Skip to content
2000
Volume 32, Issue 14
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cancer is defined as the unchecked expansion of aberrant cells. Radiation, chemotherapy, and surgery are currently used in combination to treat cancer. Traditional drug delivery techniques kill healthy proliferating cells when used over prolonged periods of time in cancer chemotherapy. Due to the fact that the majority of tumor cells do not infiltrate right away, this is particularly true when treating solid tumors. A targeted drug delivery system (TDDS) is a tool that distributes medication to a selected bioactive location in a controlled manner. Nanotechnology-based delivery techniques are having a substantial impact on cancer treatment, and polymers are essential for making nanoparticulate carriers for cancer therapy. The advantages of nanotherapeutic drug delivery systems (NDDS) in terms of technology include longer half-life, improved biodistribution, longer drug circulation time, regulated and sustained drug release, flexibility in drug administration method, higher drug intercellular concentration, and others. The benefits and drawbacks of cancer nanomedicines, such as polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, and nanoparticles, are discussed in this work, along with the most recent findings on polymer-based anticancer drugs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673283362231220115050
2024-02-16
2025-10-08
Loading full text...

Full text loading...

References

  1. ManishG. VimuktaS. Targeted drug delivery system: A review.Res. J. Chem. Sci.201112135138
    [Google Scholar]
  2. YuW. LiuR. ZhouY. GaoH. Size-tunable strategies for a tumor targeted drug delivery system.ACS Cent. Sci.20206210011610.1021/acscentsci.9b0113932123729
    [Google Scholar]
  3. WangZ. DengX. DingJ. ZhouW. ZhengX. TangG. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review.Int. J. Pharm.20185351-225326010.1016/j.ijpharm.2017.11.00329113804
    [Google Scholar]
  4. PattniBS TorchilinVP. Targeted drug delivery systems: Strategies and challenges.Targeted drug delivery: Concepts and designChamSpringer2015338
    [Google Scholar]
  5. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  6. ArslanF.B. OzturkK. CalisS. Antibody-mediated drug delivery.Int. J. Pharm.202159612026810.1016/j.ijpharm.2021.12026833486037
    [Google Scholar]
  7. DiérasV. BachelotT. The success story of trastuzumab emtansine, a targeted therapy in HER2-positive breast cancer.Target. Oncol.20149211112210.1007/s11523‑013‑0287‑423852665
    [Google Scholar]
  8. MehrenM. AdamsG.P. WeinerL.M. Monoclonal antibody therapy for cancer.Annu. Rev. Med.200354134336910.1146/annurev.med.54.101601.15244212525678
    [Google Scholar]
  9. WeisbergE. ManleyP.W. Cowan-JacobS.W. HochhausA. GriffinJ.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia.Nat. Rev. Cancer20077534535610.1038/nrc212617457302
    [Google Scholar]
  10. CooperB.M. IegreJ. O’ DonovanD.H. Ölwegård HalvarssonM. SpringD.R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs).Chem. Soc. Rev.20215031480149410.1039/D0CS00556H33346298
    [Google Scholar]
  11. BhattacharyaS. SaindaneD. PrajapatiB.G. Liposomal drug delivery and its potential impact on cancer research.Anticancer. Agents Med. Chem.202222152671268310.2174/187152062266622041814164035440318
    [Google Scholar]
  12. PrajapatiB.G. PatelN.K. PanchalM.M. PatelR.P. Topical liposomes in drug delivery: A review.IJPRT2012413944
    [Google Scholar]
  13. PrajapatiB.G. A review on PEGylated liposome in cancer therapy and in delivery of biomaterial.Pharm. Rev.20075
    [Google Scholar]
