Skip to content
2000
Volume 23, Issue 3
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Direct Oral Anticoagulants (DOACs) have transformed the management of thrombotic disorders, offering a more convenient and effective alternative to traditional vitamin K antagonists (VKAs). However, assessing thrombotic risk in patients treated with DOACS remains crucial due to the potential for recurrent events. Current clinical risk scores have limitations in predicting and monitoring venous thromboembolism (VTE) risk in specific DOAC populations. Several emerging biomarkers show promise in assessing thrombotic risk in patients treated with DOACS. Genetic factors like VKORC1 and CYP2C9 variants are well-established determinants of warfarin response, but the genetic landscape for DOAC outcomes appears more complex. Rare variants and polygenic approaches may play a role in personalizing anticoagulation therapy. Elevated factor VIII levels are associated with increased VTE recurrence risk after anticoagulation withdrawal in cancer-associated thrombosis (CAT) patients. In contrast, the circulating tissue factor is not useful for predicting VTE in this setting. Soluble P-selectin has emerged as a good marker of VTE recurrence, and its inclusion in the Vienna CATS risk model improves VTE prediction in cancer patients. While these biomarkers hold promise, larger studies are needed to validate their utility and establish standardized assays. Caution is warranted in patients at high bleeding risk. Integrating clinical factors, genetics, and circulating biomarkers will likely optimize thrombotic risk assessment in patients treated with DOACS. Continued research is crucial to develop personalized anticoagulation strategies to balance thrombosis and bleeding risks.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257335790241203061748
2024-12-16
2025-12-19
Loading full text...

Full text loading...

References

  1. OteroR. Solier-LópezA. Sánchez-LópezV. OtoJ. ArellanoE. MarínS. Jara-PalomaresL. ElíasT. AsencioM.I. Blasco-EsquiviasI. Rodríguez de la BorbollaM. Sánchez-DíazJ.M. Real-DomínguezM. García-CabreraE. Rodríguez-MartorellF.J. MedinaP. Biomarkers of venous thromboembolism recurrence after discontinuation of low molecular weight heparin treatment for cancer-associated thrombosis (hispalis-study).Cancers (Basel)202214112771277110.3390/cancers1411277135681751
    [Google Scholar]
  2. BlomJ.W. DoggenC.J. OsantoS. RosendaalF.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis.JAMA2005293671572210.1001/jama.293.6.71515701913
    [Google Scholar]
  3. KoretsuneY. YamashitaT. AkaoM. AtarashiH. IkedaT. OkumuraK. ShimizuW. SuzukiS. TsutsuiH. ToyodaK. HirayamaA. YasakaM. YamaguchiT. TeramukaiS. KimuraT. MorishimaY. TakitaA. InoueH. Coagulation biomarkers and clinical outcomes in elderly patients with nonvalvular atrial fibrillation.JACC Asia20233459560710.1016/j.jacasi.2023.06.00437614535
    [Google Scholar]
  4. RobertiR. IannoneL.F. PalleriaC. CurcioA. RossiM. SciacquaA. ArmentaroG. VeroA. MantiA. CassanoV. RussoE. De SarroG. CitraroR. Direct oral anticoagulants: From randomized clinical trials to real-world clinical practice.Front. Pharmacol.20211268463810.3389/fphar.2021.68463834122113
    [Google Scholar]
  5. MosarlaR.C. VaduganathanM. QamarA. MoslehiJ. PiazzaG. GiuglianoR.P. Anticoagulation strategies in patients with cancer.J. Am. Coll. Cardiol.201973111336134910.1016/j.jacc.2019.01.01730898209
