Skip to content
2000
Volume 32, Issue 24
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Reactive oxygen species (ROS) are potential targets for treating malignant tumors.

Aims

The aim of this study was to probe into the mechanisms of disease development and treatment in lung adenocarcinoma (LUAD).

Objective

This study investigated the impact of ROS on the progression of LUAD at different transcriptomic levels and analyzed key molecules involved in the regulation of LUAD.

Methods

Single-cell RNA-seq (scRNA-seq) data of LUAD were clustered and annotated to determine cell types. Scissor cells based on LUAD bulk transcriptome and epithelial scRNA-seq data were used to classify subsets associated with ROS phenotypes. Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate regression analyses were performed between the Scissor-positive and Scissor-negative epithelial cells to select key differentially expressed genes (DEGs) for developing a ROS-related signature.

Results

The ROS score was significantly negatively correlated with the overall survival (OS) of LUAD. Seven cell types from the LUAD tissues were identified. The ROS-related gene signature was significantly correlated with metabolism, tumor microenvironment (TME) indicators, and the half-maximal inhibitory concentration (IC) values of 10 drugs. The gene signature was verified as an independent indicator for LUAD prognosis.

Conclusion

The current study provided novel insights into the impact of ROS on LUAD pathology at both single-cell and bulk-tissue levels, facilitating the prognostic evaluation and drug therapy development for patients with LUAD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673291009240219055808
2024-03-12
2025-09-09
Loading full text...

Full text loading...