  14. LammersT. SubrV. UlbrichK. PeschkeP. HuberP.E. HenninkW.E. StormG. Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers.Biomaterials200930203466347510.1016/j.biomaterials.2009.02.04019304320
    [Google Scholar]
  15. LiuY. TamamH. YeoY. Mixed liposome approach for ratiometric and sequential delivery of paclitaxel and gemcitabine.AAPS Pharm. Sci. Tech201819269369910.1208/s12249‑017‑0877‑z28971370
    [Google Scholar]
  16. KapoorD. Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer.Results Chem.20236101167
    [Google Scholar]
  17. PrajapatiB.G. PaliwalH. PatelM. Fabrication and evaluation of polymeric nanoparticles of acitretin for the solubility enhancement.Res. J. Pharma. Technol.20231662655266010.52711/0974‑360X.2023.00436
    [Google Scholar]
  18. KendreP.N. KayandeD.R. JainS.P. MalgeT.G. ZadpeN.N. PrajapatiB.G. Polymeric nanoparticles: Prospective on the synthesis, characterization and applications in nose-to-brain drug delivery.Curr. Nanosci.202319566367610.2174/1573413718666220929102013
    [Google Scholar]
  19. BhattacharyaS. PrajapatiB.G. SinghS. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy.Crit. Rev. Oncol. Hematol.202318510396110.1016/j.critrevonc.2023.10396136921781
    [Google Scholar]
  20. PaliwalH. PrajapatiB.G. PariharA. PatelG.K. KendreP. BasuB. Polymeric nanoparticles in malaria.Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases.Springer20239111210.1007/978‑3‑031‑15848‑3_5
    [Google Scholar]
  21. SinghS. ChittasuphoC. PrajapatiB.G. ChandelA.S. Editorial: Biodegradable polymeric materials in tissue engineering and their application in drug delivery.Front. Bioeng. Biotechnol.202311129611910.3389/fbioe.2023.129611937840658
    [Google Scholar]
  22. YakatiV. VangalaS. MadamsettyV.S. BanerjeeR. MokuG. Enhancing the anticancer effect of paclitaxel by using polymeric nanoparticles decorated with colorectal cancer targeting CPKSNNGVC-peptide.J. Drug Deliv. Sci. Technol.20226810312510.1016/j.jddst.2022.103125
    [Google Scholar]
  23. LiC. GeX. WangL. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer.Biomed. Pharmacother.20178662863610.1016/j.biopha.2016.12.04228027539
    [Google Scholar]
  24. WongK.H. LuA. ChenX. YangZ. Natural ingredient-based polymeric nanoparticles for cancer treatment.Molecules20202516362010.3390/molecules2516362032784890
    [Google Scholar]
  25. ZhangX. LiX. YouQ. ZhangX. Prodrug strategy for cancer cell-specific targeting: A recent overview.Eur. J. Med. Chem.201713954256310.1016/j.ejmech.2017.08.01028837920
    [Google Scholar]
  26. LiX. LiuY. TianH. Current developments in Pt (IV) prodrugs conjugated with bioactive ligands. Bioinorganic chemistry and applications.Bioinorg. Chem. Appl.201820188276139
    [Google Scholar]
  27. SharifiE. BighamA. YousefiaslS. TrovatoM. GhomiM. EsmaeiliY. SamadiP. ZarrabiA. AshrafizadehM. SharifiS. SartoriusR. Dabbagh MoghaddamF. MalekiA. SongH. AgarwalT. MaitiT.K. NikfarjamN. BurvillC. MattoliV. RaucciM.G. ZhengK. BoccacciniA.R. AmbrosioL. MakvandiP. Mesoporous bioactive glasses in cancer diagnosis and therapy: stimuli-responsive, toxicity, immunogenicity, and clinical translation.Adv. Sci.202292210267810.1002/advs.20210267834796680
    [Google Scholar]
  28. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. JabarA. KhanS. ElhissiA. HussainZ. AzizH.C. SohailM. KhanM. ThuH.E. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers202113467010.3390/cancers1304067033562376
    [Google Scholar]
  29. QiaoY. WanJ. ZhouL. MaW. YangY. LuoW. YuZ. WangH. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019111e152710.1002/wnan.152729726115
    [Google Scholar]
