Skip to content
2000
image of Adropin and Spexin Peptides Ameloriate Cardiac Inflammation, Matrix Metalloproteinases, and Vascular Response

Abstract

Background

Chronic renal failure (CRF) triggers chronic systemic inflammation and causes vascular calcification, a prominent contributor to the progression of cardiovascular disease. Adropin and spexin peptides regulate energy balance; also, these peptides trigger anti-inflammatory pathways.

Objective

Our present study aimed to clarify the potentially protective impact of spexin and adropin peptides on cardiovascular inflammation in an adenine-induced chronic renal failure model.

Methods

The CRF model in Sprague-Dawley rats was established by the administration of adenine hemisulfate for ten days. Then, rats were treated with saline or adropin, or/and spexin for four weeks. CRP, CK, and CK-MB levels in serum were measured by autoanalyzer. Aortic contraction-relaxation responses were determined by the organ bath system. H&E, PAS, and Masson's trichrome stainings evaluated histopathological alterations in both aorta and cardiac tissue. Gene expression levels of ILs (IL1β, IL10, IL17A, IL18, IL21, and IL33), MMPs (MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14), NGAL, TGFβ1, TIMP1, and TNFα in cardiac tissue were evaluated by real-time PCR.

Results

We found increased CK and CK-MB levels by CRF induction. In addition, IL1β, IL17A, IL18, IL21, MMP1, MMP3, MMP13, and MMP14 increased after CRF progression. While adropin has effects on CK levels, spexin decreases CK-MB levels. Also, adropin and spexin had a nitric oxide-dependent impact on vascular reactivity. Besides, spexin downregulated IL1β, IL10, IL17A, TGFβ1, MMP1, MMP3, MMP9, MMP13, MMP14 and NGAL; however, the adropin peptide had a limited effect.

Conclusion

These results suggest that adropin and spexin have potential preventive roles on vascular damage in CRF progression modulation of MMPs and inflammatory genes.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257346704250324040652
2025-05-09
2025-09-16
Loading full text...

Full text loading...

