Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Red blood cells with sickle cell anemia (SCA) have an irregular shape, and it is a genetic blood condition that can cause several problems and shorten life expectancy. Traditional treatments have focused on symptom management, but recent advancements in drug delivery systems offer promising pathways for targeted therapies. This abstract explores novel approaches to combat SCA through innovative drug delivery systems, gene therapy, and new pharmaceutical interventions. One novel pathway for targeting SCA involves utilizing advanced drug delivery systems to enhance the effectiveness of therapeutic agents. Nanotechnology-based delivery systems, such as nanoparticles and liposomes, offer precise drug targeting, controlled release, and improved bioavailability. These systems can encapsulate anti-sickling agents, like hydroxyurea, and enable their specific delivery to affected cells, reducing side effects and enhancing therapeutic outcomes. Additionally, therapy has become a ground-breaking method of treating SCA. CRISPR/Cas9 technology presents a groundbreaking opportunity to correct the genetic mutation responsible for sickle hemoglobin production. By precisely editing the HBB gene, which encodes the abnormal hemoglobin, researchers aim to restore normal hemoglobin expression, potentially offering a curative treatment for SCA. Furthermore, recent advancements in drug development have led to the discovery of promising candidates targeting specific pathways involved in SCA pathophysiology. Experimental drugs, such as voxelotor and crizanlizumab focus on modifying hemoglobin properties or inhibiting cell adhesion, respectively, thereby preventing sickle cell-related complications and reducing vaso-occlusive crisis frequency.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257325911241113075950
2025-06-01
2025-11-08
Loading full text...

Full text loading...

References

  1. PaceB.S. Starlard-DavenportA. KutlarA. Sickle cell disease: Progress towards combination drug therapy.Br. J. Haematol.2021194224025110.1111/bjh.1731233471938
    [Google Scholar]
  2. OlubiyiO.O. OlagunjuM.O. StrodelB. Rational drug design of peptide-based therapies for sickle cell disease.Molecules20192424455110.3390/molecules2424455131842406
    [Google Scholar]
  3. CardenM.A. LittleJ. Emerging disease-modifying therapies for sickle cell disease.Haematologica201910491710171910.3324/haematol.2018.20735731413089
    [Google Scholar]
  4. Salinas CisnerosG. TheinS.L. Recent advances in the treatment of sickle cell disease.Front. Physiol.202011May43510.3389/fphys.2020.0043532508672
    [Google Scholar]
  5. BunnH.F. Pathogenesis and treatment of sickle cell disease.N. Engl. J. Med.19973371176276910.1056/NEJM1997091133711079287233
    [Google Scholar]
  6. BarabinoG.A. PlattM.O. KaulD.K. Sickle cell biomechanics.Annu. Rev. Biomed. Eng.201012134536710.1146/annurev‑bioeng‑070909‑10533920455701
    [Google Scholar]
  7. WareR.E. de MontalembertM. TshiloloL. AbboudM.R. Sickle cell disease.Lancet20173901009131132310.1016/S0140‑6736(17)30193‑928159390
    [Google Scholar]
  8. PiccinA. MurphyC. EakinsE. RondinelliM.B. DavesM. VecchiatoC. WolfD. Mc MahonC. SmithO.P. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment.Eur. J. Haematol.2019102431933010.1111/ejh.1321230664257
    [Google Scholar]
