Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Background

Myocardial infarction (MI) is a disease characterised by myocardial necrosis due to acute and prolonged ischaemic hypoxia in the coronary arteries. MOTS-c is a mitochondrial-derived peptide that has been reported to have protective effects on cardiac tissue. Although this peptide is thought to be decreased in various diseases and can serve as a potential biomarker, current studies remain limited.

Objectives

This study aimed to evaluate how the post-treatment process affects circulating MOTS-c peptide levels in myocardial infarction patients.

Methods

For this purpose, patients without obstructive coronary lesions on angiography were included in the control group, while those with significant obstructive coronary lesions on angiography were included in the infarction group. Routine biochemistry tests were performed using an autoanalyzer. Besides, serum MOTS-c levels were measured using ELISA.

Results

Our findings showed CRP, ESR, and troponin I levels to be higher in the MI group compared to the control group. Also, there was no significant change in MOTS-c levels between the control and the MI group, while time-dependent changes (day 0, day 3, and day 30) occurred within the MI group. However, a negative correlation was found between MOTS-c and platelet levels in the MI group at day 0 (r: -0.4417, =0.0450). Similarly, MOTS-c was found to be negatively correlated with troponin I in the MI group at day 3 (r: -0.4571, =0.0372).

Conclusion

The negative correlation of MOTS-c level with both platelet and troponin I has shown that this peptide may contribute to the diagnostic and therapeutic evaluation of the MI process along with other parameters.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257368076250324041741
2025-05-09
2026-02-05
Loading full text...

Full text loading...

References

  1. DiehmC. LangeS. DariusH. PittrowD. von StritzkyB. TepohlG. HaberlR.L. AllenbergJ.R. DaschB. TrampischH.J. Association of low ankle brachial index with high mortality in primary care.Eur. Heart J.200627141743174910.1093/eurheartj/ehl09216782720
    [Google Scholar]
  2. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. Anderlini D. Andrei T. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. BD.B. BaheiraeiN. BaigA.A. BakhtiariA. BanachM. BanikP.C. BaptistaE.A. BarbozaM.A. BaruaL. BasuS. BediN. BéjotY. BennettD.A. BensenorI.M. BermanA.E. BezabihY.M. BhagavathulaA.S. BhaskarS. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BrantL.C. BrennerH. BrikoN.I. ButtZ.A. Caetano dos SantosF.L. CahillL.E. Cahuana-HurtadoL. CámeraL.A. Campos-NonatoI.R. Cantu-BritoC. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. CharanJ. ChattuV.K. ChenS. ChinK.L. ChoiJ-Y.J. ChuD-T. ChungS-C. CirilloM. CoffeyS. ContiS. CostaV.M. CundiffD.K. DadrasO. DagnewB. DaiX. DamascenoA.A.M. DandonaL. DandonaR. DavletovK. De la Cruz-GóngoraV. De la HozF.P. De NeveJ-W. Denova-GutiérrezE. Derbew MollaM. DersehB.T. DesaiR. DeuschlG. DharmaratneS.D. DhimalM. DhunganaR.R. DianatinasabM. DiazD. DjalaliniaS. DokovaK. DouiriA. DuncanB.B. DuraesA.R. EaganA.W. EbtehajS. EftekhariA. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EsteghamatiS. EtissoA.E. EyawoO. FadhilI. FaraonE.J.A. FarisP.S. FarwatiM. FarzadfarF. FernandesE. Fernandez PrendesC. FerraraP. FilipI. FischerF. FloodD. FukumotoT. GadM.M. GaidhaneS. GanjiM. GargJ. GebreA.K. GebregiorgisB.G. GebregzabiherK.Z. GebremeskelG.G. GetacherL. ObsaA.G. GhajarA. GhashghaeeA. GhithN. GiampaoliS. GilaniS.A. GillP.S. GillumR.F. GlushkovaE.V. GnedovskayaE.V. GolechhaM. GonfaK.B. GoudarzianA.H. GoulartA.C. GuadamuzJ.S. GuhaA. GuoY. GuptaR. HachinskiV. Hafezi-NejadN. HaileT.G. HamadehR.R. HamidiS. HankeyG.J. HargonoA. HartonoR.K. HashemianM. HashiA. HassanS. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HeidariG. HerteliuC. HollaR. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HuangJ. HumayunA. IavicoliI. IbenemeC.U. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IslamR.M. IsoH. IwagamiM. JainV. JavaheriT. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JonasJ.B. JonnagaddalaJ. JoukarF. JozwiakJ.J. JürissonM. KabirA. KahlonT. KalaniR. KalhorR. KamathA. KamelI. KandelH. KandelA. KarchA. KasaA.S. KatotoP.D.M.C. KayodeG.A. KhaderY.S. KhammarniaM. KhanM.S. KhanM.N. KhanM. KhanE.A. KhatabK. KibriaG.M.A. KimY.J. KimG.R. KimokotiR.W. KisaS. KisaA. KivimäkiM. KolteD. KoolivandA. KorshunovV.A. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. Kuate DefoB. Kucuk BicerB. KulkarniV. KumarG.A. KumarN. KurmiO.P. KusumaD. KwanG.F. La VecchiaC. LaceyB. LallukkaT. LanQ. LasradoS. LassiZ.S. LauriolaP. LawrenceW.R. LaxmaiahA. LeGrandK.E. LiM-C. LiB. LiS. LimS.S. LimL-L. LinH. LinZ. LinR-T. LiuX. LopezA.D. LorkowskiS. LotufoP.A. LugoA. MN.K. MadottoF. MahmoudiM. MajeedA. MalekzadehR. MalikA.A. MamunA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MathurM.R. MazzagliaG. MehataS. MehndirattaM.M. MeierT. MenezesR.G. MeretojaA. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirrakhimovE.M. MirzaeiH. MoazenB. MoghadaszadehM. MohammadY. MohammadD.K. MohammedS. MohammedM.A. MokhayeriY. MolokhiaM. MontasirA.A. MoradiG. MoradzadehR. MoragaP. MorawskaL. Moreno VelásquezI. MorzeJ. MubarikS. MuruetW. MusaK.I. NagarajanA.J. NaliniM. NangiaV. NaqviA.A. Narasimha SwamyS. NascimentoB.R. NayakV.C. NazariJ. NazarzadehM. NegoiR.I. Neupane KandelS. NguyenH.L.T. NixonM.R. NorrvingB. NoubiapJ.J. NoutheB.E. NowakC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OrruH. OrtizA. OstroffS.M. PadubidriJ.R. PalladinoR. PanaA. Panda-JonasS. ParekhU. ParkE-C. ParviziM. Pashazadeh KanF. PatelU.K. PathakM. PaudelR. PepitoV.C.F. PerianayagamA. PericoN. PhamH.Q. PilgrimT. PiradovM.A. PishgarF. PodderV. PolibinR.V. PourshamsA. PribadiD.R.A. RabieeN. RabieeM. RadfarA. RafieiA. RahimF. Rahimi-MovagharV. Ur RahmanM.H. RahmanM.A. RahmaniA.M. RakovacI. RamP. RamalingamS. RanaJ. RanasingheP. RaoS.J. RathiP. RawalL. RawasiaW.F. RawassizadehR. RemuzziG. RenzahoA.M.N. RezapourA. RiahiS.M. Roberts-ThomsonR.L. RoeverL. RohloffP. RomoliM. RoshandelG. RwegereraG.M. SaadatagahS. Saber-AyadM.M. SabourS. SaccoS. SadeghiM. Saeedi MoghaddamS. SafariS. SahebkarA. SalehiS. SalimzadehH. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SarveazadA. SathishT. SawhneyM. SaylanM. SchmidtM.I. SchutteA.E. SenthilkumaranS. SepanlouS.G. ShaF. ShahabiS. ShahidI. ShaikhM.A. ShamaliM. ShamsizadehM. ShawonM.S.R. SheikhA. ShigematsuM. ShinM-J. ShinJ.I. ShiriR. ShiueI. ShuvalK. SiabaniS. SiddiqiT.J. SilvaD.A.S. SinghJ.A. MtechA.S. SkryabinV.Y. SkryabinaA.A. SoheiliA. SpurlockE.E. StockfeltL. StorteckyS. StrangesS. Suliankatchi AbdulkaderR. TadbiriH. TadesseE.G. TadesseD.B. TajdiniM. TariqujjamanM. TeklehaimanotB.F. TemsahM-H. TesemaA.K. ThakurB. ThankappanK.R. ThaparR. ThriftA.G. TimalsinaB. TonelliM. TouvierM. Tovani-PaloneM.R. TripathiA. TripathyJ.P. TruelsenT.C. TsegayG.M. TsegayeG.W. TsilimparisN. TusaB.S. TyrovolasS. UmapathiK.K. UnimB. UnnikrishnanB. UsmanM.S. VaduganathanM. ValdezP.R. VasankariT.J. VelazquezD.Z. VenketasubramanianN. VuG.T. VujcicI.S. WaheedY. WangY. WangF. WeiJ. WeintraubR.G. WeldemariamA.H. WestermanR. WinklerA.S. WiysongeC.S. WolfeC.D.A. WubishetB.L. XuG. YadollahpourA. YamagishiK. YanL.L. YandrapalliS. YanoY. YatsuyaH. YeheyisT.Y. YeshawY. YilgwanC.S. YonemotoN. YuC. YusefzadehH. ZachariahG. ZamanS.B. ZamanM.S. ZamanianM. ZandR. ZandifarA. ZarghiA. ZastrozhinM.S. ZastrozhinaA. ZhangZ-J. ZhangY. ZhangW. ZhongC. ZouZ. ZunigaY.M.H. MurrayC.J.L. FusterV. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.01033309175
    [Google Scholar]
  3. İstatistikleriT.A. Index2019
    [Google Scholar]
  4. AndersonJ.L. MorrowD.A. Acute myocardial infarction.N. Engl. J. Med.2017376212053206410.1056/NEJMra160691528538121
    [Google Scholar]
  5. MozaffarianD. BenjaminE.J. GoA.S. ArnettD.K. BlahaM.J. CushmanM. De FerrantiS. DesprésJ.-P. FullertonH.J. HowardV.J. Heart disease and stroke statistics—2015 update: A report from the american heart association.Circulation20151314e329e322
    [Google Scholar]
  6. AntmanE.M. Acute myocardial infarction.Heart disease-A Textbook os Dardiovascular Medicine199711841228
    [Google Scholar]
  7. ChenZ. VenkatP. SeyfriedD. ChoppM. YanT. ChenJ. Brain–heart interaction.Circ. Res.2017121445146810.1161/CIRCRESAHA.117.31117028775014
    [Google Scholar]
  8. PopulationsB.H.S. CriteriaC.S.S.H.D. HIV and disability: Updating the social security listings.National Academies Press2010
    [Google Scholar]
  9. BinkN. MohanV.B. FakirovS. Recent advances in plastic stents: A comprehensive review.Int. J. Polym. Mater.2021701547410.1080/00914037.2019.1685519
    [Google Scholar]
  10. HammC.W. BassandJ.P. AgewallS. BaxJ. BoersmaE. BuenoH. CasoP. DudekD. GielenS. HuberK. OhmanM. PetrieM.C. SonntagF. UvaM.S. StoreyR.F. WijnsW. ZahgerD. European Society of Cardiology ESC guidelines for the management of acute coronary syndromes in patients without persistent ST-segment elevation at presentation. Task force for the management of acute coronary syndromes (ACS) in patients without persistent st-segment elevation at presentation of the european society of cardiology (ESC).G. Ital. Cardiol.201213317122822395108
    [Google Scholar]
  11. Reyes-RetanaJ.A. Duque-OssaL.C. Acute myocardial infarction biosensor: A review from bottom up.Curr. Probl. Cardiol.202146310073910.1016/j.cpcardiol.2020.10073933250264
    [Google Scholar]
  12. ProcopioA. De RosaS. CovelloC. MerolaA. SabatinoJ. De LucaA. IndolfiC. AmatoF. CosentinoC. 2019 18th European Control Conference (ECC)2019, pp 1653-1658.