References

  1. LibbyP. RidkerP.M. HanssonG.K. Progress and challenges in translating the biology of atherosclerosis.Nature2011473734731732510.1038/nature1014621593864
    [Google Scholar]
  2. BäckM. YurdagulA.Jr TabasI. ÖörniK. KovanenP.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities.Nat. Rev. Cardiol.201916738940610.1038/s41569‑019‑0169‑230846875
    [Google Scholar]
  3. TuñónJ. BadimónL. Bochaton-PiallatM.L. CariouB. DaemenM.J. EgidoJ. EvansP.C. HoeferI.E. KetelhuthD.F.J. LutgensE. MatterC.M. MonacoC. SteffensS. StroesE. VindisC. WeberC. BäckM. Identifying the anti-inflammatory response to lipid lowering therapy: A position paper from the working group on atherosclerosis and vascular biology of the European society of cardiology.Cardiovasc. Res.20191151101910.1093/cvr/cvy29330534957
    [Google Scholar]
  4. BäckM. HanssonG.K. Anti-inflammatory therapies for atherosclerosis.Nat. Rev. Cardiol.201512419921110.1038/nrcardio.2015.525666404
    [Google Scholar]
  5. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  6. SanadaF. TaniyamaY. MuratsuJ. OtsuR. ShimizuH. RakugiH. MorishitaR. Source of chronic inflammation in aging.Front. Cardiovasc. Med.201851210.3389/fcvm.2018.0001229564335
    [Google Scholar]
  7. FerrucciL. FabbriE. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty.Nat. Rev. Cardiol.201815950552210.1038/s41569‑018‑0064‑230065258
    [Google Scholar]
  8. KosmasC.E. SilverioD. SourlasA. MontanP.D. GuzmanE. GarciaM.J. Anti-inflammatory therapy for cardiovascular disease.Ann. Transl. Med.20197714710.21037/atm.2019.02.3431157268
    [Google Scholar]
  9. KaoT.W. HuangC.C. Inflammatory burden and immunomodulative therapeutics of cardiovascular diseases.Int. J. Mol. Sci.202223280410.3390/ijms2302080435054989
    [Google Scholar]
  10. RidkerP.M. EverettB.M. ThurenT. MacFadyenJ.G. ChangW.H. BallantyneC. FonsecaF. NicolauJ. KoenigW. AnkerS.D. KasteleinJ.J.P. CornelJ.H. PaisP. PellaD. GenestJ. CifkovaR. LorenzattiA. ForsterT. KobalavaZ. Vida-SimitiL. FlatherM. ShimokawaH. OgawaH. DellborgM. RossiP.R.F. TroquayR.P.T. LibbyP. GlynnR.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa170791428845751
    [Google Scholar]
  11. ThomasB. MatsushitaK. AbateK.H. Al-AlyZ. ÄrnlövJ. AsayamaK. AtkinsR. BadawiA. BallewS.H. BanerjeeA. BarregårdL. Barrett-ConnorE. BasuS. BelloA.K. BensenorI. BergstromJ. BikbovB. BlosserC. BrennerH. CarreroJ.J. ChadbanS. CirilloM. CortinovisM. CourvilleK. DandonaL. DandonaR. EstepK. FernandesJ. FischerF. FoxC. GansevoortR.T. GonaP.N. GutierrezO.M. HamidiS. HansonS.W. HimmelfarbJ. JassalS.K. JeeS.H. JhaV. Jimenez-CoronaA. JonasJ.B. KengneA.P. KhaderY. KhangY.H. KimY.J. KleinB. KleinR. KokuboY. KolteD. LeeK. LeveyA.S. LiY. LotufoP. El RazekH.M.A. MendozaW. MetokiH. MokY. MurakiI. MuntnerP.M. NodaH. OhkuboT. OrtizA. PericoN. PolkinghorneK. Al-RadaddiR. RemuzziG. RothG. RothenbacherD. SatohM. SaumK.U. SawhneyM. SchöttkerB. ShankarA. ShlipakM. SilvaD.A.S. ToyoshimaH. UkwajaK. UmesawaM. VollsetS.E. WarnockD.G. WerdeckerA. YamagishiK. YanoY. YonemotoN. ZakiM.E.S. NaghaviM. ForouzanfarM.H. MurrayC.J.L. CoreshJ. VosT. Global cardiovascular and renal outcomes of reduced GFR.J. Am. Soc. Nephrol.20172872167217910.1681/ASN.201605056228408440
    [Google Scholar]
  12. StevensL.A. LiS. WangC. HuangC. BeckerB.N. BombackA.S. BrownW.W. BurrowsN.R. JurkovitzC.T. McFarlaneS.I. NorrisK.C. ShlipakM. Whaley-ConnellA.T. ChenS.C. BakrisG.L. McCulloughP.A. Prevalence of CKD and comorbid illness in elderly patients in the United States: Results from the kidney early evaluation program (KEEP).Am. J. Kidney Dis.2010553Suppl. 2S23S3310.1053/j.ajkd.2009.09.03520172445
    [Google Scholar]
  13. ViaeneL. BehetsG.J. HeyeS. ClaesK. MonbaliuD. PirenneJ. D’HaeseP.C. EvenepoelP. Inflammation and the bone-vascular axis in end-stage renal disease.Osteoporos. Int.201627248949710.1007/s00198‑015‑3233‑826294291