References

  1. LuoG. ZhangY. EtxeberriaJ. ArnoldM. CaiX. HaoY. ZouH. Projections of lung cancer incidence by 2035 in 40 countries worldwide: Population-based study.JMIR Public Health Surveill.20239e4365110.2196/4365136800235
    [Google Scholar]
  2. ZhangD. TongL. WangQ. CaoY. GaoY. YangD. BaoT. ZhuZ. Diagnosis of lung cancer based on plasma metabolomics combined with serum markers.Oncologie2020222758210.32604/oncologie.2020.012376
    [Google Scholar]
  3. RicciA. SalvucciC. CastelliS. CarraturoA. de VitisC. D’AscanioM. Adenocarcinomas of the lung and neurotrophin system: A review.Biomedicines20221010253110.3390/biomedicines1010253136289793
    [Google Scholar]
  4. OrtegaM. NavarroF. PekarekL. Fraile-MartínezO. García-MonteroC. SaezM. ArroyoM. MonserratJ. Alvarez-MonM. Exploring histopathological and serum biomarkers in lung adenocarcinoma: Clinical applications and translational opportunities (Review).Int. J. Oncol.202261615410.3892/ijo.2022.544436263628
    [Google Scholar]
  5. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y36810079
    [Google Scholar]
  6. NezamiN. KhorshidiF. MansurA. HabibollahiP. CamachoJ.C. Primary and metastatic lung cancer: Rationale, indications, and outcomes of thermal ablation.Clin. Lung Cancer202324538940010.1016/j.cllc.2023.03.01237127487
    [Google Scholar]
  7. LeeW.C. DiaoL. WangJ. ZhangJ. RoartyE.B. VargheseS. ChowC.W. FujimotoJ. BehrensC. CasconeT. PengW. KalhorN. MoranC.A. WeissferdtA. JohnsonF.M. WilliamW.N.Jr SwisherS.G. LeeJ.J. HongW.K. HeymachJ.V. WistubaII. FutrealP.A. ZhangJ.V. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer.Mod. Pathol.2018316947955
    [Google Scholar]
  8. SeguinL. DurandyM. FeralC.C. Lung adenocarcinoma tumor origin: A guide for personalized medicine.Cancers2022147175910.3390/cancers1407175935406531
    [Google Scholar]
  9. ZhangH. XingX. LiuY. LiS. LiW. Comprehensive network analysis of different subtypes of molecular disorders in lung cancer.Oncologie202022210711610.32604/oncologie.2020.012494
    [Google Scholar]
  10. SinjabA. RahalZ. KadaraH. Cell-by-cell: Unlocking lung cancer pathogenesis.Cancers20221414342410.3390/cancers1414342435884485
    [Google Scholar]
  11. TsonevaE. Vasileva-SlavevaM.B. KostovS.G. YordanovA.D. ROMO1-A potential immunohistochemical prognostic marker for cancer development.Oncologie202325675375810.1515/oncologie‑2023‑0345
    [Google Scholar]
  12. SrinivasU.S. TanB.W.Q. VellayappanB.A. JeyasekharanA.D. ROS and the DNA damage response in cancer.Redox Biol.20192510108410.1016/j.redox.2018.10108430612957
    [Google Scholar]
  13. HarrisI.S. DeNicolaG.M. The complex interplay between antioxidants and ROS in cancer.Trends Cell Biol.202030644045110.1016/j.tcb.2020.03.00232303435
    [Google Scholar]
  14. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑035102280
    [Google Scholar]
  15. PrasadS. GuptaS.C. TyagiA.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.Cancer Lett.20173879510510.1016/j.canlet.2016.03.04227037062
    [Google Scholar]
  16. PerilloB. Di DonatoM. PezoneA. Di ZazzoE. GiovannelliP. GalassoG. CastoriaG. MigliaccioA. ROS in cancer therapy: The bright side of the moon.Exp. Mol. Med.202052219220310.1038/s12276‑020‑0384‑232060354
    [Google Scholar]
  17. YıldızM.L. DemirY. KüfrevioğluÖ.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes.J. Mol. Recognit.20223512e298710.1002/jmr.298736326002
    [Google Scholar]
  18. MoloneyJ.N. CotterT.G. ROS signalling in the biology of cancer.Semin. Cell Dev. Biol.201880506410.1016/j.semcdb.2017.05.02328587975
    [Google Scholar]
  19. AzadN. RojanasakulY. VallyathanV. Inflammation and lung cancer: Roles of reactive oxygen/nitrogen species.J. Toxicol. Environ. Health B Crit. Rev.200811111510.1080/1093740070143646018176884
    [Google Scholar]
  20. SlikaH. MansourH. WehbeN. NasserS.A. IratniR. NasrallahG. ShaitoA. GhaddarT. KobeissyF. EidA.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms.Biomed. Pharmacother.202214611244210.1016/j.biopha.2021.11244235062053
    [Google Scholar]
  21. KorsunskyI. MillardN. FanJ. SlowikowskiK. ZhangF. WeiK. BaglaenkoY. BrennerM. LohP. RaychaudhuriS. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods201916121289129610.1038/s41592‑019‑0619‑031740819
    [Google Scholar]
  22. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. Cell Marker: A manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  23. Marco-RamellA. Palau-RodriguezM. AlayA. TulipaniS. Urpi-SardaM. Sanchez-PlaA. Andres-LacuevaC. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data.BMC Bioinformatics2018191110.1186/s12859‑017‑2006‑029291722
    [Google Scholar]
  24. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  25. AibarS. González-BlasC.B. MoermanT. Huynh-ThuV.A. ImrichovaH. HulselmansG. RambowF. MarineJ.C. GeurtsP. AertsJ. van den OordJ. AtakZ.K. WoutersJ. AertsS. SCENIC: Single-cell regulatory network inference and clustering.Nat. Methods201714111083108610.1038/nmeth.446328991892