  30. TangL. HeS. YinY. LiuH. HuJ. ChengJ. WangW. Combination of nanomaterials in cell-based drug delivery systems for cancer treatment.Pharmaceutics20211311188810.3390/pharmaceutics1311188834834304
    [Google Scholar]
  31. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  32. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  33. SinghA.K. MalviyaR. PrajapatiB. SinghS. YadavD. KumarA. Nanotechnology-aided advancement in combating the cancer metastasis.Pharmaceuticals202316689910.3390/ph1606089937375846
    [Google Scholar]
  34. VyasJ. ShahI. PrajapatiB.G. Enzyme-responsive delivery nanoplatforms in cancer theranostics.Site-specific Cancer Nanotheranostics.CRC Press20245476
    [Google Scholar]
  35. SinghA.K. MalviyaR. PrajapatiB. SinghS. GoyalP. Utilization of stimuli-responsive biomaterials in the formulation of cancer vaccines.J. Funct. Biomater.202314524710.3390/jfb1405024737233357
    [Google Scholar]
  36. BasuB. PalT. MukherjeeS. PrajapatiB.G. Bioactive lipids for the treatment of cancer.Therapeutic Platform of Bioactive Lipids.Apple Academic Press20238912110.1201/9781003301608‑7
    [Google Scholar]
  37. CioneE. La TorreC. CannataroR. CaroleoM.C. PlastinaP. GallelliL. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation.Molecules20192516310.3390/molecules2501006331878082
    [Google Scholar]
  38. TomehM. HadianamreiR. ZhaoX. A review of curcumin and its derivatives as anticancer agents.Int. J. Mol. Sci.2019205103310.3390/ijms2005103330818786
    [Google Scholar]
  39. BaiY. MaoQ.Q. QinJ. ZhengX.Y. WangY.B. YangK. ShenH.F. XieL.P. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo .Cancer Sci.2010101248849310.1111/j.1349‑7006.2009.01415.x20028382
    [Google Scholar]
  40. CzerwonkaA. MaciołekU. KałafutJ. MendykE. KuźniarA. RzeskiW. Anticancer effects of sodium and potassium quercetin-5′-sulfonates through inhibition of proliferation, induction of apoptosis, and cell cycle arrest in the HT-29 human adenocarcinoma cell line.Bioorg. Chem.20209410342610.1016/j.bioorg.2019.10342631784064
    [Google Scholar]
  41. HazimehD. MassoudG. ParishM. SinghB. SegarsJ. IslamM.S. Green tea and benign gynecologic disorders: A new trick for an old beverage?Nutrients2023156143910.3390/nu1506143936986169
    [Google Scholar]
  42. OzkanG. Günal-KöroğluD. KaradagA. CapanogluE. CardosoS.M. Al-OmariB. CalinaD. Sharifi-RadJ. ChoW.C. A mechanistic updated overview on lycopene as potential anticancer agent.Biomed. Pharmacother.202316111442810.1016/j.biopha.2023.11442836841029
    [Google Scholar]
  43. LimH.Y. OngP.S. WangL. GoelA. DingL. Li-Ann WongA. HoP.C. SethiG. XiangX. GohB.C. Celastrol in cancer therapy: Recent developments, challenges and prospects.Cancer Lett.202152125226710.1016/j.canlet.2021.08.03034508794
    [Google Scholar]
  44. LiuY. YiY. ZhongC. MaZ. WangH. DongX. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases.Front. Mol. Biosci.202310112142910.3389/fmolb.2023.1121429
    [Google Scholar]
  45. Poilil SurendranS. MoonM.J. ParkR. Bioactive nanoparticles for cancer immunotherapy.Int. J. Mol. Sci.201819123877
    [Google Scholar]
  46. KumarA. ShahS.R. JayeoyeT.J. KumarA. PariharA. PrajapatiB. SinghS. KapoorD.U. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products.Front. Nanotech.20235117514910.3389/fnano.2023.1175149
    [Google Scholar]
  47. SubramaniamS. SelvadurayK.R. RadhakrishnanA.K.J.B. Bioactive compounds: Natural defense against cancer?Biomolecules201991275810.3390/biom9120758
    [Google Scholar]
  48. ParkW. HeoY.-J. New opportunities for nanoparticles in cancer immunotherapy.Biomater. Res.20182224
    [Google Scholar]