    [Google Scholar]
  14. LuL.C. YangC.W. HsiehW.Y. ChuangW.H. LinY.C. LinC.S. Decreases in plasma MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios in uremic patients during hemodialysis.Clin. Exp. Nephrol.201620693494210.1007/s10157‑015‑1221‑026711243
    [Google Scholar]
  15. ChengZ. LimbuM. WangZ. LiuJ. LiuL. ZhangX. ChenP. LiuB. MMP-2 and 9 in chronic kidney disease.Int. J. Mol. Sci.201718477610.3390/ijms1804077628397744
    [Google Scholar]
  16. KapoorC. VaidyaS. WadhwanV. Hitesh KaurG. PathakA. Hitesh Seesaw of matrix metalloproteinases (MMPs).J. Cancer Res. Ther.2016121283510.4103/0973‑1482.15733727072206
    [Google Scholar]
  17. WellsJ.M. GaggarA. BlalockJ.E. MMP generated matrikines.Matrix Biol.201544-4612212910.1016/j.matbio.2015.01.01625636538
    [Google Scholar]
  18. TurkelI. TahtaliogluS. CelikE. YazganB. KubatG.B. OzerkligB. KosarS.N. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats.Mol. Biol. Rep.202451166710.1007/s11033‑024‑09637‑938780696
    [Google Scholar]
  19. AzevedoA. PradoA.F. AntonioR.C. IssaJ.P. GerlachR.F. Matrix metalloproteinases are involved in cardiovascular diseases.Basic Clin. Pharmacol. Toxicol.2014115430131410.1111/bcpt.1228224974977
    [Google Scholar]
  20. LyngbakkenM.N. MyhreP.L. RøsjøH. OmlandT. Novel biomarkers of cardiovascular disease: Applications in clinical practice.Crit. Rev. Clin. Lab. Sci.2019561336010.1080/10408363.2018.152533530457415
    [Google Scholar]
  21. MaA. BaiJ. HeM. WongA.O.L. Spexin as a neuroendocrine signal with emerging functions.Gen. Comp. Endocrinol.2018265909610.1016/j.ygcen.2018.01.01529355530
    [Google Scholar]
  22. WalewskiJ.L. GeF. LobdellH.IV LevinN. SchwartzG.J. VasselliJ.R. PompA. DakinG. BerkP.D. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet‐induced obesity.Obesity20142271643165210.1002/oby.2072524550067
    [Google Scholar]
  23. SassekM. KolodziejskiP.A. StrowskiM.Z. NogowskiL. NowakK.W. MackowiakP. Spexin modulates functions of rat endocrine pancreatic cells.Pancreas201847790490910.1097/MPA.000000000000108329912854
    [Google Scholar]
  24. GuL. MaY. GuM. ZhangY. YanS. LiN. WangY. DingX. YinJ. FanN. PengY. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes.Peptides20157123223910.1016/j.peptides.2015.07.01826211893
    [Google Scholar]
  25. Türkelİ. MemiG. YazganB. Impact of spexin on metabolic diseases and inflammation: An updated minireview.Exp. Biol. Med.2022247756757310.1177/1535370221107244335068225
    [Google Scholar]
  26. YazganB. Türkelİ. ÖzerkliğB. AtakanM.M. AktitizS. KoşarŞ.N. Exercise and metabolic health: The emerging roles of novel exerkines.Curr. Protein Pept. Sci.202223743745510.2174/138920372366622062916352435770405
    [Google Scholar]
  27. TurkelI. OzerkligB. YazganB. OzencA.E. KubatG.B. SimsekG. AtakanM.M. KosarS.N. Systemic and tissue-specific spexin response to acute treadmill exercise in rats.Peptides202418017128110.1016/j.peptides.2024.17128139111593
    [Google Scholar]
  28. KolodziejskiP.A. Pruszynska-OszmalekE. MickerM. SkrzypskiM. WojciechowiczT. SzwarckopfP. Skieresz-SzewczykK. NowakK.W. StrowskiM.Z. Spexin: A novel regulator of adipogenesis and fat tissue metabolism.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20181863101228123610.1016/j.bbalip.2018.08.00130305242
    [Google Scholar]
  29. GambaroS.E. ZubiríaM.G. GiordanoA.P. PortalesA.E. AlzamendiA. RumboM. GiovambattistaA. “Spexin improves adipose tissue inflammation and macrophage recruitment in obese mice”.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865715870010.1016/j.bbalip.2020.15870032201217
    [Google Scholar]