    [Google Scholar]
  26. SunD. GuanX. MoranA.E. WuL.Y. QianD.Z. SchedinP. DaiM.S. DanilovA.V. AlumkalJ.J. AdeyA.C. SpellmanP.T. XiaZ. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data.Nat. Biotechnol.202240452753810.1038/s41587‑021‑01091‑334764492
    [Google Scholar]
  27. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  28. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  29. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  30. YeoJ.G. WasserM. KumarP. PanL. PohS.L. AllyF. ArkachaisriT. LimA.J.M. LeongJ.Y. LaiL. YeoK.T. LeeE.S.C. ChuaC.J.H. LarbiA. NyuntM.S.Z. NgT.P. ChiesaS. GattornoM. MartiniA. PalejaB.S. DutertreC.A. ChenJ. Nay YaungK. TangS.P. NgS.K. YungC.F. TanA.Y.J. LeeS.Y. GinhouxF. AlbaniS. The extended polydimensional immunome characterization (EPIC) web-based reference and discovery tool for cytometry data.Nat. Biotechnol.202038667968410.1038/s41587‑020‑0532‑132440006
    [Google Scholar]
  31. BanerjeeS. GhoshS. MandalA. GhoshN. SilP.C. ROS-associated immune response and metabolism: A mechanistic approach with implication of various diseases.Arch. Toxicol.20209472293231710.1007/s00204‑020‑02801‑732524152
    [Google Scholar]
  32. HuynhM. CraneM.J. JamiesonA.M. The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity.Front. Immunol.202313109411010.3389/fimmu.2022.109411036733391
    [Google Scholar]
  33. AggarwalV. TuliH. VarolA. ThakralF. YererM. SakK. VarolM. JainA. KhanM. SethiG. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements.Biomolecules201991173510.3390/biom911073531766246
    [Google Scholar]
  34. KangS.W. LeeS. LeeE.K. ROS and energy metabolism in cancer cells: Alliance for fast growth.Arch. Pharm. Res.201538333834510.1007/s12272‑015‑0550‑625599615
    [Google Scholar]
  35. TrachoothamD. AlexandreJ. HuangP. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd280319478820
    [Google Scholar]
  36. Ghanbari MovahedZ. Rastegari-PouyaniM. MohammadiM. MansouriK. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell?Biomed. Pharmacother.201911210869010.1016/j.biopha.2019.10869030798124
    [Google Scholar]
  37. Jaune-PonsE. VasseurS. Role of amino acids in regulation of ROS balance in cancer.Arch. Biochem. Biophys.202068910843810.1016/j.abb.2020.10843832497547
    [Google Scholar]
  38. GongT. ZhengC. OuX. ZhengJ. YuJ. ChenS. DuanY. LiuW. Glutamine metabolism in cancers: Targeting the oxidative homeostasis.Front. Oncol.20221299467210.3389/fonc.2022.99467236324588
    [Google Scholar]
  39. HwangY. YunH.J. JeongJ.W. KimM. JooS. LeeH.K. ChangH.S. KimS.M. FangS. Co-inhibition of glutaminolysis and one-carbon metabolism promotes ROS accumulation leading to enhancement of chemotherapeutic efficacy in anaplastic thyroid cancer.Cell Death Dis.202314851510.1038/s41419‑023‑06041‑237573361
    [Google Scholar]
  40. LadburyC. AminiA. GovindarajanA. MambetsarievI. RazD.J. MassarelliE. WilliamsT. RodinA. SalgiaR. Integration of artificial intelligence in lung cancer: Rise of the machine.Cell Rep. Med.20234210093310.1016/j.xcrm.2023.10093336738739
    [Google Scholar]
  41. NiuY. LinZ. WanA. SunL. YanS. LiangH. ZhanS. ChenD. BuX. LiuP. ChenC. HeW. LuX. WanG. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia.Hepatology20217431461147910.1002/hep.3184633813748
    [Google Scholar]
  42. YangY. NeoS.Y. ChenZ. CuiW. ChenY. GuoM. WangY. XuH. KurzayA. AliciE. HolmgrenL. HaglundF. WangK. LundqvistA. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells.J. Clin. Invest.2020130105508552210.1172/JCI13758532673292
    [Google Scholar]
  43. GerdesJ.E. An ambulatory approach to outpatient pediatric cardiac catheterization.J. Post Anesth. Nurs.1990564074102266505
    [Google Scholar]
  44. KazmiN. RobinsonT. ZhengJ. KarS. MartinR.M. RidleyA.J. Rho GTPase gene expression and breast cancer risk: A Mendelian randomization analysis.Sci. Rep.2022121146310.1038/s41598‑022‑05549‑535087170
    [Google Scholar]
  45. WangZ. ZhuJ. LiuY. WangZ. CaoX. GuY. Tumor-polarized GPX3+ AT2 lung epithelial cells promote premetastatic niche formation.Proc. Natl. Acad. Sci. USA202211932e220189911910.1073/pnas.220189911935914155
    [Google Scholar]
  46. LiX. HuZ. QuX. ZhuJ. LiL. RingB.Z. SuL. Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: A comprehensive meta-analysis.PLoS One201163e1474910.1371/journal.pone.001474921445251
    [Google Scholar]
  47. ShibuyaR. MatsuyamaA. ShibaE. HaradaH. YabukiK. HisaokaM. CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma.Histopathology201567682783510.1111/his.1271325879300
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673291009240219055808
Loading
/content/journals/cmc/10.2174/0109298673291009240219055808
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test