Skip to content
2000
image of Tirzepatide: A Breakthrough Therapy for Obstructive Sleep Apnea and Metabolic Dysfunction

Abstract

Obstructive sleep apnea (OSA) is a breathing disorder characterized by repeated, complete, and partial upper airway blockage, which results in disturbances in sleep patterns, neurocognitive functions, and hypoxemia. It is strongly linked to obesity and metabolic dysfunction, contributing to cardiovascular and neurocognitive complications. Tirzepatide, a dual GIP/GLP-1 receptor agonist, has shown significant potential for weight loss with metabolic benefits, making it a potential therapeutic strategy for OSA by reducing fat deposition around the upper airway, improving insulin sensitivity, and lowering systemic inflammation. Emerging clinical studies have shown potential improvement in apnea-hypopnea index (AHI) and oxygenation. In this review, we have explored the role of tirzepatide in managing OSA by targeting obesity, metabolic dysfunction, and airway stability. Here, we have also examined tirzepatide mechanisms by highlighting clinical trials to find its efficacy in reducing OSA severity and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021398680251001102514
2025-10-24
2025-12-24
Loading full text...

Full text loading...

References

  1. Franklin K.A. Lindberg E. Obstructive sleep apnea is a common disorder in the population-A review on the epidemiology of sleep apnea. J. Thorac. Dis. 2015 7 8 1311 1322 10.3978/j.issn.2072‑1439.2015.06.11 26380759
    [Google Scholar]
  2. Suri T.M. Ghosh T. Mittal S. Hadda V. Madan K. Mohan A. Systematic review and meta-analysis of the prevalence of obstructive sleep apnea in Indian adults. Sleep Med. Rev. 2023 71 101829 10.1016/j.smrv.2023.101829 37517357
    [Google Scholar]
  3. Romero-Corral A. Caples S.M. Lopez-Jimenez F. Somers V.K. Interactions between obesity and obstructive sleep apnea: implications for treatment. Chest 2010 137 3 711 719 10.1378/chest.09‑0360 20202954
    [Google Scholar]
  4. Kuvat N. Tanriverdi H. Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. Clin. Respir. J. 2020 14 7 595 604 10.1111/crj.13175 32112481
    [Google Scholar]
  5. Pamidi S. Tasali E. Obstructive sleep apnea and type 2 diabetes: Is there a link? Front. Neurol. 2012 3 126 10.3389/fneur.2012.00126 23015803
    [Google Scholar]
  6. Georgoulis M. Yiannakouris N. Kechribari I. Dose-response relationship between weight loss and improvements in obstructive sleep apnea severity after a diet/lifestyle interventions: secondary analyses of the “MIMOSA” randomized clinical trial. J. Clin. Sleep Med. 2022 18 5 1251 1261 10.5664/jcsm.9834 34915980
    [Google Scholar]
  7. Tuomilehto H.P.I. Seppä J.M. Partinen M.M. Lifestyle intervention with weight reduction: First-line treatment in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2009 179 4 320 327 10.1164/rccm.200805‑669OC 19011153
    [Google Scholar]
  8. Jordan A.S. McSharry D.G. Malhotra A. Adult obstructive sleep apnoea. Lancet 2014 383 9918 736 747 10.1016/S0140‑6736(13)60734‑5 23910433
    [Google Scholar]
  9. Punjabi N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008 5 2 136 143 10.1513/pats.200709‑155MG 18250205
    [Google Scholar]
  10. Lavie L. Oxidative stress, inflammation and endothelial dysfunction in obstructive sleep apnea. Front. Biosci. 2015 20 1139 1154 10.2741/4377
    [Google Scholar]
  11. Chen Y. Liu H. Lip G.Y.H. Genetic correlations and causal insights: Pathways to precision medicine in patients with obstructive sleep apnoea and cardiovascular disease. Eur. J. Prev. Cardiol. 2024 zwae343 10.1093/eurjpc/zwae343 39414257
    [Google Scholar]
