Skip to content
2000
image of Arterial Stiffness Index as an Indicator of Coronary Artery Disease Presence and Severity

Abstract

Introduction

The arterial stiffness index (ASI) is a widely recognized metric used to assess arterial endothelial function and predict cardiovascular issues. This study has validated ASI as a non-invasive clinical assessment tool for atherosclerotic coronary artery disease (CAD).

Methods

We conducted a retrospective, observational study involving 396 patients undergoing coronary angiography. ASI was measured using the CardioVision MS-2000 system, and the SYNTAX scores (SXscore) were computed to evaluate CAD severity. Patients were divided into two groups according to the SXscore: low SXscore (<22) and intermediate-high SXscore (≥ 22).

Results

In total, 257 (64.9%) patients had CAD, of whom 166 (64.6%) had low (<22), 75(29.2%) had intermediate (23−32), and 16 (6.2%) had high (≥ 33) SXscore. ASI was significantly higher in CAD patients (120.82 ± 76.26 mmHg×10) compared to non-CAD patients (56.60 ± 35.89 mmHg×10; < 0.01). In the multivariate regression model, a significant association was observed between ASI and CAD, with an odds ratio (OR) of 1.031 [95% confidence interval (CI): 1.022−1.040; < 0.0001]. Additionally, ASI demonstrated an independent association with both intermediate and high SXscore (adjusted OR: 1.027; 95% CI: 1.020−1.034; < 0.0001). The levels of ASI differed significantly in groups of patients with control, low SXScore, and intermediate-high SXScore as follows: 56.60±35.89 mmHg×10, 92.67±51.79 mmHg×10, and 172.2±86.6 mmHg×10, respectively ( < 0.01). ASI exhibited 59% sensitivity and 90% specificity for recognizing CAD.

Discussion

ASI serves as a non-invasive biomarker that independently predicts the risk of CAD and shows a positive correlation with coronary plaque burden and the severity of atherosclerosis. By assessing arterial elasticity and vascular endothelial function, this metric offers significant clinical value for the early detection of vascular dysfunction and subclinical atherosclerosis.

Conclusion

Our findings suggested ASI to accurately evaluate arterial elastic function and provide information on CAD severity.

Loading

Article metrics loading...

/content/journals/chyr/10.2174/0115734021377631251001111712
2025-10-27
2026-02-03
Loading full text...

Full text loading...