    [Google Scholar]
  13. GargP. MorrisP. FazlanieA.L. VijayanS. DancsoB. DastidarA.G. PleinS. MuellerC. HaafP. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin.Intern. Emerg. Med.201712214715510.1007/s11739‑017‑1612‑128188579
    [Google Scholar]
  14. BostanM.M. StătescuC. AnghelL. ȘerbanI.L. CojocaruE. SascăuR. Post-myocardial infarction ventricular remodeling biomarkers—the key link between pathophysiology and clinic.Biomolecules20201011158710.3390/biom1011158733238444
    [Google Scholar]
  15. HashimotoY. NiikuraT. TajimaH. YasukawaT. SudoH. ItoY. KitaY. KawasumiM. KouyamaK. DoyuM. SobueG. KoideT. TsujiS. LangJ. KurokawaK. NishimotoI. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ.Proc. Natl. Acad. Sci. USA200198116336634110.1073/pnas.10113349811371646
    [Google Scholar]
  16. LeeC. ZengJ. DrewB.G. SallamT. Martin-MontalvoA. WanJ. KimS.J. MehtaH. HevenerA.L. de CaboR. CohenP. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance.Cell Metab.201521344345410.1016/j.cmet.2015.02.00925738459
    [Google Scholar]
  17. KimS.J. XiaoJ. WanJ. CohenP. YenK. Mitochondrially derived peptides as novel regulators of metabolism.J. Physiol.2017595216613662110.1113/JP27447228574175
    [Google Scholar]
  18. RamanjaneyaM. BettahiI. JerobinJ. ChandraP. Abi KhalilC. SkarulisM. AtkinS.L. Abou-SamraA.B. Mitochondrial-derived peptides are down regulated in diabetes subjects.Front. Endocrinol.20191033110.3389/fendo.2019.0033131214116
    [Google Scholar]
  19. YazganB. Türkelİ. ÖzerkliğB. AtakanM.M. AktitizS. KoşarŞ.N. Exercise and metabolic health: The emerging roles of novel exerkines.Curr. Protein Pept. Sci.202223743745510.2174/138920372366622062916352435770405
    [Google Scholar]
  20. AtakanM.M. Türkelİ. ÖzerkliğB. KoşarŞ.N. TaylorD.F. YanX. BishopD.J. Small peptides: Could they have a big role in metabolism and the response to exercise?J. Physiol.2024602454556810.1113/JP28321438196325
    [Google Scholar]
  21. MerryT.L. ChanA. WoodheadJ.S.T. ReynoldsJ.C. KumagaiH. KimS.J. LeeC. Mitochondrial-derived peptides in energy metabolism.Am. J. Physiol. Endocrinol. Metab.20203194E659E66610.1152/ajpendo.00249.202032776825
    [Google Scholar]
  22. YongC.Q.Y. TangB.L. A mitochondrial encoded messenger at the nucleus.Cells20187810510.3390/cells708010530104535
    [Google Scholar]
  23. RochetteL. MelouxA. ZellerM. CottinY. VergelyC. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders.Arch. Cardiovasc. Dis.20201138-956457110.1016/j.acvd.2020.03.02032680738
    [Google Scholar]
  24. DabravolskiS.A. NikiforovN.G. StarodubovaA.V. PopkovaT.V. OrekhovA.N. The role of mitochondria-derived peptides in cardiovascular diseases and their potential as therapeutic targets.Int. J. Mol. Sci.20212216877010.3390/ijms2216877034445477
    [Google Scholar]
  25. CaoX. LiH. TaoH. WuN. YuL. ZhangD. LuX. ZhuJ. LuZ. ZhuQ. Metformin inhibits vascular calcification in female rat aortic smooth muscle cells via the AMPK-eNOS-NO pathway.Endocrinology2013154103680368910.1210/en.2013‑100224025223
    [Google Scholar]