  12. Feng K. Yang J. Liu K. Shared genetic associations and etiology between obstructive sleep apnea and CVDs: A genome-wide cross-trait analysis and bidirectional Mendelian randomization analysis. Eur. J. Prev. Cardiol. 2024 zwae347 10.1093/eurjpc/zwae347 39499187
    [Google Scholar]
  13. Schwab R.J. Pasirstein M. Pierson R. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am. J. Respir. Crit. Care Med. 2003 168 5 522 530 10.1164/rccm.200208‑866OC 12746251
    [Google Scholar]
  14. Messineo L. Bakker J.P. Cronin J. Yee J. White D.P. Obstructive sleep apnea and obesity: A review of epidemiology, pathophysiology and the effect of weight-loss treatments. Sleep Med. Rev. 2024 78 101996 6 10.1016/j.smrv.2024.101996 39244884
    [Google Scholar]
  15. Lam B.C.C. Lim A.Y.L. Chan S.L. Yum M.P.S. Koh N.S.Y. Finkelstein E.A. The impact of obesity: A narrative review. Singapore Med. J. 2023 64 3 163 171 10.4103/singaporemedj.SMJ‑2022‑232 36876622
    [Google Scholar]
  16. Abdeyrim A. Zhang Y. Li N. Impact of obstructive sleep apnea on lung volumes and mechanical properties of the respiratory system in overweight and obese individuals. BMC Pulm. Med. 2015 15 1 76 10.1186/s12890‑015‑0063‑6 26209328
    [Google Scholar]
  17. Salome C.M. King G.G. Berend N. Physiology of obesity and effects on lung function. J. Appl. Physiol. 1985 108 1 206 211 10.1152/japplphysiol.00694.2009
    [Google Scholar]
  18. Gell L.K. Vena D. Alex R.M. Neural ventilatory drive decline as a predominant mechanism of obstructive sleep apnoea events. Thorax 2022 77 7 707 716 10.1136/thoraxjnl‑2021‑217756 35064045
    [Google Scholar]
  19. Xiao S.C. He B.T. Steier J. Moxham J. Polkey M.I. Luo Y.M. Neural respiratory drive and arousal in patients with obstructive sleep apnea hypopnea. Sleep 2015 38 6 941 949 10.5665/sleep.4746 25669181
    [Google Scholar]
  20. Masa J.F. Pépin J.L. Borel J.C. Mokhlesi B. Murphy P.B. Sánchez-Quiroga M.Á. Obesity hypoventilation syndrome. Eur. Respir. Rev. 2019 28 151 180097 10.1183/16000617.0097‑2018 30872398
    [Google Scholar]
  21. Beauvais L. Gillibert A. Cuvelier A. Artaud-Macari E. Melone M.A. Hypoxic burden and sleep hypoventilation in obese patients. Sleep Med. 2024 124 50 57 10.1016/j.sleep.2024.09.007 39276698
    [Google Scholar]
  22. Pardak P. Filip R. Woliński J. The impact of sleep-disordered breathing on ghrelin, obestatin, and leptin profiles in patients with obesity or overweight. J. Clin. Med. 2022 11 7 2032 10.3390/jcm11072032 35407646
    [Google Scholar]
  23. Sánchez-de-la-Torre M. Barceló A. Piérola J. de la Peña M. Valls J. Barbé F. Impact of obstructive sleep apnea on the 24-h metabolic hormone profile. Sleep Med. 2014 15 6 625 630 10.1016/j.sleep.2014.03.007 24856648
    [Google Scholar]
  24. Li J Zeng L Feng T The pathophysiological relationship and treatment progress of obstructive sleep apnea syndrome, obesity, and metabolic syndrome. Explor Res Hypothesis Med 2025 000 000 000 10.14218/ERHM.2024.00048
    [Google Scholar]
  25. Song S.O. He K. Narla R.R. Kang H.G. Ryu H.U. Boyko E.J. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab. J. 2019 43 2 144 155 10.4093/dmj.2018.0256 30993938
    [Google Scholar]
  26. Tenda E.D. Henrina J. Cha J.H. Obstructive sleep apnea: Overlooked comorbidity in patients with diabetes. World J. Diabetes 2024 15 7 1448 1460 10.4239/wjd.v15.i7.1448 39099813
    [Google Scholar]
  27. Dempsey J.A. Veasey S.C. Morgan B.J. O’Donnell C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010 90 1 47 112 10.1152/physrev.00043.2008 20086074
    [Google Scholar]
  28. Shiina K. Obstructive sleep apnea -related hypertension: A review of the literature and clinical management strategy. Hypertens. Res. 2024 47 11 3085 3098 10.1038/s41440‑024‑01852‑y 39210083
    [Google Scholar]