  49. PrajapatiB.G. DesaiA. DesaiP. DeshpandeA. GherkarA. JoshiM. Nanozymes: A potent and powerful peroxidase substitute to treat tumour hypoxia.Smart Nanomaterials Targeting Pathological Hypoxia.Springer202336738210.1007/978‑981‑99‑1718‑1_19
    [Google Scholar]
  50. YuY. Present and future of cancer immunotherapy: A tumor microenvironmental perspective.Oncol. Lett.201816441054113
    [Google Scholar]
  51. KoutsogiannouliE. PapavassiliouA.G. PapanikolaouN.A. Complexity in cancer biology: Is systems biology the answer?Cancer Med.20132216417710.1002/cam4.6223634284
    [Google Scholar]
  52. GrizziF. Chiriva-InternatiM. Cancer: Looking for simplicity and finding complexity.Cancer Cell Int.200661410.1186/1475‑2867‑6‑416480511
    [Google Scholar]
  53. PatelR.D. BhalaniY.A. SudaniD.S. VachhaniL.A. Tamoxifen: An investigative review for nano dosage forms and hyphenated techniques.Int. J. Pharm. Investig.2022121010610.5530/ijpi.2022.1.1
    [Google Scholar]
  54. CoffeyJ.C. WangJ.H. SmithM.J.F. Bouchier-HayesD. CotterT.G. RedmondH.P. Excisional surgery for cancer cure: Therapy at a cost.Lancet Oncol.200341276076810.1016/S1470‑2045(03)01282‑814662433
    [Google Scholar]
  55. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  56. JacobsonM. O’MalleyA.J. EarleC.C. PakesJ. GaccioneP. NewhouseJ.P. Does reimbursement influence chemotherapy treatment for cancer patients?Health Aff.200625243744310.1377/hlthaff.25.2.43716522584
    [Google Scholar]
  57. KirkwoodJ.M. ButterfieldL.H. TarhiniA.A. ZarourH. KalinskiP. FerroneS. Immunotherapy of cancer in 2012.CA Cancer J. Clin.201262530933510.3322/caac.2013222576456
    [Google Scholar]
  58. LeeY.T. TanY.J. OonC.E. Molecular targeted therapy: Treating cancer with specificity.Eur. J. Pharmacol.201883418819610.1016/j.ejphar.2018.07.03430031797
    [Google Scholar]
  59. MannaP.R. AhmedA.U. MolehinD. NarasimhanM. PruittK. ReddyP.H. Hormonal and genetic regulatory events in breast cancer and its therapeutics: Importance of the steroidogenic acute regulatory protein.Biomedicines2022106131310.3390/biomedicines1006131335740335
    [Google Scholar]
  60. BhadraA. Physiological changes in a patient undergoing bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation.Int. J. Appl. Chem. Biol. Sci.2022313144
    [Google Scholar]
  61. PyszoraA. BudzyńskiJ. WójcikA. ProkopA. KrajnikM. Physiotherapy programme reduces fatigue in patients with advanced cancer receiving palliative care: Randomized controlled trial.Support. Care Cancer20172592899290810.1007/s00520‑017‑3742‑428508278
    [Google Scholar]
  62. LiuX. JiangJ. MengH.J.T. Transcytosis-An effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery.Theranostics201992680188025
    [Google Scholar]
  63. GermainM. CaputoF. MetcalfeS. TosiG. SpringK. ÅslundA.K. Delivering the power of nanomedicine to patients today.J. Control Release202032616417110.1016/j.jconrel.2020.07.007
    [Google Scholar]
  64. ZiY. YangK. HeJ. WuZ. LiuJ. ZhangW.J.A.D.D.R. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.Adv. Drug Deliv. Rev.202218811444910.1016/j.addr.2022.114449
    [Google Scholar]
  65. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193
    [Google Scholar]
  66. ElstL. VreeburgM. BrouwerO. AlbersenM. Challenges in organ-sparing surgery for penile cancer: What are the limits?Eur. Urol. Focus20239224124310.1016/j.euf.2023.01.00536653257
    [Google Scholar]
  67. PulumatiA. PulumatiA. DwarakanathB.S. VermaA. PapineniR.V.L. Technological advancements in cancer diagnostics: Improvements and limitations.Cancer Rep.202362e176410.1002/cnr2.176436607830
    [Google Scholar]
