Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The therapeutic properties of goat milk in alleviating various human diseases have prompted research to harness its potential applications in cancer prevention and treatment.

Materials & Methods

The cancer preventive effects of lyophilized goat milk were studied using human epidermoid carcinoma cells (A431) by examining several key parameters. The anti-proliferative effect of goat milk was assessed through MTT assay, while cell migration was evaluated using an scratch assay. Additionally, flow cytometry was employed to determine the number of cells in different phases of the cell cycle. Furthermore, goat milk’s free-radical scavenging activity (DPPH, ABTS, ferrous-ion chelating) was determined along with its GC-MS analysis for the identification of compounds with anti-oxidative and anticancer properties.

Results

The study found that goat milk exhibits a dose-dependent toxicity towards A431 cells and significantly hinders the migration of cancer cells, accompanying a prominent G1/S phase cell cycle arrest. Complementing these findings, remarkable free-radical scavenging activities and the presence of significant anti-oxidative and chemopreventive chemical compounds were also detected, highlighting the mechanism behind the observed chemopreventive effects by goat milk.

Conclusions

The outcomes indicate that goat milk's excellent anti-oxidant qualities are the primary explanation for its notable chemo-preventive effectiveness, suggesting the possible utilization of goat milk as a functional food to provide supportive therapy in the management of skin cancer, particularly in contexts where conventional treatments may have limitations or result in adverse effects.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X409190251121110634
2025-11-28
2026-02-22
Loading full text...

Full text loading...

/deliver/fulltext/cis/4/1/CIS-4-E2210299X409190.html?itemId=/content/journals/cis/10.2174/012210299X409190251121110634&mimeType=html&fmt=ahah

