucP. LinL.Y. WuW.G. Action mechanism of snake venom l-amino acid oxidase and its double-edged sword effect on cancer treatment: Role of pannexin 1-mediated interleukin-6 expression.Redox Biol.20236410279110.1016/j.redox.2023.10279137385076
    [Google Scholar]
  99. KolvekarN. BhattacharyaN. MondalS. SarkarA. ChakrabartyD. Daboialipase, A phospholipase A2 from Vipera russelli venom posesses anti-platelet, anti-thrombin and anti-cancer properties.Toxicon202423910763210.1016/j.toxicon.2024.10763238310691
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673290981240416070550
Loading
/content/journals/cmc/10.2174/0109298673290981240416070550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test