  9. AtagaK.I. MooreC.G. JonesS. OlajideO. StrayhornD. HinderliterA. OrringerE.P. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study.Br. J. Haematol.2006134110911510.1111/j.1365‑2141.2006.06110.x16803576
    [Google Scholar]
  10. ReesD.C. WilliamsT.N. GladwinM.T. Sickle-cell disease.Lancet201037697572018203110.1016/S0140‑6736(10)61029‑X21131035
    [Google Scholar]
  11. BelcherJ.D. BryantC.J. NguyenJ. BowlinP.R. KielbikM.C. BischofJ.C. HebbelR.P. VercellottiG.M. Transgenic sickle mice have vascular inflammation.Blood2003101103953395910.1182/blood‑2002‑10‑331312543857
    [Google Scholar]
  12. ConnesP. LamarreY. WaltzX. BallasS.K. LemonneN. Etienne-JulanM. HueO. Hardy-DessourcesM.D. RomanaM. Haemolysis and abnormal haemorheology in sickle cell anaemia.Br. J. Haematol.2014165456457210.1111/bjh.1278624611951
    [Google Scholar]
  13. MiltonJ.N. RooksH. DrasarE. McCabeE.L. BaldwinC.T. MelistaE. GordeukV.R. NouraieM. KatoG.R. MinnitiC. TaylorJ. CampbellA. Luchtman-JonesL. RanaS. CastroO. ZhangY. TheinS.L. SebastianiP. GladwinM.T. SteinbergM.H. Genetic determinants of haemolysis in sickle cell anaemia.Br. J. Haematol.2013161227027810.1111/bjh.1224523406172
    [Google Scholar]
  14. KatoG.J. GladwinM.T. SteinbergM.H. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes.Blood Rev.2007211374710.1016/j.blre.2006.07.00117084951
    [Google Scholar]
  15. FrangoulH. AltshulerD. CappelliniD. ChenY.-S. DommJ. EustaceB. FoellJ. FuenteJ.D.L. GruppS. HandgretingerR. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.N. Engl. J. Med.2021384310.1056/NEJMoa2031054
    [Google Scholar]
  16. CaudaiC. GaliziaA. GeraciF. Le PeraL. MoreaV. SalernoE. ViaA. ColomboT. AI applications in functional genomics.Comput. Struct. Biotechnol. J.2021195762579010.1016/j.csbj.2021.10.00934765093
    [Google Scholar]
  17. PimandaJ.E. GttgensB. Gene regulatory networks governing haematopoietic stem cell development and identity.Int. J. Dev. Biol.2010546-71201121110.1387/ijdb.093038jp20711996
    [Google Scholar]
  18. LuN. MalemudC.J. Extracellular signal-regulated kinase: A regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression.Int. J. Mol. Sci.20192015379210.3390/ijms2015379231382554
    [Google Scholar]
  19. WangD. ZhangY. LiQ. LiY. LiW. ZhangA. XuJ. MengJ. TangL. LyuS. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression.Genes Dis.202411510102010.1016/j.gendis.2023.04.04038988323
    [Google Scholar]
  20. MorroneK. MitchellW.B. Author ’ s Accepted Manuscript.Semin. Hematol.201810.1053/j.seminhematol.2018.04.00730616808
    [Google Scholar]
  21. WagnerD.D. FrenetteP.S. The vessel wall and its interactions.Blood2008111115271528110.1182/blood‑2008‑01‑07820418502843
    [Google Scholar]
  22. GutsaevaD.R. ParkersonJ.B. YerigenahallyS.D. KurzJ.C. SchaubR.G. IkutaT. HeadC.A. Inhibition of cell adhesion by anti–P-selectin aptamer: A new potential therapeutic agent for sickle cell disease.Blood2011117272773510.1182/blood‑2010‑05‑28571820926770
    [Google Scholar]
  23. TurhanA. WeissL.A. MohandasN. CollerB.S. FrenetteP.S. Primary role for adherent leukocytes in sickle cell vascular occlusion: A new paradigm.Proc. Natl. Acad. Sci. USA20029953047305110.1073/pnas.05252279911880644
    [Google Scholar]
  24. FieldJ.J. NathanD.G. LindenJ. Targeting iNKT cells for the treatment of sickle cell disease.Clin. Immunol.2011140217718310.1016/j.clim.2011.03.00221429807
    [Google Scholar]
  25. LindenJ. Chapter 4 - Regulation of leukocyte function by adenosine receptors.Advances in Pharmacology1st edElsevier2011619511410.1016/B978‑0‑12‑385526‑8.00004‑7