References

  1. NayikG.A. JagdaleY.D. GaikwadS.A. DevkatteA.N. DarA.H. DezmireanD.S. BobisO. RanjhaM.M.A.N. AnsariM.J. HemegH.A. AlotaibiS.S. Recent insights into processing approaches and potential health benefits of goat milk and its products: A review.Front Nutr2021878911710.3389/fnut.2021.78911734938763
    [Google Scholar]
  2. LiaoG. WangT. LiX. GuJ. JiaQ. WangZ. LiH. QianY. QiuJ. Comparison of the lipid composition of milk fat globules in goat (Capra hircus) milk during different lactations and human milk.Foods20241311161810.3390/foods1311161838890847
    [Google Scholar]
  3. AlKaisyQ.H. Al-SaadiJ.S. Al-RikabiA.K.J. AltemimiA.B. HesarinejadM.A. AbedelmaksoudT.G. Exploring the health benefits and functional properties of goat milk proteins.Food Sci Nutr202311105641565610.1002/fsn3.353137823128
    [Google Scholar]
  4. HammamA.R.A. SalmanS.M. ElfarukM.S. AlsaleemK.A. Goat milk: Compositional, technological, nutritional, and therapeutic aspects.Preprints202110.20944/preprints202108.0097.v1
    [Google Scholar]
  5. StergiadisS. NørskovN.P. PurupS. GivensI. LeeM.R.F. Comparative nutrient profiling of retail goat and cow milk.Nutrients20191110228210.3390/nu1110228231554167
    [Google Scholar]
  6. RenJ. YanG. YangL. KongL. GuanY. SunH. LiuC. LiuL. HanY. WangX. Cancer chemoprevention: Signaling pathways and strategic approaches.Signal Transduct Target Ther202510111310.1038/s41392‑025‑02167‑140246868
    [Google Scholar]
  7. LiuH.M. ChengM.Y. XunM.H. ZhaoZ.W. ZhangY. TangW. ChengJ. NiJ. WangW. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols.Int J Mol Sci2023244375510.3390/ijms2404375536835162
    [Google Scholar]
  8. KalogerakouT. AntoniadouM. The role of dietary antioxidants, food supplements and functional foods for energy enhancement in healthcare professionals.Antioxidants20241312150810.3390/antiox1312150839765836
    [Google Scholar]
  9. PeterleL. SanfilippoS. BorgiaF. Li PomiF. VadalàR. CostaR. CiceroN. GangemiS. The role of nutraceuticals and functional foods in skin cancer: Mechanisms and therapeutic potential.Foods20231213262910.3390/foods1213262937444367
    [Google Scholar]
  10. MorganD.M.L. Tetrazolium (MTT) assay for cellular viability and activity.Methods Mol Biol1998791791839463833
    [Google Scholar]
  11. KotianS.R. BhatK.M.R. PadmaD. PaiK.S.R. Influence of traditional medicines on the activity of keratinocytes in wound healing: An in-vitro study.Anat Cell Biol201952332433210.5115/acb.19.00931598362
    [Google Scholar]
  12. KhanF. AhmedF. PushparajP.N. AbuzenadahA. KumosaniT. BarbourE. AlQahtaniM. GauthamanK. Ajwa date (Phoenix dactylifera L.) extract inhibits human breast adenocarcinoma (MCF7) cells in vitro by inducing apoptosis and cell cycle arrest.PLoS One2016117e015896310.1371/journal.pone.015896327441372
    [Google Scholar]
  13. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  14. ReR. PellegriniN. ProteggenteA. PannalaA. YangM. Rice-EvansC. Original contribution antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radic Biol Med1999269-101231123710.1016/S0891‑5849(98)00315‑310381194
    [Google Scholar]
  15. ZhuK. ZhouH. QianH. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase.Process Biochem20064161296130210.1016/j.procbio.2005.12.029
    [Google Scholar]
  16. WuX. WangF. ChenM. WangJ. ZhangY. Quantification of free short-chain fatty acids in raw cow milk by gas chromatography-mass spectrometry.Foods2023127136710.3390/foods1207136737048189
    [Google Scholar]
  17. KalaimagalC Identification of bioactive compounds in flower of Tabernaemontana divaricata (L.) using gas chromatography–mass spectrometry analysis.Asian J Pharm Clin Res201912912913210.22159/ajpcr.2019.v12i9.34559
    [Google Scholar]
  18. KotreshaD ShruthiC N Chemical profiling and in vitro cytotoxic properties of Themeda triandra Forssk. against human bone osteosarcoma cell line (MG-63).Asian J Biol Life Sci2024131838910.5530/ajbls.2024.13.12
    [Google Scholar]
  19. CodiniM. CataldiS. Ambesi-ImpiombatoF. LazzariniA. FloridiA. LazzariniR. CurcioF. BeccariT. AlbiE. Gentamicin arrests cancer cell growth: The intriguing involvement of nuclear sphingomyelin metabolism.Int J Mol Sci20151622307231910.3390/ijms1602230725622250
    [Google Scholar]
  20. AstudilloA.M. MeanaC. GuijasC. PereiraL. LebreroP. BalboaM.A. BalsindeJ. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.J Lipid Res201859223724910.1194/jlr.M07914529167413
    [Google Scholar]
  21. BharathB. PerinbamK. DevanesanS. AlSalhiM.S. SaravananM. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells.J Mol Struct2021123513022910.1016/j.molstruc.2021.130229
    [Google Scholar]
  22. LouY. GuoZ. ZhuY. KongM. ZhangR. LuL. WuF. LiuZ. WuJ. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway.J Exp Clin Cancer Res201938124210.1186/s13046‑019‑1255‑331174565
    [Google Scholar]
  23. ChirumamillaP. DharavathS.B. TaduriS. GC–MS profiling and antibacterial activity of Solanum khasianum leaf and root extracts.Bull Natl Res Cent202246112710.1186/s42269‑022‑00818‑935571364
    [Google Scholar]
  24. SongY W LimY ChoS K 2,4 Di tert butylphenol, a potential HDAC6 inhibitor, induces senescence and mitotic catastrophe in human gastric adenocarcinoma AGS cells.Biochim Biophys Acta Mol Cell Res20181865567568310.1016/j.bbamcr.2018.02.00329427610
    [Google Scholar]