  30. KumarK.G. TrevaskisJ.L. LamD.D. SuttonG.M. KozaR.A. ChouljenkoV.N. KousoulasK.G. RogersP.M. KestersonR.A. ThearleM. FerranteA.W.Jr MynattR.L. BurrisT.P. DongJ.Z. HalemH.A. CullerM.D. HeislerL.K. StephensJ.M. ButlerA.A. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism.Cell Metab.20088646848110.1016/j.cmet.2008.10.01119041763
    [Google Scholar]
  31. LianW. GuX. QinY. ZhengX. Elevated plasma levels of adropin in heart failure patients.Intern. Med.201150151523152710.2169/internalmedicine.50.516321804276
    [Google Scholar]
  32. ButlerA.A. TamC.S. StanhopeK.L. WolfeB.M. AliM.R. O’KeeffeM. St-OngeM.P. RavussinE. HavelP.J. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans.J. Clin. Endocrinol. Metab.201297103783379110.1210/jc.2012‑219422872690
    [Google Scholar]
  33. MaciorkowskaM. MusiałowskaD. MałyszkoJ. Adropin and irisin in arterial hypertension, diabetes mellitus and chronic kidney disease.Adv. Clin. Exp. Med.201928111571157510.17219/acem/10455131756066
    [Google Scholar]
  34. LovrenF. PanY. QuanA. SinghK.K. ShuklaP.C. GuptaM. Al-OmranM. TeohH. VermaS. Adropin is a novel regulator of endothelial function.Circulation201012211_suppl_1Suppl.S185S19210.1161/CIRCULATIONAHA.109.93178220837912
    [Google Scholar]
  35. SatoK. YamashitaT. ShiraiR. ShibataK. OkanoT. YamaguchiM. MoriY. HiranoT. WatanabeT. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation.Int. J. Mol. Sci.2018195129310.3390/ijms1905129329701665
    [Google Scholar]
  36. YazganB. AvcıF. MemiG. TastekinE. Inflammatory response and matrix metalloproteinases in chronic kidney failure: Modulation by adropin and spexin.Exp. Biol. Med. 2021246171917192710.1177/1535370221101241734024143
    [Google Scholar]
  37. MemiG. YazganB. Adropin and spexin hormones regulate the systemic inflammation in adenine-induced chronic kidney failure in rat.Chin. J. Physiol.202164419420110.4103/cjp.cjp_13_2134472450
    [Google Scholar]
  38. Ruiz-OrtegaM. Rayego-MateosS. LamasS. OrtizA. Rodrigues-DiezR.R. Targeting the progression of chronic kidney disease.Nat. Rev. Nephrol.202016526928810.1038/s41581‑019‑0248‑y32060481
    [Google Scholar]
  39. DüsingP. ZietzerA. GoodyP.R. HosenM.R. KurtsC. NickenigG. JansenF. Vascular pathologies in chronic kidney disease: Pathophysiological mechanisms and novel therapeutic approaches.J. Mol. Med.202199333534810.1007/s00109‑021‑02037‑733481059
    [Google Scholar]
  40. YosaeeS. SoltaniS. SekhavatiE. JazayeriS. Adropin- A novel biomarker of heart disease: A systematic review article.Iran. J. Public Health201645121568157628053922
    [Google Scholar]
  41. KashioulisP. LundgrenJ. ShubbarE. NguyL. SaeedA. GuronC.W. GuronG. Adenine-induced chronic renal failure in rats: A model of chronic renocardiac syndrome with left ventricular diastolic dysfunction but preserved ejection fraction.Kidney Blood Press. Res.20184341053106410.1159/00049105629969785
    [Google Scholar]
  42. DemircelikB. CakmakM. NazliY. GurelO.M. AkkayaN. CetinM. CetinZ. SelcokiY. KurtulA. EryonucuB. Adropin: A new marker for predicting late saphenous vein graft disease after coronary artery bypass grafting.Clin. Invest. Med.201437533810.25011/cim.v37i5.2201425282140
    [Google Scholar]
  43. TopuzM. CelikA. AslantasT. DemirA.K. AydinS. AydinS. Plasma adropin levels predict endothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus.J. Investig. Med.20136181161116410.2310/JIM.000000000000000324113736
    [Google Scholar]
  44. PaulusW.J. TschöpeC. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.J. Am. Coll. Cardiol.201362426327110.1016/j.jacc.2013.02.09223684677
    [Google Scholar]
  45. ArmstrongA.W. VoylesS.V. ArmstrongE.J. FullerE.N. RutledgeJ.C. A tale of two plaques: Convergent mechanisms of T‐cell‐mediated inflammation in psoriasis and atherosclerosis.Exp. Dermatol.201120754454910.1111/j.1600‑0625.2011.01308.x21692858
    [Google Scholar]