    [Google Scholar]
  6. ChenA. SteckerE. A WardenB. Direct oral anticoagulant use: A practical guide to common clinical challenges.J. Am. Heart Assoc.2020913e01755910.1161/jaha.120.01755932538234
    [Google Scholar]
  7. PfrepperC. MetzeM. SiegemundA. KlöterT. SiegemundT. PetrosS. Direct oral anticoagulant plasma levels and thrombin generation on st genesia system.Res. Pract. Thromb. Haemost.20204461962710.1002/rth2.1234032548561
    [Google Scholar]
  8. ElsebaieM.A.T. van EsN. LangstonA. BüllerH.R. GaddhM. Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: A systematic review and meta-analysis.J. Thromb. Haemost.201917464565610.1111/jth.1439830690830
    [Google Scholar]
  9. KhoranaA.A. KudererN.M. CulakovaE. LymanG.H. FrancisC.W. Development and validation of a predictive model for chemotherapy-associated thrombosis.Blood2008111104902490710.1182/blood‑2007‑10‑11632718216292
    [Google Scholar]
  10. GribsholtS.B. PedersenL. RichelsenB. ThomsenR.W. Validity of icd-10 diagnoses of overweight and obesity in danish hospitals.Clin. Epidemiol.20191184585410.2147/clep.s21490931572015
    [Google Scholar]
  11. ArendtJ.F.H. HansenA.T. LadefogedS.A. SørensenH.T. PedersenL. AdelborgK. Existing data sources in clinical epidemiology: Laboratory information system databases in denmark.Clin. Epidemiol.20201246947510.2147/clep.s24506032547238
    [Google Scholar]
  12. FrereC. CrichiB. WahlC. LestevenE. ConnaultJ. DurantC. Rueda-CaminoJ.A. YannoutosA. BensaoulaO. Le MaignanC. MarjanovicZ. FargeD. The ottawa score performs poorly to identify cancer patients at high risk of recurrent venous thromboembolism: Insights from the tropique study and updated meta-analysis.J. Clin. Med.20221113372910.3390/jcm1113372935807014
    [Google Scholar]
  13. PfaundlerN. LimacherA. StalderO. MéanM. RodondiN. BaumgartnerC. AujeskyD. Prognosis in patients with cancer-associated venous thromboembolism: Comparison of the riete-vte and modified ottawa score.J. Thromb. Haemost.20201851154116110.1111/jth.1478332124545
    [Google Scholar]
  14. MoikF. EnglischC. PabingerI. AyC. Risk assessment models of cancer-associated thrombosis - potentials and perspectives.Thromb. Update2021510007510.1016/j.tru.2021.100075
    [Google Scholar]
  15. PrandoniPaolo Personalized bleeding risk assessment for atrial fibrillation patients on direct oral anticoagulants: the DOAC score.Bleed. Thrombo. Vascu. Biol.2023239710.4081/btvb.2023.97
    [Google Scholar]
  16. AggarwalR. RuffC.T. VirdoneS. PerreaultS. KakkarA.K. PalazzoloM.G. DoraisM. KayaniG. SingerD.E. SecemskyE. PicciniJ. TahirU.A. ShenC. YehR.W. Development and validation of the doac score: A novel bleeding risk prediction tool for patients with atrial fibrillation on direct-acting oral anticoagulants.Circulation20231481293694610.1161/circulationaha.123.06455637621213
    [Google Scholar]
  17. AhujaT. RacoV. BhardwajS. GreenD. To measure or not to measure: Direct oral anticoagulant laboratory assay monitoring in clinical practice.Adv. Hematol.20237951149910.1155/2023/951149936875183
    [Google Scholar]
  18. TopkaraV.K. KnottsR.J. JenningsD.L. GaranA.R. LevinA.P. BreskinA. CastagnaF. CagliostroB. YuzefpolskayaM. TakedaK. TakayamaH. UrielN. ManciniD.M. EisenbergerA. NakaY. ColomboP.C. JordeU.P. Effect of CYP2C9 and VKORC1 gene variants on warfarin response in patients with continuous-flow left ventricular assist devices.ASAIO J.201662555856410.1097/mat.000000000000039027258224