  26. LiY. LiZ. RenY. LeiY. YangS. ShiY. PengH. YangW. GuoT. YuY. XiongY. Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities.J. Adv. Res.2024649911510.1016/j.jare.2023.11.01838008175
    [Google Scholar]
  27. WeiM. GanL. LiuZ. LiuL. ChangJ.R. YinD.C. CaoH.L. SuX.L. SmithW.W. Mitochondrial-derived peptide MOTS-c attenuates vascular calcification and secondary myocardial remodeling via adenosine monophosphate-activated protein kinase signaling pathway.Cardiorenal Med.2020101425010.1159/00050322431694019
    [Google Scholar]
  28. QinQ. DelrioS. WanJ. Jay WidmerR. CohenP. LermanL.O. LermanA. Downregulation of circulating MOTS-c levels in patients with coronary endothelial dysfunction.Int. J. Cardiol.2018254232710.1016/j.ijcard.2017.12.00129242099
    [Google Scholar]
  29. ParkK.H. ParkW.J. Endothelial dysfunction: Clinical implications in cardiovascular disease and therapeutic approaches.J. Korean Med. Sci.20153091213122510.3346/jkms.2015.30.9.121326339159
    [Google Scholar]
  30. LiH. RenK. JiangT. ZhaoG.J. MOTS-c attenuates endothelial dysfunction via suppressing the MAPK/NF-κB pathway.Int. J. Cardiol.20182684010.1016/j.ijcard.2018.03.03130041797
    [Google Scholar]
  31. Available from: https://www.who.int/newsroom/fact-sheets/detail/cardiovascular-diseases-(cvds)
  32. AydinS. UgurK. AydinS. Sahinİ. YardimM. Biomarkers in acute myocardial infarction: Current perspectives.Vasc. Health Risk Manag.20191511010.2147/VHRM.S16615730697054
    [Google Scholar]
  33. RossR. Atherosclerosis-an inflammatory disease.N. Engl. J. Med.1999340211512610.1056/NEJM1999011434002079887164
    [Google Scholar]
  34. PalmeriniT. MarzocchiA. MarrozziniC. OrtolaniP. SaiaF. Bacchi-ReggianiL. VirzìS. GianstefaniS. BranziA. Preprocedural levels of C-reactive protein and leukocyte counts predict 9-month mortality after coronary angioplasty for the treatment of unprotected left main coronary artery stenosis.Circulation2005112152332233810.1161/CIRCULATIONAHA.105.55164816203907
    [Google Scholar]
  35. OlenchockB.A. WiviottS.D. MurphyS.A. CannonC.P. RifaiN. BraunwaldE. MorrowD.A. Lack of association between soluble CD40L and risk in a large cohort of patients with acute coronary syndrome in OPUS TIMI-16.J. Thromb. Thrombolysis2008262798410.1007/s11239‑007‑0156‑z17917707
    [Google Scholar]
  36. ArmstrongE.J. MorrowD.A. SabatineM.S. Inflammatory biomarkers in acute coronary syndromes: Part I: Introduction and cytokines.Circulation20061136e72e7510.1161/CIRCULATIONAHA.105.59552016476853
    [Google Scholar]
  37. RomanR.M. CamargoP.V. BorgesF.K. RossiniA.P. PolanczykC.A. Prognostic value of myeloperoxidase in coronary artery disease: Comparison of unstable and stable angina patients.Coron. Artery Dis.201021312913610.1097/MCA.0b013e328333f50d20305551
    [Google Scholar]
  38. TudurachiB.S. AnghelL. TudurachiA. SascăuR.A. StătescuC. Assessment of inflammatory hematological ratios (NLR, PLR, MLR, LMR and Monocyte/HDL–Cholesterol Ratio) in acute myocardial infarction and particularities in young patients.Int. J. Mol. Sci.202324181437810.3390/ijms24181437837762680