  29. He J. Zhou H. Xiong J. Huang Y. Huang N. Jiang J. Association between elevated homocysteine levels and obstructive sleep apnea hypopnea syndrome: A systematic review and updated meta-analysis. Front. Endocrinol. 2024 15 1378293 10.3389/fendo.2024.1378293 38887264
    [Google Scholar]
  30. Maniaci A. Lavalle S. Parisi F.M. Impact of obstructive sleep apnea and sympathetic nervous system on cardiac health: A comprehensive review. J. Cardiovasc. Dev. Dis. 2024 11 7 204 10.3390/jcdd11070204 39057624
    [Google Scholar]
  31. Jean-Louis G. Zizi F. Clark L.T. Brown C.D. McFarlane S.I. Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008 4 3 261 272 10.5664/jcsm.27191 18595441
    [Google Scholar]
  32. Smolensky M.H. Hermida R.C. Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med. Rev. 2017 33 4 16 10.1016/j.smrv.2016.02.003 27076261
    [Google Scholar]
  33. Iiyori N. Alonso L.C. Li J. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am. J. Respir. Crit. Care Med. 2007 175 8 851 857 10.1164/rccm.200610‑1527OC 17272786
    [Google Scholar]
  34. Mehra R. Redline S. Sleep apnea: A proinflammatory disorder that coaggregates with obesity. J. Allergy Clin. Immunol. 2008 121 5 1096 1102 10.1016/j.jaci.2008.04.002 18466782
    [Google Scholar]
  35. Drager L.F. Jun J. Polotsky V.Y. Obstructive sleep apnea and dyslipidemia: implications for atherosclerosis. Curr. Opin. Endocrinol. Diabetes Obes. 2010 17 2 161 165 10.1097/MED.0b013e3283373624 20125003
    [Google Scholar]
  36. Meszaros M. Bikov A. Obstructive sleep apnoea and lipid metabolism: the summary of evidence and future perspectives in the pathophysiology of OSA-associated dyslipidaemia. Biomedicines 2022 10 11 2754 10.3390/biomedicines10112754 36359273
    [Google Scholar]
  37. Drager L.F. Togeiro S.M. Polotsky V.Y. Lorenzi-Filho G. Obstructive sleep apnea: A cardiometabolic risk in obesity and the metabolic syndrome. J. Am. Coll. Cardiol. 2013 62 7 569 576 10.1016/j.jacc.2013.05.045 23770180
    [Google Scholar]
  38. Karkinski D. Georgievski O. Dzekova-Vidimliski P. Milenkovic T. Dokic D. Obstructive sleep apnea and lipid abnormalities. Open Access Maced. J. Med. Sci. 2017 5 1 19 22 10.3889/oamjms.2017.011 28293310
    [Google Scholar]
  39. Corrao S. Pollicino C. Maggio D. Torres A. Argano C. Tirzepatide against obesity and insulin-resistance: pathophysiological aspects and clinical evidence. Front. Endocrinol. 2024 15 1402583 10.3389/fendo.2024.1402583 38978621
    [Google Scholar]
  40. Coskun T. Sloop K.W. Loghin C. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018 18 3 14 10.1016/j.molmet.2018.09.009 30473097
    [Google Scholar]
  41. Jastreboff A.M. Aronne L.J. Ahmad N.N. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022 387 3 205 216 10.1056/NEJMoa2206038 35658024
    [Google Scholar]
  42. Xia Y. Jin J. Sun Y. Tirzepatide’s role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance. Int. Immunopharmacol. 2024 143 Pt 2 113499 10.1016/j.intimp.2024.113499 39471690
    [Google Scholar]
  43. Alluri A.A. Mohan Kurien M. Pokar N.P. Exploring the therapeutic potential of GLP-1 receptor agonists in the management of obstructive sleep apnea: A comprehensive review. J. Basic Clin. Physiol. Pharmacol. 2025 36 1 13 25 10.1515/jbcpp‑2024‑0193 39804718
    [Google Scholar]
  44. Sokary S. Bawadi H. The promise of tirzepatide: A narrative review of metabolic benefits. Prim. Care Diabetes 2025 19 3 229 237 10.1016/j.pcd.2025.03.008 40221292
    [Google Scholar]
  45. Ding Y. Shi Y. Guan R. Evaluation and comparison of efficacy and safety of tirzepatide and semaglutide in patients with type 2 diabetes mellitus: A Bayesian network meta-analysis. Pharmacol. Res. 2024 199 107031 10.1016/j.phrs.2023.107031 38061595