    [Google Scholar]
  19. SconceE.A. KhanT.I. WynneH.A. AveryP. MonkhouseL. KingB.P. WoodP. KestevenP. DalyA.K. KamaliF. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: Proposal for a new dosing regimen.Blood200510672329233310.1182/blood‑2005‑03‑110815947090
    [Google Scholar]
  20. HendersonL.M. RobinsonR.F. RayL. KhanB.A. LiT. DillardD.A. SchillingB.D. MosleyM. JanssenP.L. FohnerA.E. RettieA.E. ThummelK.E. ThorntonT.A. VeenstraD.L. VKORC 1 and novelCYP 2c9 variation predict warfarin response in alaska native and american indian people.Clin. Transl. Sci.201912331232010.1111/cts.1261130821933
    [Google Scholar]
  21. FlockhartD.A. O’KaneD. WilliamsM.S. WatsonM.S. FlockhartD.A. GageB. GandolfiR. KingR. LyonE. NussbaumR. O’KaneD. SchulmanK. VeenstraD. WilliamsM.S. WatsonM.S. ACMG Working Group on Pharmacogenetic Testing of CYP2C9, VKORC1 Alleles for Warfarin Use Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin.Genet. Med.200810213915010.1097/gim.0b013e318163c35f18281922
    [Google Scholar]
  22. ScottS.A. EdelmannL. KornreichR. DesnickR.J. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the ashkenazi and sephardi jewish populations.Am. J. Hum. Genet.200882249550010.1016/j.ajhg.2007.10.00218252229
    [Google Scholar]
  23. LiT. LangeL.A. LiX. SussweinL. BryantB. MaloneR. LangeE.M. HuangT.Y. StaffordD.W. EvansJ.P. Polymorphisms in the VKORC1 gene are strongly associated with warfarin dosage requirements in patients receiving anticoagulation.J. Med. Genet.200643974074410.1136/jmg.2005.04041016611750
    [Google Scholar]
  24. LimdiN.A. WadeliusM. CavallariL. ErikssonN. CrawfordD.C. LeeM.T.M. ChenC.H. Motsinger-ReifA. SagreiyaH. LiuN. WuA.H.B. GageB.F. JorgensenA. PirmohamedM. ShinJ.G. Suarez-KurtzG. KimmelS.E. JohnsonJ.A. KleinT.E. WagnerM.J. International Warfarin Pharmacogenetics Consortium Warfarin pharmacogenetics: A single VKORC1 polymorphism is predictive of dose across 3 racial groups.Blood2010115183827383410.1182/blood‑2009‑12‑25599220203262
    [Google Scholar]
  25. MushirodaT. OhnishiY. SaitoS. TakahashiA. KikuchiY. SaitoS. ShimomuraH. WanibuchiY. SuzukiT. KamataniN. NakamuraY. Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in japanese patients.J. Hum. Genet.200651324925310.1007/s10038‑005‑0354‑516432637
    [Google Scholar]
  26. AL-EitanL.N. AlmasriA.Y. KhasawnehR.H. Impact of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness in jordanian cardiovascular patients during the initiation therapy.Genes (Basel)201891257810.3390/genes912057830486437
    [Google Scholar]
  27. AL-EitanL.N. AlmasriA.Y. KhasawnehR.H. Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy.Saudi Pharm. J.201927448449010.1016/j.jsps.2019.01.01131061616
    [Google Scholar]
  28. 2018Available from: https://medlineplus.gov/genetics/condition/warfarin-sensitivity/ (Accessed on: 1 Sep 2023
  29. SensitivityW. 2023Available from: https://arupconsult.com/ati/warfarin-sensitivity-genotyping (Accessed on: 14 Dec 2023
  30. DeanL. Warfarin therapy and VKORC1 and CYP genotype.Medical Genetics SummariesNational Center for Biotechnology Information (US): Bethesda (MD)2012
    [Google Scholar]