  68. Healey BirdB. NallyK. RonanK. ClarkeG. AmuS. AlmeidaA.S. FlavinR. FinnS. Cancer immunotherapy with immune checkpoint inhibitors-biomarkers of response and toxicity; Current limitations and future promise.Diagnostics202212112410.3390/diagnostics1201012435054292
    [Google Scholar]
  69. ZhangM. HuS. LiuL. DangP. LiuY. SunZ. QiaoB. WangC. Engineered exosomes from different sources for cancer-targeted therapy.Signal Transduct. Target. Ther.20238112410.1038/s41392‑023‑01382‑y36922504
    [Google Scholar]
  70. TaefehshokrS. ParhizkarA. HayatiS. MousapourM. MahmoudpourA. EleidL. RahmanpourD. FattahiS. ShabaniH. TaefehshokrN. Cancer immunotherapy: Challenges and limitations.Pathol. Res. Pract.202222915372310.1016/j.prp.2021.15372334952426
    [Google Scholar]
  71. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑036344672
    [Google Scholar]
  72. MitraS. LamiM.S. GhoshA. DasR. TalleiT.E. Fatimawali IslamF. DhamaK. BegumM.Y. AldahishA. ChidambaramK. EmranT.B. Hormonal therapy for gynecological cancers: how far has science progressed toward clinical applications?Cancers202214375910.3390/cancers1403075935159024
    [Google Scholar]
  73. ChuD.-T. NguyenT.T. TienN.L.B. TranD.-K. JeongJ.-H. AnhP.G. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications.Cells20209356310.3390/cells9030563
    [Google Scholar]
  74. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  75. SinghR. LillardJ.W.J.E. Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.2009863215223
    [Google Scholar]
  76. BajpaiS. TiwaryS.K. SonkerM. JoshiA. GuptaV. KumarY. Recent advances in nanoparticle-based cancer treatment: A review.ACS Appl. Nano Mater.2021476441647010.1021/acsanm.1c00779
    [Google Scholar]
  77. MahdaviZ. RezvaniH. Core-shell nanoparticles used in drug delivery-microfluidics: A review.RSC Adv.20201031182801829535517190
    [Google Scholar]
  78. SamadianH. Hosseini-NamiS. KamravaS.K. GhaznaviH. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.J. Cancer Res. Clin. Oncol.20161421122172229
    [Google Scholar]
  79. GavasS. QuaziS. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.2021161173
    [Google Scholar]
  80. ManivannanI.A. RahamanS.T. Nanofiber and cancer - An overview of recent developments.Int. J. Med., Pharmaceut. Biol. Sci.2021113
    [Google Scholar]
  81. YuanZ. PanY. ChengR. ShengL. WuW. PanG. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis.Nanotechnology2016272424510110.1088/0957‑4484/27/24/245101
    [Google Scholar]
  82. QiR.-L. TianX.-J. GuoR. LuoY. ShenM.-W. YuJ.-Y. Controlled release of doxorubicin from electrospun MWCNTs/PLGA hybrid nanofibers.Chin. J. Polym. Sci.20163410471059
    [Google Scholar]
  83. AqeelR. SrivastavaN. Micelles in cancer therapy: an update on preclinical and clinical status.Recent Pat. Nanotechnol.2022164283294
    [Google Scholar]
  84. GhoshB. Polymeric micelles in cancer therapy: State of the art.J. Control Release2021332127147
    [Google Scholar]
  85. BoberZ. Bartusik-AebisherD. AebisherD.J.M. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules27103237
    [Google Scholar]
  86. KulhariH. PoojaD. ShrivastavaS. KunchaM. NaiduV. BansalV. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer.Sci. Rep.2016623177910.1038/srep23179
    [Google Scholar]
  87. OuL. SongB. LiangH. LiuJ. FengX. DengB. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms.Part. Fibre. Toxicol.20161315710.1186/s12989‑016‑0168‑y
    [Google Scholar]
  88. HeisterE. NevesV. TîlmaciuC. LipertK. BeltránV.S. ColeyH.M. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy.Carbon.Elsevier20092152216010.1016/j.carbon.2009.03.057
    [Google Scholar]
