Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Patients with glioma have limited treatment options and experience poor prognoses. Therefore, it is urgently needed to explore new diagnostic and therapeutic targets.

Objective

This study aimed to investigate the relevance of WSC domain-containing 2 (WSCD2) expression to glioma, clinicopathological characteristics, tumor-infiltrating immune cells (TILs), and patient prognosis.

Methods

We analyzed WSCD2 mRNA expression in glioma tissues and patient survival using the Gene Expression Profiling Interactive Analysis database. Furthermore, the relationship between the expressions of WSCD2 mRNA and TILs in gliomas was evaluated utilizing the Tumor Immune Estimation Resource database. Lastly, we employed multiplex immunohistochemistry to detect the protein expressions of WSCD2 and TILs in glioma tissues.

Results

WSCD2 mRNA expression in glioma tissues was lower than that in tissues of benign brain disease. High WSCD2 mRNA expression was also significantly associated with a favorable outcome. Additionally, WSCD2 mRNA expression was correlated with TIL expression in glioma; however, no such relationship was detected between the protein expressions of WSCD2 and TILs in glioma tissues. Cox regression multivariate analysis and Kaplan-Meier survival analysis showed that WSCD2 expression in glioma tissues could be an independent prognostic factor.

Conclusion

This study highlights the correlation between WSCD2 expression and TILs and demonstrates the prognostic significance of WSCD2 in glioma. Furthermore, our results suggest that WSCD2 may be a potential immunotherapy target in glioma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673282921240220101914
2025-07-01
2025-10-22
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/24/CMC-32-24-09.html?itemId=/content/journals/cmc/10.2174/0109298673282921240220101914&mimeType=html&fmt=ahah