  31. LuT. ZhouS. WuH. ForgettaV. GreenwoodC.M.T. RichardsJ.B. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening.Genet. Med.202123350851510.1038/s41436‑020‑01007‑733110269
    [Google Scholar]
  32. JurgensS.J. PirruccelloJ.P. ChoiS.H. MorrillV.N. ChaffinM. LubitzS.A. LunettaK.L. EllinorP.T. Adjusting for common variant polygenic scores improves yield in rare variant association analyses.Nat. Genet.202355454454810.1038/s41588‑023‑01342‑w36959364
    [Google Scholar]
  33. SaadatagahS. NaderianM. DikilitasO. HamedM.E. BangashH. KulloI.J. Polygenic risk, rare variants, and family history.JACC Adv.20232710056710056710.1016/j.jacadv.2023.10056738939477
    [Google Scholar]
  34. DornbosP. KoestererR. RuttenburgA. NguyenT. ColeJ.B. LeongA. MeigsJ.B. FlorezJ.C. RotterJ.I. UdlerM.S. FlannickJ. AMP-T2D-GENES Consortium A combined polygenic score of 21,293 rare and 22 common variants improves diabetes diagnosis based on hemoglobin a1c levels.Nat. Genet.202254111609161410.1038/s41588‑022‑01200‑136280733
    [Google Scholar]
  35. BoschA. UlerykE. AvilaL. Role of factor viii, ix, and xi in venous thrombosis recurrence risk in adults and children: A systematic review.Res. Pract. Thromb. Haemost.20237210006410006410.1016/j.rpth.2023.10006436852262
    [Google Scholar]
  36. Solier LopezA. Jara PalomaresL. Elias HernandezT. Asensio CruzM.I. Blasco EsquiviasI. Sanchez LopezV. Arellano LopezE. Marin BarreraL. Suarez ValdiviaL. Rodriguez de la BorbollaM. Otero CandeleraR. Search predictive factors of recurrence in venous thromboembolic disease associated with cancer after withdrawal of the anticoagulation. hispalis study.Eur. Respir. J.20164860PA246210.1183/13993003.congress‑2016.pa2462
    [Google Scholar]
  37. KyrleP.A. MinarE. HirschlM. BialonczykC. StainM. SchneiderB. WeltermannA. SpeiserW. LechnerK. EichingerS. High plasma levels of factor viii and the risk of recurrent venous thromboembolism.N. Engl. J. Med.2000343745746210.1056/nejm20000817343070210950667
    [Google Scholar]
  38. TimpJ.F. LijferingW.M. FlintermanL.E. van Hylckama VliegA. le CessieS. RosendaalF.R. CannegieterS.C. Predictive value of factor viii levels for recurrent venous thrombosis: Results from the mega follow-up study.J. Thromb. Haemost.201513101823183210.1111/jth.1311326270389
    [Google Scholar]
  39. PurdyM. ObiA. MyersD. WakefieldT. P-and e-selectin in venous thrombosis and non-venous pathologies.J. Thromb. Haemost.20222051056106610.1111/jth.1568935243742
    [Google Scholar]
  40. SaadeldinA.A. El-SakhawyY.N. HussienH.A. Soluble p-selectin level in patients with deep venous thrombosis.Egypt. J. Hosp. Med.20187091529153810.12816/0044679
    [Google Scholar]
  41. AyC. JungbauerL.V. SailerT. TenglerT. KoderS. KaiderA. PanzerS. QuehenbergerP. PabingerI. MannhalterC. High concentrations of soluble p-selectin are associated with risk of venous thromboembolism and the p-selectin thr715 variant.Clin. Chem.20075371235124310.1373/clinchem.2006.08506817510305
    [Google Scholar]
  42. AyC. SimanekR. VormittagR. DunklerD. AlguelG. KoderS. KornekG. MarosiC. WagnerO. ZielinskiC. PabingerI. High plasma levels of soluble p-selectin are predictive of venous thromboembolism in cancer patients: Results from the vienna cancer and thrombosis study (cats).Blood200811272703270810.1182/blood‑2008‑02‑14242218539899
    [Google Scholar]