References

  1. Boshanov Z. Kaliyev A.A. Mussin N.M. Global trends in restenosis research within acute coronary syndrome: A bibliometric analysis. Eur. Rev. Med. Pharmacol. Sci. 2024 28 17 4264 4275 10.26355/eurrev_202409_36715 39297592
    [Google Scholar]
  2. Arnold N. Goßling A. Bay B. Lipoprotein (a) and incident coronary heart disease in the community: Impact of traditional cardiovascular risk factors. Eur. J. Prev. Cardiol. 2025 zwaf340 10.1093/eurjpc/zwaf340 40504886
    [Google Scholar]
  3. Nouraei H. Qiu F. Haldenby O. Variations of the extent of obstructive coronary artery disease among Canadian immigrants. J. Am. Heart Assoc. 2025 14 9 e037534 10.1161/JAHA.124.037534 40265578
    [Google Scholar]
  4. Feng Y.T. Feng X.F. Sudden cardiac death in patients with myocardial infarction: 1.5 primary prevention. Rev. Cardiovasc. Med. 2021 22 3 807 816 10.31083/j.rcm2203087 34565079
    [Google Scholar]
  5. Willich S.N. Maclure M. Mittleman M. Arntz H.R. Muller J.E. Sudden cardiac death. support for a role of triggering in causation. Circulation 1993 87 5 1442 1450 10.1161/01.CIR.87.5.1442 8490998
    [Google Scholar]
  6. Prati F. Gurguglione G. Biccire F. Sudden cardiac death in ischaemic heart disease: Coronary thrombosis or myocardial fibrosis? Eur. Heart J. Suppl. 2023 25 Suppl. B B136 B139 10.1093/eurheartjlabelp/suad093 37091636
    [Google Scholar]
  7. Schoepf I.C. Thorball C.W. Ledergerber B. Coronary artery disease–associated and longevity-associated polygenic risk scores for prediction of coronary artery disease events in persons living with human immunodeficiency virus: The swiss HIV cohort study. Clin. Infect. Dis. 2021 73 9 1597 1604 10.1093/cid/ciab521 34091660
    [Google Scholar]
  8. Scalise E. Costa D. Gallelli G. Biomarkers and social determinants in atherosclerotic arterial diseases: A scoping review. Ann. Vasc. Surg. 2025 113 41 63 10.1016/j.avsg.2024.12.076 39863282
    [Google Scholar]
  9. Santangelo G. Gherbesi E. Donisi L. Imaging approaches in risk stratification of patients with coronary artery disease: A narrative review. Arch. Med. Sci. 2024 21 1 16 31 10.5114/aoms/188808 40190322
    [Google Scholar]
  10. Tutar M. Kocak H.G. Kocak M. Geographical variations and predictors of coronary artery disease mortality in Turkiye: An environmental and behavioral analysis. BMC Cardiovasc. Disord. 2024 24 1 554 10.1186/s12872‑024‑04240‑z 39395979
    [Google Scholar]
  11. Hahad O. Sagheer U. Nasir K. Exposomic determinants of atherosclerosis: Recent evidence. Curr. Atheroscler. Rep. 2025 27 1 28 10.1007/s11883‑025‑01274‑2 39841313
    [Google Scholar]
  12. Higashi Y. Noninvasive assessment of vascular function. JACC Asia 2024 4 12 898 911 10.1016/j.jacasi.2024.09.015 39802992
    [Google Scholar]
  13. Loboda D. Golba K.S. Gurowiec P. Bredelytė A. Razbadauskas A. Sarecka-Hujar B. Variability in arterial stiffness and vascular endothelial function after COVID-19 during 1.5 years of follow-up—systematic review and meta-analysis. Life 2025 15 4 520 10.3390/life15040520 40283075
    [Google Scholar]
  14. Cao T. Cheng Z. Wei Y. Arterial stiffness, central blood pressure, and the risk of incident stroke in hypertensive adults. Eur. J. Neurol. 2025 32 5 e70178 10.1111/ene.70178 40344294
    [Google Scholar]
  15. Duprez D.A. Is vascular stiffness a target for therapy? Cardiovasc. Drugs Ther. 2010 24 4 305 310 10.1007/s10557‑010‑6250‑z 20628896
    [Google Scholar]
  16. Fazlıoğlu M. Şentürk T. Kumbay E. Small arterial elasticity predicts the extent of coronary artery disease: Relationship with serum uric acid. Atherosclerosis 2009 202 1 200 204 10.1016/j.atherosclerosis.2008.04.014 18511056
    [Google Scholar]