    [Google Scholar]
  26. NowakM. LynchL. YueS. OhtaA. SitkovskyM. BalkS.P. ExleyM.A. The A2aR adenosine receptor controls cytokine production in iNKT cells.Eur. J. Immunol.201040368268710.1002/eji.20093989720039304
    [Google Scholar]
  27. FieldJ.J. LinG. OkamM.M. MajerusE. KeeferJ. OnyekwereO. RossA. CampigottoF. NeubergD. LindenJ. NathanD.G. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson.Blood2013121173329333410.1182/blood‑2012‑11‑46596323377438
    [Google Scholar]
  28. FieldJ.J. MajerusE. GordeukV.R. GowhariM. HoppeC. HeeneyM.M. AchebeM. GeorgeA. ChuH. SheehanB. PuligandlaM. NeubergD. LinG. LindenJ. NathanD.G. Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease.Blood Adv.20171201645164910.1182/bloodadvances.201700961329296811
    [Google Scholar]
  29. FieldJ.J. MajerusE. AtagaK.I. VichinskyE.P. SchaubR. MashalR. NathanD.G. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease.PLoS One2017122e017106710.1371/journal.pone.017106728152086
    [Google Scholar]
  30. Van ZuurenE.J. Low-molecular-weight heparins for managing vaso-occlusive crises in people with sickle cell disease.J. Bahrain Med. Soc.2014252129131
    [Google Scholar]
  31. TomerA. HarkerL.A. KaseyS. EckmanJ.R. Thrombogenesis in sickle cell disease.J. Lab. Clin. Med.2001137639840710.1067/mlc.2001.11545011385360
    [Google Scholar]
  32. BrittainH.A. EckmanJ.R. SwerlickR.A. HowardR.J. WickT.M. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: A potential role for platelet activation in sickle cell vaso-occlusion.Blood19938182137214310.1182/blood.V81.8.2137.21378471771
    [Google Scholar]
  33. DavilaJ. ManwaniD. VasovicL. AvanziM. UehlingerJ. IrelandK. MitchellW.B. A novel inflammatory role for platelets in sickle cell disease.Platelets201526872672910.3109/09537104.2014.98389125548984
    [Google Scholar]
  34. LeeS.P. AtagaK.I. OrringerE.P. PhillipsD.R. PariseL.V. Biologically active CD40 ligand is elevated in sickle cell anemia: potential role for platelet-mediated inflammation.Arterioscler. Thromb. Vasc. Biol.20062671626163110.1161/01.ATV.0000220374.00602.a216601237
    [Google Scholar]
  35. WilkieD.J. MolokieR. Boyd-SealD. SuarezM.L. KimY.O. ZongS. WittertH. ZhaoZ. SaunthararajahY. WangZ.J. Patient-reported outcomes: Descriptors of nociceptive and neuropathic pain and barriers to effective pain management in adult outpatients with sickle cell disease.J. Natl. Med. Assoc.20101021182710.1016/S0027‑9684(15)30471‑520158132
    [Google Scholar]
  36. MolokieR.E. WilkieD.J. WittertH. SuarezM.L. YaoY. ZhaoZ. HeY. WangZ.J. Mechanism-driven phase I translational study of trifluoperazine in adults with sickle cell disease.Eur. J. Pharmacol.2014723141942410.1016/j.ejphar.2013.10.06224211787
    [Google Scholar]
  37. LeiJ. BensonB. TranH. Ofori-AcquahS.F. GuptaK. Comparative analysis of pain behaviours in humanized mouse models of sickle cell anemia.PLoS One2016118e016060810.1371/journal.pone.016060827494522
    [Google Scholar]
  38. EgesaW.I. NakalemaG. WaibiW.M. TuryasiimaM. AmujeE. KiconcoG. OdochS. KumbakuluP.K. AbdirashidS. AsiimweD. Sickle cell disease in children and adolescents: A review of the historical, clinical, and public health perspective of sub-Saharan Africa and beyond.Int. J. Pediatr.2022202212610.1155/2022/388597936254264
    [Google Scholar]