  89. HaoY. HuJ. WangH. Gold nanoparticles regulate the antitumor secretome and have potent cytotoxic effects against prostate cancer cells.J. Appl. Toxicol.202141812861303
    [Google Scholar]
  90. NagajyothiP. PanduranganM. KimD.H. SreekanthT. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities.J. Clust. Sci.201728245257
    [Google Scholar]
  91. ChenM. ZhouX. ChenR. WangJ. RichardD.Y. WangY. Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy.Mater. Today201925668710.1016/j.mattod.2018.10.040
    [Google Scholar]
  92. ChirioD. PeiraE. SapinoS. DianzaniC. BargeA. MuntoniE. Stearoyl-chitosan coated nanoparticles obtained by microemulsion cold dilution technique.Int. J. Mol. Sci.20181912383310.3390/ijms19123833
    [Google Scholar]
  93. YangF. ZhengZ. ZhengL. QinJ. LiH. XueX. SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells.Onco. Targets Ther.2018116811
    [Google Scholar]
  94. ManoharanS. Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review.Eur. J. Pharmacol.2022936175330
    [Google Scholar]
  95. WangL.-L. HuangS. GuoH.-H. HanY.-X. ZhengW.-S. JiangJ.-D.J.D.D. In situ delivery of thermosensitive gel-mediated 5-fluorouracil microemulsion for the treatment of colorectal cancer.Drug Des. Deve. Ther.20161028552867
    [Google Scholar]
  96. ShenM.-Y. LiuT.-I. YuT.-W. KvR. ChiangW.-H. TsaiY.-C. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer.Biomaterials201919786100
    [Google Scholar]
  97. RoccaA. CecconettoL. PassardiA. MelegariE. AndreisD. MontiM. Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer.Cancer Chemother. Pharmacol.201779586387110.1007/s00280‑017‑3279‑8
    [Google Scholar]
  98. HuH. XiaoC. WuH. LiY. ZhouQ. TangY. Nanocolloidosomes with selective drug release for active tumor-targeted imaging-guided photothermal/chemo combination therapy.ACS Appl. Mater. Interfaces20179484222542238
    [Google Scholar]
  99. ChangM. WuM. LiH.J.D.D. Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes in vitro and in H22 tumor-bearing mice.Drug Deliv.20182511984199510.1080/10717544.2018.1526227
    [Google Scholar]
  100. WangJ. ZhuR. SunX. ZhuY. LiuH. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway.Int. J. Nanomedicine2014939873998
    [Google Scholar]
  101. DingJ. FengM. WangF. WangH. Targeting effect of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric cancer.Oncol. Rep.201534418251834
    [Google Scholar]
  102. WonderE. Simón-GraciaL. ScodellerP. MajzoubR.N. KotamrajuV.R. EwertK.K. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo .Biomaterials2018166526310.1016/j.biomaterials.2018.02.052
    [Google Scholar]
  103. FengY. GaoY. WangD. XuZ. SunW. Autophagy inhibitor (LY294002) and 5-fluorouracil (5-FU) combination-based nanoliposome for enhanced efficacy against esophageal squamous cell carcinoma.Nanoscale Res. Lett.2018131325
    [Google Scholar]
  104. BishtS. SchlesingerM. RuppA. SchubertR. NoltingJ. WenzelJ. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies.J Nanobiotechnol.201614157
    [Google Scholar]
  105. NassiraA.M. Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: in vitro and in vivo activity.Life Sci.2018220136146
    [Google Scholar]
  106. HuaH. ZhangN. LiuD. SongL. LiuT. LiS. Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo-and chemotherapy.Int. J. Nanomedicine2017127869788410.2147/IJN.S143977
    [Google Scholar]
  107. LiS. WangL. LiN. LiuY. SuH.J.B. Combination lung cancer chemotherapy: design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin..Biomed. Pharmacother.201795548555
    [Google Scholar]
  108. JyotiK. KaurK. PandeyR.S. JainU.K. ChandraR. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: In vitro and in vivo studies.J. Colloid Interface Sci.2015445219230