  46. RamjiD.P. DaviesT.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets.Cytokine Growth Factor Rev.201526667368510.1016/j.cytogfr.2015.04.00326005197
    [Google Scholar]
  47. ShiraziL.F. BissettJ. RomeoF. MehtaJ.L. Role of inflammation in heart failure.Curr. Atheroscler. Rep.20171962710.1007/s11883‑017‑0660‑328432635
    [Google Scholar]
  48. CarboneS. LeeP.J.H. MauroA.G. MezzaromaE. BuzzettiR. Van TassellB. AbbateA. ToldoS. Interleukin-18 mediates cardiac dysfunction induced by western diet independent of obesity and hyperglycemia in the mouse.Nutr. Diabetes201774e25810.1038/nutd.2017.128394363
    [Google Scholar]
  49. KatkenovN. MukhatayevZ. KozhakhmetovS. SailybayevaA. BekbossynovaM. KushugulovaA. Systematic review on the role of il-6 and il-1β in cardiovascular diseases.J. Cardiovasc. Dev. Dis.202411720610.3390/jcdd1107020639057626
    [Google Scholar]
  50. LugrinJ. ParapanovR. MilanoG. CavinS. DebonnevilleA. KruegerT. LiaudetL. The systemic deletion of interleukin-1α reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction.Sci. Rep.2023131400610.1038/s41598‑023‑30662‑436899010
    [Google Scholar]
  51. LinJ. KakkarV. LuX. Impact of matrix metalloproteinases on atherosclerosis.Curr. Drug Targets201415444245310.2174/138945011566614021111580524517161
    [Google Scholar]
  52. WangM. KimS.H. MonticoneR.E. LakattaE.G. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis.Hypertension201565469870310.1161/HYPERTENSIONAHA.114.0361825667214
    [Google Scholar]
  53. HeoS.H. ChoC.H. KimH.O. JoY.H. YoonK.S. LeeJ.H. ParkJ.C. ParkK.C. AhnT.B. ChungK.C. YoonS.S. ChangD.I. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: Involvement of matrix metalloproteinases 2 and 9.J. Clin. Neurol.201172697610.3988/jcn.2011.7.2.6921779294
    [Google Scholar]
  54. CavusogluE. MarmurJ.D. KassotisJ.T. YanamadalaS. ChopraV. EngC. Usefulness of plasma matrix Metalloproteinase-3 levels to predict myocardial infarction in men with and without acute coronary syndrome.Am. J. Cardiol.2016117688188610.1016/j.amjcard.2015.12.02226805660
    [Google Scholar]
  55. AbbasA. AukrustP. RussellD. Krohg-SørensenK. AlmåsT. BundgaardD. BjerkeliV. SagenE.L. MichelsenA.E. DahlT.B. HolmS. UelandT. SkjellandM. HalvorsenB. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis.PLoS One201491e8493510.1371/journal.pone.008493524400123
    [Google Scholar]
  56. RadosinskaJ. BarancikM. VrbjarN. Heart failure and role of circulating MMP-2 and MMP-9.Panminerva Med.201759324125310.23736/S0031‑0808.17.03321‑328399617
    [Google Scholar]
  57. ZileM.R. DeSantisS.M. BaicuC.F. StroudR.E. ThompsonS.B. McClureC.D. MehurgS.M. SpinaleF.G. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure.Circ. Heart Fail.20114324625610.1161/CIRCHEARTFAILURE.110.95819921350055
    [Google Scholar]
  58. ZachariahJ.P. ColanS.D. LangP. TriedmanJ.K. AlexanderM.E. WalshE.P. BerulC.I. CecchinF. Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia.Circ. Heart Fail.20125446246610.1161/CIRCHEARTFAILURE.111.96620022628530
    [Google Scholar]
  59. RaveraA. SantemaB.T. de BoerR.A. AnkerS.D. SamaniN.J. LangC.C. NgL. ClelandJ.G.F. DicksteinK. LamC.S.P. Van SpallH.G.C. FilippatosG. van VeldhuisenD.J. MetraM. VoorsA.A. SamaI.E. Distinct pathophysiological pathways in women and men with heart failure.Eur. J. Heart Fail.20222491532154410.1002/ejhf.253435596674
    [Google Scholar]
  60. RodriguesK.E. PontesM.H.B. CantãoM.B.S. PradoA.F. The role of matrix metalloproteinase-9 in cardiac remodeling and dysfunction and as a possible blood biomarker in heart failure.Pharmacol. Res.202420610728510.1016/j.phrs.2024.10728538942342
    [Google Scholar]
  61. WalewskiJ.L. GeF. GagnerM. InabnetW.B. PompA. BranchA.D. BerkP.D. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization.Obes. Surg.20102019310710.1007/s11695‑009‑0002‑919866242
    [Google Scholar]