    [Google Scholar]
  39. YuanS. LiL. PuT. FanX. WangZ. XieP. LiP. The relationship between NLR, LDL-C/HDL-C, NHR and coronary artery disease.PLoS One2024197e029080510.1371/journal.pone.029080538985788
    [Google Scholar]
  40. GosavE.M. TanaseD.M. Buliga-FinisO.N. RezușI.I. MorariuP.C. FloriaM. RezusC. The prognostic role of the neutrophil-to-lymphocytes ratio in the most frequent cardiovascular diseases: An update.Life202414898510.3390/life1408098539202727
    [Google Scholar]
  41. GuastiL. CastiglioniL. MaroniL. MarinoF. SquizzatoA. AgenoW. GianniM. GaudioG. GrandiA. CosentinoM. VencoA. DentaliF. Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation.Thromb. Haemost.20111061059159910.1160/TH11‑02‑009621866299
    [Google Scholar]
  42. WangX. ZhangG. JiangX. ZhuH. LuZ. XuL. Neutrophil to lymphocyte ratio in relation to risk of all-cause mortality and cardiovascular events among patients undergoing angiography or cardiac revascularization: A meta-analysis of observational studies.Atherosclerosis2014234120621310.1016/j.atherosclerosis.2014.03.00324681815
    [Google Scholar]
  43. EasminT. KhalequzzamanM. AhmedM. HasanM.M. Association Between Neutrophil to Lymphocyte Ratio and Severity of Coronary Artery Disease in Acute Myocardial Infarction Patients Association between neutrophil to lymphocyte ratio and severity of coronary artery disease in acute myocardial infarction patients.Bangladesh Heart J.20243911910.3329/bhj.v39i1.70655
    [Google Scholar]
  44. ZahorecR. Neutrophil-to-lymphocyte ratio, past, present and future perspectives.Bratisl. Med. J.2021122747448810.4149/BLL_2021_07834161115
    [Google Scholar]
  45. YazganB. SozenE. KarademirB. UstunsoyS. InceU. ZarkovicN. OzerN.K. CD36 expression in peripheral blood mononuclear cells reflects the onset of atherosclerosis.Biofactors201844658859610.1002/biof.137228677864
    [Google Scholar]
  46. SozenE. YazganB. SahinA. InceU. OzerN.K. High cholesterol diet-induced changes in Oxysterol and scavenger receptor levels in heart tissue.Oxid. Med. Cell. Longev.201820181852074610.1155/2018/852074630008986
    [Google Scholar]
  47. BozaykutP. KarademirB. YazganB. SozenE. SiowR.C.M. MannG.E. OzerN.K. Effects of vitamin E on peroxisome proliferator-activated receptor γ and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis.Free Radic. Biol. Med.20147017418110.1016/j.freeradbiomed.2014.02.01724583459
    [Google Scholar]
  48. ReynoldsJ.C. LaiR.W. WoodheadJ.S.T. JolyJ.H. MitchellC.J. Cameron-SmithD. LuR. CohenP. GrahamN.A. BenayounB.A. MerryT.L. LeeC. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis.Nat. Commun.202112147010.1038/s41467‑020‑20790‑033473109
    [Google Scholar]
  49. YangY. GaoH. ZhouH. LiuQ. QiZ. ZhangY. ZhangJ. The role of mitochondria-derived peptides in cardiovascular disease: Recent updates.Biomed. Pharmacother.201911710907510.1016/j.biopha.2019.10907531185388
    [Google Scholar]