    [Google Scholar]
  109. KansomT. SajomsangW. SaeengR. CharoensuksaiP. OpanasopitP. TonglairoumP.J.A.P. Apoptosis induction and antimigratory activity of andrographolide analog (3a. 1)-incorporated self-assembled nanoparticles in cancer cells.AAPS PharmSciTech.201819731233133
    [Google Scholar]
  110. ZhengW. LiM. LinY. ZhanX.J.B. Encapsulation of verapamil and doxorubicin by MPEG-PLA to reverse drug resistance in ovarian cancer.Biomed. Pharmacother.2018108565573
    [Google Scholar]
  111. DuseL. AgelM.R. PinnapireddyS.R. SchäferJ. SeloM.A. EhrhardtC. Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles.Pharmaceutics201911628210.3390/pharmaceutics11060282
    [Google Scholar]
  112. ZuM. MaL. ZhangX. XieD. KangY. XiaoB.J.C. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy.Colloids Surf. Biointerfaces201917739940610.1016/j.colsurfb.2019.02.031
    [Google Scholar]
  113. RacoviceanuR. TrandafirescuC. VoicuM. GhiulaiR. BorcanF. DeheleanC. Solid polymeric nanoparticles of albendazole: Synthesis, physico-chemical characterization and biological activity.Molecules20202521513010.3390/molecules25215130
    [Google Scholar]
  114. ChenY. ChenC. ZhangX. HeC. ZhaoP. LiM. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects.Acta. Pharm. Sin. B20201061106112110.1016/j.apsb.2019.10.011
    [Google Scholar]
  115. LiuC. HanQ. LiuH. ZhuC. GuiW. YangX. Precise engineering of Gemcitabine prodrug cocktails into single polymeric nanoparticles delivery for metastatic thyroid cancer cells.Drug Deliv.20202711063107210.1080/10717544.2020.1790693
    [Google Scholar]
  116. Zare-ZardiniH. HatamizadehN. HaddadzadeganN. SoltaninejadH. Karimi-ZarchiM.J.J.A.R. Advantages and disadvantages of using Carbon Nanostructures in Reproductive Medicine: two sides of the same coin.JBRA Assist. Reprod202226114214410.5935/1518‑0557.20210070
    [Google Scholar]
  117. DasS. MitraS. KhuranaS.P. Nanomaterials for biomedical applications.201373-49098
    [Google Scholar]
  118. BaileyR.E. SmithA.M. Quantum dots in biology and medicine.Physica E: Low-dimensional Systems and Nanostructures.Elsevier2004251112
    [Google Scholar]
  119. BansalM. KumarA. MalineeM. Nanomedicine: diagnosis, treatment, and potential prospects.Nanoscience in Medicine.ChamSpringer20201297331
    [Google Scholar]
  120. ArvizoR. BhattacharyaR. Gold nanoparticles: opportunities and challenges in nanomedicine.Expert. Opin. Drug Deliv.201076753763
    [Google Scholar]
  121. SantosA. VeigaF. FigueirasA.J.M. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications.Materials201913165
    [Google Scholar]
  122. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102
    [Google Scholar]
  123. HafeezM.N. CeliaC. PetrikaiteV.J.P. Challenges towards targeted drug delivery in cancer nanomedicines.Processes202199152710.3390/pr9091527
    [Google Scholar]
  124. KutovaO.M. GuryevE.L. SokolovaE.A. AlzeibakR. BalalaevaI.V.J.C. Targeted delivery to tumors: Multidirectional strategies to improve treatment efficiency.Cancers201911168
    [Google Scholar]
  125. MetselaarJ.M. LammersT.J.D.D. ResearchT. Challenges in nanomedicine clinical translation.Drug Deliv. Transl. Res.202010372172510.1007/s13346‑020‑00740‑5
    [Google Scholar]
  126. BinL.K. GauravA. MandalU.K.J.I.J.P.P.S. A review on co-processed excipients: Current and future trend of excipient technology.Int. J. Pharma. Pharmaceut. Sci.2019111110.22159/ijpps.2019v11i1.29265
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673283362231220115050
Loading
/content/journals/cmc/10.2174/0109298673283362231220115050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test