References

  1. TodoT. ItoH. InoY. OhtsuH. OtaY. ShibaharaJ. TanakaM. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial.Nat. Med.20222881630163910.1038/s41591‑022‑01897‑x35864254
    [Google Scholar]
  2. Delgado-MartínB. MedinaM.Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment.Adv. Sci.202079190297110.1002/advs.20190297132382477
    [Google Scholar]
  3. AwadaH. ParisF. PecqueurC. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome.Neuro-oncol.202325343344610.1093/neuonc/noac23936239313
    [Google Scholar]
  4. SiegelinM.D. Current state and future perspective of drug repurposing in malignant glioma.Semin Cancer Biol.20196892104
    [Google Scholar]
  5. GutmannD.H. KettenmannH. Microglia/brain macrophages as central drivers of brain tumor pathobiology.Neuron2019104344244910.1016/j.neuron.2019.08.02831697921
    [Google Scholar]
  6. NejoT. YamamichiA. AlmeidaN.D. GoretskyY.E. OkadaH. Tumor antigens in glioma.Semin. Immunol.20204710138510.1016/j.smim.2020.10138532037183
    [Google Scholar]
  7. WangH. XuT. HuangQ. JinW. ChenJ. Immunotherapy for malignant glioma: Current status and future directions.Trends Pharmacol. Sci.202041212313810.1016/j.tips.2019.12.00331973881
    [Google Scholar]
  8. NejoT. In Tumor antigens in glioma, Seminars in immunologyElsevier2020101385
    [Google Scholar]
  9. GieryngA. PszczolkowskaD. WalentynowiczK. A. RajanW. D. KaminskaB. J. L. i. Immune microenvironment of gliomas.Lab Invest.201797549851810.1038/labinvest.2017.19
    [Google Scholar]
  10. BarkJ. M. KulasingheA. ChuaB. DayB. W. PunyadeeraC. J. B. j. o. c. Circulating biomarkers in patients with glioblastoma.Br. J. Cancer.20201223295305
    [Google Scholar]
  11. MairM. J. GeurtsM. van den BentM. J. BerghoffA. S. J. C. T. R. A basic review on systemic treatment options in WHO grade II-III gliomas.Cancer. Treat. Rev.202092102124
    [Google Scholar]
  12. MajcB. NovakM. Kopitar-JeralaN. JewettA. BreznikB. Immunotherapy of glioblastoma.Cells202110226510.3390/cells1002026533572835
    [Google Scholar]
  13. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.2161332478924
    [Google Scholar]
  14. SampsonJ. H. GunnM. D. FecciP. E. AshleyD. M. J. N. R. C. Brain immunology and immunotherapy in brain tumours.Nat. Rev. Cancer.2020201122510.1038/s41568‑019‑0224‑7
    [Google Scholar]
  15. SchalperK. A. Rodriguez-RuizM. E. Diez-ValleR. López-JaneiroA. PorciunculaA. IdoateM. A. InogésS. De AndreaC. de CerioA. L.-D. TejadaS. J. N. m. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma.Nat Med.201925347047610.1038/s41591‑018‑0339‑5
    [Google Scholar]
  16. BiJ. ChowdhryS. WuS. ZhangW. MasuiK. MischelP. S. J. N. R. C. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets.Nat. Rev. Can.20202015770
    [Google Scholar]
  17. MohmeM. NeidertM. C. J. F. i. i. Tumor-specific t cell activation in malignant brain tumors.Front Immunol.20201120510.3389/fimmu.2020.00205
    [Google Scholar]
  18. MilanoM.T. ChanM.D. MinnitiG. Hattangadi-GluthJ.A. RedmondK.J. SoltysS.G.J.I.J.R.O. Biology, physics.Impact of molecular grading of gliomas on contemporary clinical practice.20201075859862
    [Google Scholar]
  19. KatoN. MiyataT. TabaraY. KatsuyaT. YanaiK. HanadaH. KamideK. NakuraJ. KoharaK. TakeuchiF. ManoH. YasunamiM. KimuraA. KitaY. UeshimaH. NakayamaT. SomaM. HataA. FujiokaA. KawanoY. NakaoK. SekineA. YoshidaT. NakamuraY. SarutaT. OgiharaT. SuganoS. MikiT. TomoikeH. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project.Hum. Mol. Genet.200717461762710.1093/hmg/ddm33518003638
    [Google Scholar]
  20. LoM.T. HindsD.A. TungJ.Y. FranzC. FanC.C. WangY. SmelandO.B. SchorkA. HollandD. KauppiK. SanyalN. Escott-PriceV. SmithD.J. O’DonovanM. StefanssonH. BjornsdottirG. ThorgeirssonT.E. StefanssonK. McEvoyL.K. DaleA.M. AndreassenO.A. ChenC.H. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders.Nat. Genet.201749115215610.1038/ng.373627918536
    [Google Scholar]
  21. TaneeraJ. FadistaJ. AhlqvistE. AtacD. Ottosson-LaaksoE. WollheimC.B. GroopL. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia.Hum. Mol. Genet.20152471945195510.1093/hmg/ddu61025489054
    [Google Scholar]
  22. MaierT. GüellM. SerranoL. Correlation of mRNA and protein in complex biological samples.FEBS Lett.2009583243966397310.1016/j.febslet.2009.10.03619850042
    [Google Scholar]
  23. LiuY. BeyerA. AebersoldR. On the dependency of cellular protein levels on mRNA abundance.Cell2016165353555010.1016/j.cell.2016.03.01427104977
    [Google Scholar]
  24. PascalL.E. TrueL.D. CampbellD.S. DeutschE.W. RiskM. ColemanI.M. EichnerL.J. NelsonP.S. LiuA.Y. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate.BMC Genomics20089124610.1186/1471‑2164‑9‑24618501003
    [Google Scholar]
  25. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  26. LiT. FanJ. WangB. TraughN. ChenQ. LiuJ.S. LiB. LiuX.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells.Cancer Res.20177721e108e11010.1158/0008‑5472.CAN‑17‑030729092952
    [Google Scholar]
  27. TangZ. DingY. ShenQ. ZhangC. LiJ. NazarM. WangY. ZhouX. HuangJ. J. J. o. M. M. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT.J. Mol. Med.2019971127140
    [Google Scholar]
  28. JiangS. ZhangY. ZhangX. LuB. SunP. WuQ. DingX. HuangJ. GARP Correlates with tumor-infiltrating t-cells and predicts the outcome of gastric cancer.Front. Immunol.20211266039710.3389/fimmu.2021.66039734421887
    [Google Scholar]
  29. ZhangX. XiaoR. LuB. WuH. JiangC. LiP. HuangJ. Kinase DYRK2 acts as a regulator of autophagy and an indicator of favorable prognosis in gastric carcinoma.Colloids Surf. B Biointerfaces2022209Pt 111218210.1016/j.colsurfb.2021.11218234749023
    [Google Scholar]
  30. KlemmF. MaasR.R. BowmanR.L. KorneteM. SoukupK. NassiriS. BroulandJ.P. Iacobuzio-DonahueC.A. BrennanC. TabarV. GutinP.H. DanielR.T. HegiM.E. JoyceJ.A. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells.Cell2020181716431660.e1710.1016/j.cell.2020.05.00732470396
    [Google Scholar]
  31. ChenJ. WangZ. WangW. RenS. XueJ. ZhongL. JiangT. WeiH. ZhangC. SYT16 is a prognostic biomarker and correlated with immune infiltrates in glioma: A study based on TCGA data.Int. Immunopharmacol.20208410649010.1016/j.intimp.2020.10649032289666
    [Google Scholar]
  32. JinX. XieH. LiuX. ShenQ. WangZ. HaoH. GuY. RELL1, a novel oncogene, accelerates tumor progression and regulates immune infiltrates in glioma.Int. Immunopharmacol.20208710670710.1016/j.intimp.2020.10670732683297
    [Google Scholar]
  33. WidodoS.S. HutchinsonR.A. FangY. MangiolaS. NeesonP.J. DarcyP.K. BarrowA.D. HovensC.M. DinevskaM. StylliS.S. MantamadiotisT. Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment.Cancer Immunol. Immunother.20217071811182010.1007/s00262‑020‑02801‑733389014
    [Google Scholar]
  34. RobinsonM.H. VasquezJ. KaushalA. MacDonaldT.J. Velázquez VegaJ.E. SchniederjanM. DhodapkarK. Subtype and grade-dependent spatial heterogeneity of T-cell infiltration in pediatric glioma.J. Immunother. Cancer202082e00106610.1136/jitc‑2020‑00106632788236
    [Google Scholar]
  35. VidyarthiA. AgnihotriT. KhanN. SinghS. TewariM.K. RadotraB.D. ChatterjeeD. AgrewalaJ.N. Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity.Cancer Immunol. Immunother.201968121995200410.1007/s00262‑019‑02423‑831690954
    [Google Scholar]
  36. SchwabA. SiddiquiA. VazakidouM.E. NapoliF. BöttcherM. MenchicchiB. RazaU. SaatciÖ. KrebsA.M. FerrazziF. RapaI. Dettmer-WildeK. WaldnerM.J. EkiciA.B. RasheedS.A.K. MougiakakosD. OefnerP.J. SahinO. VolanteM. GretenF.R. BrabletzT. CeppiP. Polyol pathway links glucose metabolism to the aggressiveness of cancer cells.Cancer Res.20187871604161810.1158/0008‑5472.CAN‑17‑283429343522
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673282921240220101914
Loading
/content/journals/cmc/10.2174/0109298673282921240220101914
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): glioma; immune cell; immunotherapy; infiltration; prognosis; WSCD2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test