  62. BalagopalP.B. de FerrantiS.D. CookS. DanielsS.R. GiddingS.S. HaymanL.L. McCrindleB.W. Mietus-SnyderM.L. SteinbergerJ. Nontraditional risk factors and biomarkers for cardiovascular disease: Mechanistic, research, and clinical considerations for youth: a scientific statement from the American heart association.Circulation2011123232749276910.1161/CIR.0b013e31821c7c6421555711
    [Google Scholar]
  63. OnatE. KocamanN. HancerS. The protective effects of humanin in rats with experimental myocardial infarction: The role of asprosin and spexin.Heliyon202398e1873910.1016/j.heliyon.2023.e1873937576267
    [Google Scholar]
  64. HeijmanJ. DobrevD. Spexin hormone signaling and atrial fibrillation: The knowns and unknowns.Circulation2024150212813110.1161/CIRCULATIONAHA.124.07001638976612
    [Google Scholar]
  65. ÇiftçiY. GurgerM. GulE. YilmazM. TeloS. AtescelikM. CagriG. AliK. Spexin level in acute myocardial infarction in the emergency department.J. Med. Biochem.202342340741110.5937/jomb0‑3948537814620
    [Google Scholar]
  66. SaidM.A. NafehN.Y. AbdallahH.A. Spexin alleviates hypertension, hyperuricaemia, dyslipidemia and insulin resistance in high fructose diet induced metabolic syndrome in rats via enhancing PPAR-ɣ and AMPK and inhibiting IL-6 and TNF-α.Arch. Physiol. Biochem.202312951111111610.1080/13813455.2021.189924233721543
    [Google Scholar]
  67. KulogluT. AydinS. Immunohistochemical expressions of adropin and ınducible nitric oxide synthase in renal tissues of rats with streptozotocin-ınduced experimental diabetes.Biotech. Histochem.201489210411010.3109/10520295.2013.82171323957703
    [Google Scholar]
  68. AltamimiT.R. GaoS. KarwiQ.G. FukushimaA. RawatS. WaggC.S. ZhangL. LopaschukG.D. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency.Metabolism201998374810.1016/j.metabol.2019.06.00531202835
    [Google Scholar]
  69. HuW. ChenL. Association of serum adropin concentrations with diabetic nephropathy.Mediators Inflamm.201620161510.1155/2016/603826127546995
    [Google Scholar]
  70. AliI.I. D’SouzaC. TariqS. AdeghateE.A. Adropin is expressed in pancreatic islet cells and reduces glucagon release in diabetes mellitus.Int. J. Mol. Sci.20242518982410.3390/ijms2518982439337311
    [Google Scholar]
  71. ZhangL. WuX. LiX. ChangX. DingX. WangQ. JiangT. WangG. LiuJ. Longitudinal changes in serum adropin levels and liver fat content during liraglutide treatment in newly diagnosed patients with type 2 diabetes mellitus and metabolic dysfunction-associated fatty liver disease.Acta Diabetol.202360797197910.1007/s00592‑023‑02082‑337079136
    [Google Scholar]
  72. RoobanS. SenghorK.A. VinodhiniV. KumarJ. Adropin: A crucial regulator of cardiovascular health and metabolic balanceMetabolites Open202423100299
    [Google Scholar]
  73. El Moneem ElfedawyM.A. El Sadek ElsebaiS.A. TawfikH.M. YounessE.R. ZakiM. Adropin a candidate diagnostic biomarker for cardiovascular disease in patients with chronic kidney disease.J. Genet. Eng. Biotechnol.202422410043810.1016/j.jgeb.2024.10043839674635
    [Google Scholar]
  74. BerezinaT.A. BerezinO.O. HoppeU.C. LichtenauerM. BerezinA.E. Adropin predicts asymptomatic heart failure in patients with type 2 diabetes mellitus independent of the levels of natriuretic peptides.Diagnostics20241416172810.3390/diagnostics1416172839202216
    [Google Scholar]
  75. ChoD.H. Adropin: A new biomarker in coronary artery disease.CMSJ202331858610.51789/cmsj.2023.3.e8
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257346704250324040652
Loading
/content/journals/chamc/10.2174/0118715257346704250324040652
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cardiovascular disease ; spexin ; interleukin ; matrix metalloproteinase ; Adropin ; renal failure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test