  43. AyC. SimanekR. VormittagR. DunklerD. AlguelG. KoderS. WagnerO. ZielinskiC. PabingerI. High plasma levels of soluble p-selectin are predictive for venous thromboembolism in cancer patients - results from the vienna cancer and thrombosis study (cats).Blood20071101170170110.1182/blood.v110.11.701.701
    [Google Scholar]
  44. Castellón RubioV.E. SeguraP.P. MuñozA. FarréA.L. RuizL.C. LorenteJ.A. High plasma levels of soluble p-selectin and factor viii predict venous thromboembolism in non-small cell lung cancer patients: The thrombo-nsclc risk score.Thromb. Res.202019634935410.1016/j.thromres.2020.09.02132977135
    [Google Scholar]
  45. AyC. DunklerD. MarosiC. ChiriacA.L. VormittagR. SimanekR. QuehenbergerP. ZielinskiC. PabingerI. Prediction of venous thromboembolism in cancer patients.Blood2010116245377538210.1182/blood‑2010‑02‑27011620829374
    [Google Scholar]
  46. HaradaY. SatoA. NishiokaA. OgusuS. MatsumotoM. SueokaE. KawaguchiA. KimuraS. Sueoka-αraganeN. Usefulness of blood biomarkers for predicting venous thromboembolism in japanese patients with cancer.Oncol. Lett.202325518010.3892/ol.2023.1376637033099
    [Google Scholar]
  47. IdingA.F.J. KremersB.M.M. NagyM. Pallares RoblesA. ten CateH. SpronkH.M.H. ten Cate-HoekA.J. Translational insights into mechanisms underlying residual venous obstruction and the role of factor xi, p-selectin and gpvi in recurrent venous thromboembolism.Thromb. Res.2023221586410.1016/j.thromres.2022.11.02336473362
    [Google Scholar]
  48. HanaaA. El-SayedA. EbrahimM. Validity of modified vienna-cats score for prediction of venous thromboembolism in egyptian cancer cases.Egypt. J. Hospi. Medi.20228926831683810.21608/ejhm.2022.270820
    [Google Scholar]
  49. EL-SayedH.A. OthmanM. AzzamH. BucciolR. EbrahimM.A. EL-AgdarM.A.M.A. TeraY. SakrD.H. GhoneimH.R. SelimT.E.S. Assessing the risk of venous thromboembolism in patients with haematological cancers using three prediction models.J. Cancer Res. Clin. Oncol.202314920177711778010.1007/s00432‑023‑05475‑737935936
    [Google Scholar]
  50. TanW.J. ChenL. YangS.J. ZhangB.Y. SunM.L. LinY.B. WangX.H. Development and validation of a prediction model for venous thrombus embolism (vte) in patients with colorectal cancer.Technol. Cancer Res. Treat.2023221533033823118679010.1177/1533033823118679038018116
    [Google Scholar]
  51. EstrinM.A. WehausenC.E. LessenC.R. LeeJ.A. Disseminated intravascular coagulation in cats.J. Vet. Intern. Med.20062061334133910.1111/j.1939‑1676.2006.tb00747.x17186846
    [Google Scholar]
  52. Paul PionD.V.M. SpadaforiG. Veterinary partner.2017Available from: https://veterinarypartner.vin.com/default.aspx?pid=19239&id=4952842 (Accessed on: 8 Aug 2017).
  53. LymanG.H. CarrierM. AyC. Di NisioM. HicksL.K. KhoranaA.A. LeavittA.D. LeeA.Y.Y. MacbethF. MorganR.L. NobleS. SextonE.A. StenehjemD. WierciochW. KahaleL.A. Alonso-CoelloP. American society of hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer.Blood Adv.20215492797410.1182/bloodadvances.202000344233570602
    [Google Scholar]
  54. MoikF. CollingM. MahéI. Jara-PalomaresL. PabingerI. AyC. Extended anticoagulation treatment for cancer-associated thrombosis—rates of recurrence and bleeding beyond 6 months: A systematic review.J. Thromb. Haemost.202220361963410.1111/jth.1559934816583
    [Google Scholar]