  25. A HA.J. F MahdiJ. FarooquiM. y HS. Gas chromatography-mass spectroscopic analysis of black plum seed (Syzygium cumini) extract in hexane.Asian J Pharm Clin Res201912221922210.22159/ajpcr.2019.v12i2.29396
    [Google Scholar]
  26. HadiM. Y. MohammedG. J. HameedI. H. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry.J Pharmacogn Phytother20168282410.5897/JPP2015.0364
    [Google Scholar]
  27. MontenegroI. MoreiraJ. RamírezI. DortaF. SánchezE. AlfaroJ.F. ValenzuelaM. Jara-GutiérrezC. MuñozO. AlvearM. WernerE. MadridA. VillenaJ. SeegerM. Chemical composition, antioxidant and anticancer activities of Leptocarpha rivularis DC flower extracts.Molecules20202616710.3390/molecules2601006733375633
    [Google Scholar]
  28. AmudhaP. JayalakshmiM. PushpabharathiN. VanithaV. Identification of bioactive components in enhalus acoroides seagrass extract by gas chromatography–mass spectrometry.Asian J Pharm Clin Res2018111031310.22159/ajpcr.2018.v11i10.25577
    [Google Scholar]
  29. BalachandranA. ChoiS.B. BeataM.M. MałgorzataJ. FroemmingG.R.A. LavillaC.A. BillacuraM.P. SiyumbwaS.N. OkechukwuP.N. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane.Molecules2023283104310.3390/molecules2803104336770709
    [Google Scholar]
  30. MishraS. VermaS.S. RaiV. AwastheeN. AryaJ.S. MaitiK.K. GuptaS.C. Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: Role of reactive oxygen species.Biomolecules20199415910.3390/biom904015931018580
    [Google Scholar]
  31. JayaramanS. Priya VeeraraghavanV. Antidiabetic and antioxidant potential of ethyl iso-allocholate is mediated through insulin receptor/IRS-1/Akt/GLUT 4 mediated pathways: In vitro and in silico mechanisms.Texila Int J Public Health202410.21522/TIJPH.2013.SE.24.03.Art015
    [Google Scholar]
  32. ThakurR.S. AhirwarB. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo.Yao Wu Shi Pin Fen Xi201927123123910.1016/j.jfda.2018.05.00130648576
    [Google Scholar]
  33. AbubackerM.N. DeviP.K. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence.Asian Pac J Trop Med20147S1S190S19310.1016/S1995‑7645(14)60230‑325312119
    [Google Scholar]
  34. UddinS.J. GriceD. TiralongoE. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum.Pharm Biol201250101276128010.3109/13880209.2012.67362822906240
    [Google Scholar]
  35. GazwiH.S.S. OmarM.O.A. MahmoudM.E. Phytochemical analysis, antioxidant capacities, and in vitro biological activities of the extract of seed coat as by-products of pea.BMC Chem2023171110.1186/s13065‑023‑00911‑836726157
    [Google Scholar]
  36. RajN.D. SinghD. A critical appraisal on ferulic acid: Biological profile, biopharmaceutical challenges and nano formulations.Health Sci Rev2022510006310.1016/j.hsr.2022.100063
    [Google Scholar]
  37. LailaF. FardiazD. YulianaN. D. DamanikM. R. M. Nur Annisa DewiF. Methanol extract of Coleus amboinicus (Lour) exhibited antiproliferative activity and induced programmed cell death in colon cancer cell.Int J Food Sci20202020906832610.1155/2020/906832632047805
    [Google Scholar]
  38. PrakashO. KumarA. KumarP. AjeetA. Anticancer potential of plants and natural products: A review.Am J Pharmacol Sci20131610411510.12691/ajps‑1‑6‑1
    [Google Scholar]
  39. De SilvaS.F. AlcornJ. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets.Pharmaceuticals20191226810.3390/ph1202006831060335
    [Google Scholar]
  40. RajeshE. SankariL. MalathiL. KrupaaJ. Naturally occurring products in cancer therapy.J Pharm Bioallied Sci201575181Suppl. 110.4103/0975‑7406.15589526015704
    [Google Scholar]
  41. SorrentiV. BuròI. ConsoliV. VanellaL. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects.Int J Mol Sci2023243201910.3390/ijms2403201936768340
    [Google Scholar]
  42. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci Rep2021111706210.1038/s41598‑021‑86391‑z33782460
    [Google Scholar]
  43. CakirB. Tunali-AkbayT. Potential anticarcinogenic effect of goat milk-derived bioactive peptides on HCT-116 human colorectal carcinoma cell line.Anal Biochem202162211416610.1016/j.ab.2021.11416633726980
    [Google Scholar]
  44. NarayananA. BaskaranS. AmalaradjouM. VenkitanarayananK. Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro.Int J Mol Sci20151635014502710.3390/ijms1603501425749477
    [Google Scholar]
  45. FriedlP. GilmourD. Collective cell migration in morphogenesis, regeneration and cancer.Nat Rev Mol Cell Biol200910744545710.1038/nrm272019546857
    [Google Scholar]
  46. MalumbresM. BarbacidM. Cell cycle, CDKs and cancer: A changing paradigm.Nat Rev Cancer20099315316610.1038/nrc260219238148
    [Google Scholar]
  47. JiX. XuW. CuiJ. MaY. ZhouS. Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells.Sci Rep201991257710.1038/s41598‑019‑39546‑y30796323
    [Google Scholar]
  48. BM. Role of lactic acid bacteria isolated from goat milk in cancer prevention.AIDOA20151210.16966/2470‑1025.108
    [Google Scholar]
  49. MedeirosG.K.V.V. QueirogaR.C.R.E. CostaW.K.A. GadelhaC.A.A. E LacerdaR.R. LacerdaJ.T.J.G. PintoL.S. BraganholE. TeixeiraF.C. de S BarbosaP.P. CamposM.I.F. GonçalvesG.F. PessôaH.L.F. GadelhaT.S. Proteomic of goat milk whey and its bacteriostatic and antitumour potential.Int J Biol Macromol201811311612310.1016/j.ijbiomac.2018.01.20029471095
    [Google Scholar]
/content/journals/cis/10.2174/012210299X409190251121110634
Loading
/content/journals/cis/10.2174/012210299X409190251121110634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test