  17. Patel R.S. Al Mheid I. Morris A.A. Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis 2011 218 1 90 95 10.1016/j.atherosclerosis.2011.04.033 21605864
    [Google Scholar]
  18. Torngren K. Rylance R. Björk J. Association of coronary calcium score with endothelial dysfunction and arterial stiffness. Atherosclerosis 2020 313 70 75 10.1016/j.atherosclerosis.2020.09.022 33032235
    [Google Scholar]
  19. Katsuda S. Miyake M. Kobayashi D. Hazama A. Kusanagi M. Takazawa K. Does the augmentation index of pulse waves truly increase with progression of atherosclerosis? An experimental study with hypercholesterolemic rabbits. Am. J. Hypertens. 2013 26 3 311 317 10.1093/ajh/hps037 23382480
    [Google Scholar]
  20. Hahn L.A. Mackinnon A. Foley D.L. The role of arterial elasticity and cardiovascular peripheral resistance as clinically relevant indices of health status in people with psychosis. Schizophr. Res. 2017 184 88 95 10.1016/j.schres.2016.11.046 27939827
    [Google Scholar]
  21. Bhatt S.D. Hinderliter A.L. Stouffer G.A. Influence of sex on the accuracy of oscillometric-derived blood pressures. J. Clin. Hypertens. 2011 13 2 112 119 10.1111/j.1751‑7176.2010.00391.x 21272199
    [Google Scholar]
  22. Park S.M. Seo H.S. Lim H.E. Assessment of arterial stiffness index as a clinical parameter for atherosclerotic coronary artery disease. Circ. J. 2005 69 10 1218 1222 10.1253/circj.69.1218 16195620
    [Google Scholar]
  23. Alhalimi T.A. Wang T. Tanaka H. Influence of various legwear during arterial stiffness measurement. J. Hum. Hypertens. 2025 39 6 457 461 10.1038/s41371‑025‑01023‑7 40319183
    [Google Scholar]
  24. Xin M. Kumar V. Narisawa M. Jin C. Xu W. Cheng X.W. Machine learning prediction model for carotid‐femoral pulse wave velocity in cardiovascular health assessments. J. Clin. Hypertens. 2025 27 5 e70049 10.1111/jch.70049 40417970
    [Google Scholar]
  25. Caughey M.C. Loehr L.R. Cheng S. Solomon S.D. Avery C. Hinderliter A.L. Associations between echocardiographic arterial compliance and incident cardiovascular disease in blacks: The ARIC study. Am. J. Hypertens. 2015 28 1 81 88 10.1093/ajh/hpu087 24842391
    [Google Scholar]
  26. Ranman M.A. Hara K. Floras J.S. Influence of prior exercise on stroke volume to pulse pressure ratio in young subjects with hypertension or dilated cardiomyopathy. Can. J. Physiol. Pharmacol. 1997 75 10-11 1232 1240 10.1139/y97‑151 9431448
    [Google Scholar]
  27. Kao Y.T. Wang S.T. Shih C.M. Arterial stiffness index and coronary artery plaques in patients with subclinical coronary atherosclerosis. Acta Cardiol Sin 2015 31 1 59 65 10.6515/acs20140630b 27122847
    [Google Scholar]
  28. Ganji V. Sowganthikashri A. Taranikanti M. Arterial stiffness as a screening tool for cardiovascular risk in health and disease. J. Family Med. Prim. Care 2024 13 8 3005 3010 10.4103/jfmpc.jfmpc_1563_23 39228619
    [Google Scholar]
  29. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022. Diabetes Care 2022 45 Suppl. 1 S17 S38 10.2337/dc22‑S002 34964875
    [Google Scholar]
  30. Zhang H. Gao Y. Wu D. Zhang D. The relationship of lipoprotein-associated phospholipase A2 activity with the seriousness of coronary artery disease. BMC Cardiovasc. Disord. 2020 20 1 295 10.1186/s12872‑020‑01580‑4 32546193
    [Google Scholar]
  31. Almeida A.S. Fuchs F.C. Silva A.G. The performance of SYNTAX score versus the coronary angiogram standard evaluation in the prediction of cardiovascular events in a cohort of patients with stable coronary heart disease. Cardiovasc. Diagn. Ther. 2022 12 5 563 576 10.21037/cdt‑22‑172 36329954
    [Google Scholar]