  55. YoonH.Y. SongT.J. YeeJ. ParkJ. GwakH.S. Association between genetic polymorphisms and bleeding in patients on direct oral anticoagulants.Pharmaceutics2022149188910.3390/pharmaceutics1409188936145636
    [Google Scholar]
  56. DeringtonC.G. GoodrichG.K. XuS. ClarkN.P. ReynoldsK. AnJ. WittD.M. SmithD.H. O’Keeffe-RosettiM. LangD.T. HoP.M. CheethamT.C. ComerA.C. KingJ.B. Association of direct oral anticoagulation management strategies with clinical outcomes for adults with atrial fibrillation.JAMA Netw. Open202367e232197110.1001/jamanetworkopen.2023.2197137410461
    [Google Scholar]
  57. RaymondJ. ImbertL. CousinT. DuflotT. VarinR. WilsJ. LamoureuxF. Pharmacogenetics of direct oral anticoagulants: A systematic review.J. Pers. Med.20211113710.3390/jpm1101003733440670
    [Google Scholar]
  58. TufanoA. CoppolaA. How to manage anticoagulation for cancer-associated thrombosis and atrial fibrillation in cancer.Thromb. Update20241510016910016910.1016/j.tru.2024.100169
    [Google Scholar]
  59. FargeD. FrereC. ConnorsJ.M. KhoranaA.A. KakkarA. AyC. MuñozA. BrennerB. PrataP.H. BrilhanteD. AnticD. CasaisP. Guillermo EspositoM.C. IkezoeT. AbutalibS.A. Meillon-GarcíaL.A. BounameauxH. PabingerI. DouketisJ. AgenoW. AjauroF. AlcindorT. AngchaisuksiriP. ArcelusJ.I. BarbaR. BazarbachiiA. BellesoeurA. BensaoulaO. BenzidiaI. BitaD. BitsadzeV. BlicksteinD. BlosteinM. BogalhoI. BrandaoA. CaladoR. CarpentierA. CeresettoJ.M. ChitsikeR. ConnaultJ. CorreiaC.J. CrichiB. De PaulaE.V. DemirA.M. DevilleL. DoucetL. DounaevskaiaV. DurantC. EllisM. EmmerichJ. FalangaA. FontC. GallardoE. GaryT. GonçalvesF. GrisJ-C. HayashiH. HijA. Jara-PalomaresL. JiménezD. KhizroevaJ. N’GuessanM. LangerF. Le HelloC. Le MaignanC. LecumberriR. LeeL.H. LiedermanZ. Lopes dos SantosL. MachadoD.H. MakatsariyaA. ManeyroA. MarjanovicZ. MilhaileanuS. MonrealM. MoraisS. MoreiraA. MukaiM. NdourA. Correa OliveiraL. Otero-CandelaraR. Tostes PintaoM.C. PoschF. PrilolletP. RafiiH. Dias RibeiroD. RiessH. RighiniM. Robert-EbadiH. RothschildC. RoussinA. Rueda CaminoJ.A. Ruiz-ArtachoP. SaharovG. SantosJ. SebuhyanM. ShamseddineA. SpectreG.S. TaherA. Trujillo-SantosJ. TzoranI. VilliersS. WongR. YamashitaY. YannoutsosA. YasudaC. International Initiative on Thrombosis and Cancer (ITAC) advisory panel 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with covid-19.Lancet Oncol.2022237e334e34710.1016/s1470‑2045(22)00160‑735772465
    [Google Scholar]
  60. KearonC. AklE.A. Duration of anticoagulant therapy for deep vein thrombosis and pulmonary embolism.Blood2014123121794180110.1182/blood‑2013‑12‑51268124497538
    [Google Scholar]
  61. ThompsonL.E. DavisB.H. NarayanR. GoffB. BrownT.M. LimdiN.A. Personalizing direct oral anticoagulant therapy for a diverse population: Role of race, kidney function, drug interactions, and pharmacogenetics.Clin. Pharmacol. Ther.2023113358559910.1002/cpt.271435857814
    [Google Scholar]
  62. CrossB. TurnerR.M. ZhangJ.E. PirmohamedM. Being precise with anticoagulation to reduce adverse drug reactions: Are we there yet?Pharmacogenomics J.2024242710.1038/s41397‑024‑00329‑y38443337
    [Google Scholar]
  63. ScoreC.A.T.S. Cats score.2017Available from: https://practical-haemostasis.com/Clinical%20Prediction%20Scores/Formulae%20code%20and%20formulae/Formulae/VTED-Cancer/CATS_score.html
  64. PabingerI. van EsN. HeinzeG. PoschF. RiedlJ. ReitterE.M. Di NisioM. Cesarman-MausG. KraaijpoelN. ZielinskiC.C. BüllerH.R. AyC. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts.Lancet Haematol.201857e289e29810.1016/s2352‑3026(18)30063‑229885940