    [Google Scholar]
  46. Kukanti C. Chowdhury S.R. Singh G.P. Tirzepatide for obstructive sleep apnea: A novel therapeutic promise and the perioperative considerations. Indian J. Otolaryngol. Head Neck Surg. 2025 77 6 2430 2432 10.1007/s12070‑025‑05485‑6 40420878
    [Google Scholar]
  47. Dragonieri S. Portacci A. Quaranta V.N. Therapeutic potential of glucagon-like peptide-1 receptor agonists in obstructive sleep apnea syndrome management: A narrative review. Diseases 2024 12 9 224 10.3390/diseases12090224 39329893
    [Google Scholar]
  48. Javaheri S. Javaheri S. Gozal D. Treatment of OSA and its impact on cardiovascular disease, part 2: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2024 84 13 1224 1240 10.1016/j.jacc.2024.07.024 39293885
    [Google Scholar]
  49. Lin F. Yu B. Ling B. Weight loss efficiency and safety of tirzepatide: A Systematic review. PLoS One 2023 18 5 e0285197 10.1371/journal.pone.0285197 37141329
    [Google Scholar]
  50. Tai J.E. Phillips C.L. Yee B.J. Grunstein R.R. Obstructive sleep apnoea in obesity: A review. Clin. Obes. 2024 14 3 e12651 10.1111/cob.12651 38419261
    [Google Scholar]
  51. Foster G.D. Borradaile K.E. Sanders M.H. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: The sleep ahead study. Arch. Intern. Med. 2009 169 17 1619 1626 10.1001/archinternmed.2009.266 19786682
    [Google Scholar]
  52. Valensi P. Benmohammed K. Zerguine M. Bidirectional interplay of sleep apnea syndrome and cardio-vascular disorders in diabetes. Diabetes Res. Clin. Pract. 2025 220 111984 10.1016/j.diabres.2024.111984 39761874
    [Google Scholar]
  53. Minaeian S. Rahmani Fard S. Ahsant S. Evaluation of the possible role of interleukin-6 and tumor necrosis factor-alpha in pathogenesis of obstructive sleep apnea in obese patients: a case-control study. Galen Med. J. 2022 11 e2431 10.31661/gmj.v11i.2431 37200686
    [Google Scholar]
  54. Ryan S. Cummins E.P. Farre R. Understanding the pathophysiological mechanisms of cardiometabolic complications in obstructive sleep apnoea: towards personalised treatment approaches. Eur. Respir. J. 2020 56 2 1902295 10.1183/13993003.02295‑2019 32265303
    [Google Scholar]
  55. Bhat B. Nikitha A.S. Tirzepatide in obstructive sleep apnea: A comprehensive review of its role and impact. J. Sleep Med. Disord. 2025 9 1 1144 10.47739/2379‑0822/1144
    [Google Scholar]
  56. Cho Y.K. La Lee Y. Jung C.H. The cardiovascular effect of tirzepatide: a glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide dual agonist. J. Lipid Atheroscler. 2023 12 3 213 222 10.12997/jla.2023.12.3.213 37800107
    [Google Scholar]
  57. Hamza M. Papamargaritis D. Davies M.J. Tirzepatide for overweight and obesity management. Expert Opin. Pharmacother. 2025 26 1 31 49 10.1080/14656566.2024.2436595 39632534
    [Google Scholar]
  58. Malhotra A. Grunstein R.R. Fietze I. Tirzepatide for the treatment of obstructive sleep apnea and obesity. N. Engl. J. Med. 2024 391 13 1193 1205 10.1056/NEJMoa2404881 38912654
    [Google Scholar]
  59. Wen J. Nadora D. Truong A. Exploring the effects of tirzepatide on obstructive sleep apnea: A literature review. Cureus 2025 17 3 e80164 10.7759/cureus.80164 40190919
    [Google Scholar]
  60. Sallam M. Snygg J. Ghandour S.E. Sallam M. Efficacy and safety of tirzepatide for weight management in non-diabetic obese individuals: a narrative review. Obesities 2025 5 2 26 10.3390/obesities5020026
    [Google Scholar]
  61. Oe Y. Omori T. Aimono E. Case Report: Amelioration of severe metabolic dysfunction-associated steatohepatitis after switching from conventional ALP-1RAs to tirzepatide. Front. Endocrinol. 2025 16 1501984 10.3389/fendo.2025.1501984 40491599