  32. Nedkoff L. Briffa T. Zemedikun D. Herrington S. Wright F.L. Global trends in atherosclerotic cardiovascular disease. Clin. Ther. 2023 45 11 1087 1091 10.1016/j.clinthera.2023.09.020 37914585
    [Google Scholar]
  33. Abbas A. Raza A. Ullah M. A comprehensive review: Epidemiological strategies, catheterization and biomarkers used as a bioweapon in diagnosis and management of cardio vascular diseases. Curr. Probl. Cardiol. 2023 48 7 101661 10.1016/j.cpcardiol.2023.101661 36822564
    [Google Scholar]
  34. Law C.C. Puranik R. Fan J. Fei J. Hambly B.D. Bao S. Clinical implications of IL-32, IL-34 and IL-37 in atherosclerosis: Speculative role in cardiovascular manifestations of COVID-19. Front. Cardiovasc. Med. 2021 8 630767 10.3389/fcvm.2021.630767 34422917
    [Google Scholar]
  35. Eshghjoo S. Jayaraman A. Sun Y. Alaniz R.C. Microbiota-mediated immune regulation in atherosclerosis. Molecules 2021 26 1 179 10.3390/molecules26010179 33401401
    [Google Scholar]
  36. Stróźecki P. Kozłowski M. Kurowski R. Naruszewicz R. Arterial stiffness--pathophysiological significance and practical aspects of assessment. Przegl. Lek. 2005 62 Suppl. 2 11 14 16623110
    [Google Scholar]
  37. Paapstel K. Kals J. Metabolomics of arterial stiffness. Metabolites 2022 12 5 370 10.3390/metabo12050370 35629874
    [Google Scholar]
  38. Shi Y. Wu L.D. Feng X.H. Estimated pulse wave velocity predicts all-cause and cardiovascular-cause mortality in individuals with hypertension — findings from a national health and nutrition examination study 1999–2018 —. Circ. J. 2024 88 3 417 424 10.1253/circj.CJ‑23‑0674 38267051
    [Google Scholar]
  39. Jucevičienė A. Puronaitė R. Badarienė J. Ryliškytė L. Aortic pulse wave velocity predicts cardiovascular mortality among middle-aged metabolic syndrome subjects without overt cardiovascular disease. Nutr. Metab. (Lond.) 2024 21 1 98 10.1186/s12986‑024‑00875‑z 39617940
    [Google Scholar]
  40. Nabeel P.M. Raj K.V. Joseph J. Image-free ultrasound for local and regional vascular stiffness assessment: The ARTSENS Plus. J. Hypertens. 2022 40 8 1537 1544 10.1097/HJH.0000000000003181 35730407
    [Google Scholar]
  41. Lee S.J. Kim H. Oh B.K. Association of inter-arm systolic blood pressure differences with arteriosclerosis and atherosclerosis: A cohort study of 117,407 people. Atherosclerosis 2022 342 19 24 10.1016/j.atherosclerosis.2021.12.003 35026580
    [Google Scholar]
  42. McLeod A.L. Uren N.G. Wilkinson I.B. Non-invasive measures of pulse wave velocity correlate with coronary arterial plaque load in humans. J. Hypertens. 2004 22 2 363 368 10.1097/00004872‑200402000‑00021 15076195
    [Google Scholar]
  43. Elosua R. Toloba A. Arnold R. Carotid artery stiffness and risk of vascular events and mortality: The REGICOR study. Rev. Esp. Cardiol. 2024 77 4 314 323 10.1016/j.rec.2023.09.004 37816453
    [Google Scholar]
  44. Stone K. Fryer S. McDonnell B.J. Aortic-femoral stiffness gradient and cardiovascular risk in older adults. Hypertension 2024 81 12 e185 e196 10.1161/HYPERTENSIONAHA.124.23392 39371003
    [Google Scholar]
  45. Wu Z. Lan Y. Wu D. Chen S. Jiao R. Wu S. Arterial stiffness mediates insulin resistance-related risk of atherosclerotic cardiovascular disease: A real-life, prospective cohort study. Eur. J. Prev. Cardiol. 2025 zwaf030 10.1093/eurjpc/zwaf030 39847612
    [Google Scholar]
  46. Tousoulis D. Siasos G. Maniatis K. Serum osteoprotegerin and osteopontin levels are associated with arterial stiffness and the presence and severity of coronary artery disease. Int. J. Cardiol. 2013 167 5 1924 1928 10.1016/j.ijcard.2012.05.001 22640692
    [Google Scholar]