    [Google Scholar]
  65. VerzeroliC. GiaccheriniC. RussoL. BologniniS. GambaS. TartariC.J. SchieppatiF. TicozziC. VignoliA. MasciG. SarmientoR. SpinelliD. MalighettiP. TondiniC. PetrelliF. GiulianiF. D’AlessioA. GaspariniG. MinelliM. De BraudF. SantoroA. LabiancaR. MarchettiM. FalangaA. MarinaM. SilviaB. SaraG. CinziaG. LauraR. FrancescaS. JuliaT.C. ChiaraT. CristinaV. AlfonsoV. ArmandoS. GiovannaM. FilippoD.B. AntoniaM. CarloT. RobertoL. GiampietroG. RobertaS. ElisabettaG. MauroM. SandroB. FaustoP. MaraG. AndreaD.A. SaraC. FrancescoG. PaoloM. ChiaraM. DanieleS. FalangaA. HYPERCAN Investigators Utility of the khorana and the new-vienna cats prediction scores in cancer patients of the hypercan cohort.J. Thromb. Haemost.20232171869188110.1016/j.jtha.2023.03.03737054917
    [Google Scholar]
  66. DrăganA. DrăganA.Ş. Novel insights in venous thromboembolism risk assessment methods in ambulatory cancer patients: From the guidelines to clinical practice.Cancers (Basel)202416245810.3390/cancers1602045838275899
    [Google Scholar]
  67. RiondinoS. FerroniP. ZanzottoF.M. RoselliM. GuadagniF. Predicting vte in cancer patients: Candidate biomarkers and risk assessment models.Cancers (Basel)2019111959510.3390/cancers1101009530650562
    [Google Scholar]
  68. KimA.S. KhoranaA.A. McCraeK.R. Mechanisms and biomarkers of cancer-associated thrombosis.Transl. Res.2020225335310.1016/j.trsl.2020.06.01232645431
    [Google Scholar]
  69. MosaadM. ElnaemM.H. CheemaE. IbrahimI. Ab RahmanJ. KoriA.N. HinH.S. Cancer-associated thrombosis: A clinical scoping review of the risk assessment models across solid tumours and haematological malignancies.Int. J. Gen. Med.2021143881389710.2147/ijgm.s32049234335052
    [Google Scholar]
  70. HannaD.L. WhiteR.H. WunT. Biomolecular markers of cancer-associated thromboembolism.Crit. Rev. Oncol. Hematol.2013881192910.1016/j.critrevonc.2013.02.00823522921
    [Google Scholar]
  71. LevyJ.H. SpyropoulosA.C. SamamaC.M. DouketisJ. Direct oral anticoagulants: New drugs and new concepts.JACC Cardiovasc. Interv.20147121333135110.1016/j.jcin.2014.06.01425523529
    [Google Scholar]
  72. BolekH. ÜrünY. Cancer-associated thrombosis and drug–drug interactions of antithrombotic and antineoplastic agents.Cancer2023129203216322910.1002/cncr.3493737401828
    [Google Scholar]
  73. ChoiE.K. KwonS. Coagulation biomarkers for predicting clinical outcomes among patients with atrial fibrillation.JACC Asia20233460861010.1016/j.jacasi.2023.07.00237614537
    [Google Scholar]
  74. OldgrenJ. HijaziZ. LindbäckJ. AlexanderJ.H. ConnollyS.J. EikelboomJ.W. EzekowitzM.D. GrangerC.B. HylekE.M. LopesR.D. SiegbahnA. YusufS. WallentinL. RE-LY and ARISTOTLE Investigators Performance and validation of a novel biomarker-based stroke risk score for atrial fibrillation.Circulation2016134221697170710.1161/circulationaha.116.02280227569438
    [Google Scholar]
  75. SchererA. Reproducibility in biomarker research and clinical development: A global challenge.Biomarkers Med.201711430931210.2217/bmm‑2017‑002428290208
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257335790241203061748
Loading
/content/journals/chamc/10.2174/0118715257335790241203061748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test