  50. KimS.J. MehtaH.H. WanJ. KuehnemannC. ChenJ. HuJ.F. HoffmanA.R. CohenP. Mitochondrial peptides modulate mitochondrial function during cellular senescence.Aging20181061239125610.18632/aging.10146329886458
    [Google Scholar]
  51. LeeC. KimK.H. CohenP. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism.Free Radic. Biol. Med.201610018218710.1016/j.freeradbiomed.2016.05.01527216708
    [Google Scholar]
  52. MendelsohnA.R. LarrickJ.W. Mitochondrial-derived peptides exacerbate senescence.Rejuvenation Res.201821436937310.1089/rej.2018.211430058454
    [Google Scholar]
  53. ZhaiD. YeZ. JiangY. XuC. RuanB. YangY. LeiX. XiangA. LuH. ZhuZ. YanZ. WeiD. LiQ. WangL. LuZ. MOTS-c peptide increases survival and decreases bacterial load in mice infected with MRSA.Mol. Immunol.20179215116010.1016/j.molimm.2017.10.01729096170
    [Google Scholar]
  54. TangM. SuQ. DuanY. FuY. LiangM. PanY. YuanJ. WangM. PangX. MaJ. LaherI. LiS. The role of MOTS-c-mediated antioxidant defense in aerobic exercise alleviating diabetic myocardial injury.Sci. Rep.20231311978110.1038/s41598‑023‑47073‑037957221
    [Google Scholar]
  55. HillS. SataranatarajanK. Van RemmenH. Role of signaling molecules in mitochondrial stress response.Front. Genet.2018922510.3389/fgene.2018.0022530042784
    [Google Scholar]
  56. CamiciP.G. CreaF. Coronary microvascular dysfunction.N. Engl. J. Med.2007356883084010.1056/NEJMra06188917314342
    [Google Scholar]
  57. CreaF. CamiciP.G. Bairey MerzC.N. Coronary microvascular dysfunction: An update.Eur. Heart J.201435171101111110.1093/eurheartj/eht51324366916
    [Google Scholar]
  58. NiccoliG. ScaloneG. LermanA. CreaF. Coronary microvascular obstruction in acute myocardial infarction.Eur. Heart J.201637131024103310.1093/eurheartj/ehv48426364289
    [Google Scholar]
  59. RochetteL. RigalE. DogonG. MalkaG. ZellerM. VergelyC. CottinY. Mitochondrial-derived peptides: New markers for cardiometabolic dysfunction.Arch. Cardiovasc. Dis.20221151485610.1016/j.acvd.2021.10.01334972639
    [Google Scholar]
  60. BolignanoD. GrecoM. PrestaP. DuniA. ZicarelliM. MercuriS. PappasE. LakkasL. MusolinoM. NakaK.K. MisitiR. FotiD.P. AndreucciM. CoppolinoG. DounousiE. The mitochondrial-derived peptide MOTS-c may refine mortality and cardiovascular risk prediction in chronic hemodialysis patients: A multicenter cohort study.Blood Purif.2024531082483710.1159/00054030339111290
    [Google Scholar]
  61. AsilH. DemiryürekA.T. DüzenI.V. BüyükcelebiO. SaracalogluA. DemirkiranC. DemiryürekŞ. Effects of empagliflozin and dapagliflozin on serum humanin, MOTS-c levels, nitrosative stress, and ferroptosis parameters in diabetic patients with heart failure.Eur. J. Pharmacol.202498217693410.1016/j.ejphar.2024.17693439182552
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257368076250324041741
Loading
/content/journals/chamc/10.2174/0118715257368076250324041741
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cardiovascular diseases; inflammation; MDPs; MOTS-c; myocardial infarction; troponin I
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test