  47. Mourouzis K. Siasos G. Bozini N. Association of growth differentiation factor 15 with arterial stiffness and endothelial function in subpopulations of patients with coronary artery disease: A proof-of-concept study. Recent Adv. Inflamm. Allergy Drug Discov. 2022 16 2 107 115 10.2174/2772270817666221104120923 36336806
    [Google Scholar]
  48. Kingwell B.A. Waddell T.K. Medley T.L. Cameron J.D. Dart A.M. Large artery stiffness predicts ischemic threshold in patients with coronary artery disease. J. Am. Coll. Cardiol. 2002 40 4 773 779 10.1016/S0735‑1097(02)02009‑0 12204510
    [Google Scholar]
  49. Tritakis V. Tzortzis S. Ikonomidis I. Association of arterial stiffness with coronary flow reserve in revascularized coronary artery disease patients. World J. Cardiol. 2016 8 2 231 239 10.4330/wjc.v8.i2.231 26981218
    [Google Scholar]
  50. Zaaba N Yuvaraju P Beegam S Direct effects of waterpipe smoke extract on aortic endothelial cells: An in vitro study. Physiol Res 2025 74 (1/2025) 69 78 10.33549/physiolres.935409 401261442
    [Google Scholar]
  51. He X. Zeng H. Chen Y. Endothelial progenitor cells and chronic obstructive pulmonary disease: From basic research to clinical application. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024 49 12 1966 1972 10.11817/j.issn.1672‑7347.2024.240412 40195669
    [Google Scholar]
  52. Kremer R. Williams A. Wardlaw J. Endothelial cells as key players in cerebral small vessel disease. Nat. Rev. Neurosci. 2025 26 3 179 188 10.1038/s41583‑024‑00892‑0 39743557
    [Google Scholar]
  53. Bartkowiak K. Bartkowiak M. Jankowska-Steifer E. Expression of mRNA for molecules that regulate angiogenesis, endothelial cell survival, and vascular permeability is altered in endothelial cells isolated from db/db mouse hearts. Histochem. Cell Biol. 2024 162 6 523 539 10.1007/s00418‑024‑02327‑4 39317805
    [Google Scholar]
  54. Lee P.S.S. Poh K.K. Endothelial progenitor cells in cardiovascular diseases. World J. Stem Cells 2014 6 3 355 366 10.4252/wjsc.v6.i3.355 25126384
    [Google Scholar]
  55. Peyter A.C. Armengaud J.B. Guillot E. Yzydorczyk C. Endothelial progenitor cells dysfunctions and cardiometabolic disorders: From mechanisms to therapeutic approaches. Int. J. Mol. Sci. 2021 22 13 6667 10.3390/ijms22136667 34206404
    [Google Scholar]
  56. Quarti-Trevano F. Dell’Oro R. Cuspidi C. Ambrosino P. Grassi G. Endothelial, vascular and sympathetic alterations as therapeutic targets in chronic heart failure. Biomedicines 2023 11 3 803 10.3390/biomedicines11030803 36979781
    [Google Scholar]
  57. Grego A. Fernandes C. Fonseca I. Endothelial dysfunction in cardiovascular diseases: Mechanisms and in vitro models. Mol. Cell. Biochem. 2025 480 8 4671 4695 10.1007/s11010‑025‑05289‑w 40259179
    [Google Scholar]
  58. Backston K. Morgan J. Patel S. Koka R. Hu J. Raina R. Oxidative stress and endothelial dysfunction: The pathogenesis of pediatric hypertension. Int. J. Mol. Sci. 2025 26 11 5355 10.3390/ijms26115355 40508164
    [Google Scholar]
  59. Anderer S. Study links chronic marijuana smoking, edibles to endothelial dysfunction. JAMA 2025 334 3 201 10.1001/jama.2025.7807 40512506
    [Google Scholar]
  60. Costantino S. Mohammed S.A. Paneni F. Endothelial dysfunction in patients with type 2 diabetes: The truth is in the blood. J. Clin. Invest. 2025 135 10 e193128 10.1172/JCI193128 40371651
    [Google Scholar]
  61. Li W. Liu X. Yanoff M. Different responses of choriocapillary endothelial cells and retinal capillary endothelial cells to mitogenic and vasoactive factors. Chin. Med. Sci. J. 1994 9 2 96 99 8000067
    [Google Scholar]
  62. Lhomme A. Gilbert G. Pele T. Stretch-activated Piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am. J. Respir. Cell Mol. Biol. 2019 60 6 650 658 10.1165/rcmb.2018‑0197OC 30562052
    [Google Scholar]