    [Google Scholar]
  62. Aronne L.J. Sattar N. Horn D.B. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: The SURMOUNT-4 randomized clinical trial. JAMA 2024 331 1 38 48 10.1001/jama.2023.24945 38078870
    [Google Scholar]
  63. Tan B. Pan X.H. Chew H.S.J. Efficacy and safety of tirzepatide for treatment of overweight or obesity. A systematic review and meta-analysis. Int. J. Obes. 2023 47 8 677 685 10.1038/s41366‑023‑01321‑5 37253796
    [Google Scholar]
  64. Anderer S. FDA approves tirzepatide as first drug for obstructive sleep apnea. JAMA 2025 333 8 656 10.1001/jama.2024.28055 39853991
    [Google Scholar]
  65. Gaines J. Vgontzas A.N. Fernandez-Mendoza J. Bixler E.O. Obstructive sleep apnea and the metabolic syndrome: The road to clinically-meaningful phenotyping, improved prognosis, and personalized treatment. Sleep Med. Rev. 2018 42 211 219 10.1016/j.smrv.2018.08.009 30279095
    [Google Scholar]
  66. Altobaishat O. Farid Gadelmawla A. Balbaa E. Turkmani M. Abouzid M. Safety and efficacy of glucagon-like peptide-1 receptor agonists in patients with obstructive sleep apnea: A systematic review and meta-analysis of randomized controlled trials. Eur. Clin. Respir. J. 2025 12 1 2484048 10.1080/20018525.2025.2484048 40144943
    [Google Scholar]
  67. Cohen O. Kundel V. Barbé F. The great controversy of obstructive sleep apnea treatment for cardiovascular risk benefit: Advancing the science through expert consensus: An official American Thoracic Society workshop report. Ann. Am. Thorac. Soc. 2025 22 1 1 22 10.1513/AnnalsATS.202409‑981ST 39513996
    [Google Scholar]
  68. Wang S.H. Keenan B.T. Wiemken A. Effect of weight loss on upper airway anatomy and the apnea–hypopnea index: The importance of tongue fat. Am. J. Respir. Crit. Care Med. 2020 201 6 718 727 10.1164/rccm.201903‑0692OC 31918559
    [Google Scholar]
  69. Lempesis I.G. Liu J. Dalamaga M. The catcher in the gut: Tirzepatide, a dual incretin analog for the treatment of type 2 diabetes mellitus and obesity. Metab. Open 2022 16 100220 10.1016/j.metop.2022.100220 36530219
    [Google Scholar]
  70. Sillassen C.D.B. Petersen J.J. Kamp C.B. Adverse effects with tirzepatide: a protocol for a systematic review with meta-analysis and Trial Sequential Analysis. BMJ Open 2025 15 4 e094947 10.1136/bmjopen‑2024‑094947 40233950
    [Google Scholar]
  71. Parab P. Chaudhary P. Mukhtar S. Role of glucagon-like peptide-1 (GLP-1) receptor agonists in cardiovascular risk management in patients with type 2 diabetes mellitus: a systematic review. Cureus 2023 15 9 e45487 10.7759/cureus.45487 37859909
    [Google Scholar]
  72. Beccuti G. Bioletto F. Parasiliti-Caprino M. Estimating cardiovascular benefits of tirzepatide in sleep apnea and obesity: insight from the SURMOUNT-OSA trials. Curr. Obes. Rep. 2024 13 4 739 742 10.1007/s13679‑024‑00592‑x 39378016
    [Google Scholar]
  73. Zhang X. McAdam Marx C. Short-term cost-effectiveness analysis of tirzepatide for the treatment of type 2 diabetes in the United States. J. Manag. Care Spec. Pharm. 2023 29 3 276 284 10.18553/jmcp.2023.29.3.276 36840958
    [Google Scholar]
  74. Randerath W. de Lange J. Hedner J. Current and novel treatment options for obstructive sleep apnoea. ERJ Open Res. 2022 8 2 00126 02022 10.1183/23120541.00126‑2022 35769417
    [Google Scholar]
  75. Afridi Z. Farhan K. Fahad F. Khan M.W.Z. Salomon I. Tirzepatide: A dual-action solution for obstructive sleep apnea and obesity. Ann. Med. Surg. 2025 87 2 436 437 10.1097/MS9.0000000000002975 40110282
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021398680251001102514
Loading
/content/journals/chyr/10.2174/0115734021398680251001102514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test