  63. Niederseer D. Steidle-Kloc E. Mayr M. Effects of a 12-week alpine skiing intervention on endothelial progenitor cells, peripheral arterial tone and endothelial biomarkers in the elderly. Int. J. Cardiol. 2016 214 343 347 10.1016/j.ijcard.2016.03.229 27085126
    [Google Scholar]
  64. Vargas J.D. Abbas M. Goodney G. Le H. Hinton A.O. Gaye A. Regulatory roles of long noncoding RNAs in arterial stiffness and hypertension. Hypertension 2025 82 7 1195 1207 10.1161/HYPERTENSIONAHA.124.23580 40438943
    [Google Scholar]
  65. Jin C. Tian J. Yang H. He Y. A preliminary study of changes in carotid artery elasticity in type 2 diabetes mellitus. Clin. Physiol. Funct. Imaging 2023 43 3 181 191 10.1111/cpf.12808 36585747
    [Google Scholar]
  66. Sorokin A. Kotani K. Lipoprotein(a) and arterial stiffness parameters. Pulse 2015 3 2 148 152 10.1159/000438733 26587464
    [Google Scholar]
  67. Katsiki N. Al-Rasadi K. Mikhailidis D.P. Lipoprotein (a) and cardiovascular risk: The show must go on. Curr. Med. Chem. 2017 24 10 989 1006 10.2174/0929867324666170112111948 28078997
    [Google Scholar]
  68. Simistiras A. Georgiopoulos G. Delialis D. Association of Lipoprotein(a) with arterial stiffness: A Mendelian randomization study. Eur. J. Clin. Invest. 2024 54 5 e14168 10.1111/eci.14168 38239089
    [Google Scholar]
  69. Goebel I. Mohr T. Axt P.N. Impact of heated tobacco products, E-cigarettes, and combustible cigarettes on small airways and arterial stiffness. Toxics 2023 11 9 758 10.3390/toxics11090758 37755768
    [Google Scholar]
  70. Vallée A. Association between tobacco smoking and alcohol consumption with arterial stiffness. J. Clin. Hypertens. 2023 25 8 757 767 10.1111/jch.14669 37408141
    [Google Scholar]
  71. Podzolkov V.I. Bragina A.E. Druzhinina N.A. Relation between tobacco smoking/electronic smoking and albuminuria/vascular stiffness in young people without cardiovascular diseases. Kidney Blood Press. Res. 2020 45 3 467 476 10.1159/000507510 32434202
    [Google Scholar]
  72. Napoli C. Developmental mechanisms involved in the primary prevention of atherosclerosis and cardiovascular disease. Curr. Atheroscler. Rep. 2011 13 2 170 175 10.1007/s11883‑010‑0156‑x 21221859
    [Google Scholar]
  73. Klüner L.V. Chan K. Antoniades C. Using artificial intelligence to study atherosclerosis from computed tomography imaging: A state-of-the-art review of the current literature. Atherosclerosis 2024 398 117580 10.1016/j.atherosclerosis.2024.117580 38852022
    [Google Scholar]
  74. Maffei E. Punzo B. Cavaliere C. Bossone E. Saba L. Cademartiri F. Coronary atherosclerosis as the main endpoint of non-invasive imaging in cardiology: A narrative review. Cardiovasc. Diagn. Ther. 2020 10 6 1897 1905 10.21037/cdt‑20‑525 33381433
    [Google Scholar]
  75. Duprez D.A. Cohn J.N. Monitoring vascular health beyond blood pressure. Curr. Hypertens. Rep. 2006 8 4 287 291 10.1007/s11906‑006‑0066‑z 16884658
    [Google Scholar]
  76. McPhee P.G. Gorter J.W. Cotie L.M. Timmons B.W. Bentley T. MacDonald M.J. Associations of non-invasive measures of arterial structure and function, and traditional indicators of cardiovascular risk in adults with cerebral palsy. Atherosclerosis 2015 243 2 462 465 10.1016/j.atherosclerosis.2015.09.035 26520900
    [Google Scholar]
  77. Masugata H. Senda S. Goda F. Tissue Doppler echocardiography for predicting arterial stiffness assessed by cardio-ankle vascular index. Tohoku J. Exp. Med. 2009 217 2 139 146 10.1620/tjem.217.139 19212107
    [Google Scholar]
/content/journals/chyr/10.2174/0115734021377631251001111712
Loading
/content/journals/chyr/10.2174/0115734021377631251001111712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test