  39. AnurogoD. Yuli Prasetyo BudiN. Thi NgoM.H. HuangY.H. PawitanJ.A. Cell and gene therapy for anemia: Hematopoietic stem cells and gene editing.Int. J. Mol. Sci.20212212627510.3390/ijms2212627534200975
    [Google Scholar]
  40. BrussonM. ChalumeauA. MartinucciP. RomanoO. FelixT. PolettiV. ScaramuzzaS. RamadierS. MassonC. FerrariG. MavilioF. CavazzanaM. AmendolaM. MiccioA. Novel lentiviral vectors for gene therapy of sickle cell disease combining gene addition and gene silencing strategies.Mol. Ther. Nucleic Acids202332June22924610.1016/j.omtn.2023.03.01237090420
    [Google Scholar]
  41. Germino-WatnickP. HindsM. LeA. ChuR. LiuX. UchidaN. Hematopoietic stem cell gene-addition/editing therapy in sickle cell disease.Cells20221111184310.3390/cells1111184335681538
    [Google Scholar]
  42. GundryM.C. BrunettiL. LinA. MayleA.E. KitanoA. WagnerD. HsuJ.I. HoegenauerK.A. RooneyC.M. GoodellM.A. NakadaD. Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9.Cell Rep.20161751453146110.1016/j.celrep.2016.09.09227783956
    [Google Scholar]
  43. HumbertO. RadtkeS. SamuelsonC. CarrilloR.R. PerezA.M. ReddyS.S. LuxC. PattabhiS. SchefterL.W. NegreO. LeeC.M. Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates.Sci. Transl. Med.201911503eaaw376810.1126/scitranslmed.aaw3768
    [Google Scholar]
  44. MainousA.G. TannerR.J. HarleC.A. BakerR. ShokarN.K. HulihanM.M. Attitudes toward management of sickle cell disease and its complications: A national survey of academic family physicians.Anemia201520151610.1155/2015/85383525793124
    [Google Scholar]
  45. NiiharaY. MillerS.T. KanterJ. LanzkronS. SmithW.R. HsuL.L. GordeukV.R. ViswanathanK. SarnaikS. OsunkwoI. GuillaumeE. SadanandanS. SiegerL. LaskyJ.L. PanosyanE.H. BlakeO.A. NewT.N. BellevueR. TranL.T. RazonR.L. StarkC.W. NeumayrL.D. VichinskyE.P. A phase 3 trial of 1-glutamine in sickle cell disease.N. Engl. J. Med.2018379322623510.1056/NEJMoa171597130021096
    [Google Scholar]
  46. HowardJ. AtagaK.I. BrownR.C. AchebeM. NdubaV. El-BeshlawyA. HassabH. AgodoaI. TondaM. GrayS. Lehrer-GraiwerJ. VichinskyE. Voxelotor in adolescents and adults with sickle cell disease (HOPE): Long-term follow-up results of an international, randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Haematol.202185e323e33310.1016/S2352‑3026(21)00059‑433838113
    [Google Scholar]
  47. SarambaM.I. ShakyaS. ZhaoD. Analgesic management of uncomplicated acute sickle-cell pain crisis in pediatrics: A systematic review and meta-analysis.J. Pediatr. (Rio J.)202096214215810.1016/j.jped.2019.05.00431351033
    [Google Scholar]
  48. Rankine-MullingsA.E. Owusu-OforiS. Prophylactic antibiotics for preventing pneumococcal infection in children with sickle cell disease.Cochrane Database Syst. Rev.202133CD00342733724440
    [Google Scholar]
  49. Johnson-WimbleyT.D. GrahamD.Y. Diagnosis and management of iron deficiency anemia in the 21st century.Therap. Adv. Gastroenterol.20114317718410.1177/1756283X1139873621694802
    [Google Scholar]
  50. GordeukV.R. SachdevV. TaylorJ.G. GladwinM.T. KatoG. CastroO.L. Relative systemic hypertension in patients with sickle cell disease is associated with risk of pulmonary hypertension and renal insufficiency.Am. J. Hematol.2008831151810.1002/ajh.2101617696198
    [Google Scholar]
  51. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  52. HanJ. SarafS.L. LashJ.P. GordeukV.R. Use of anti-inflammatory analgesics in sickle-cell disease.J. Clin. Pharm. Ther.201742565666010.1111/jcpt.1259228695614
    [Google Scholar]
  53. UsmaniA. MachadoR.F. Vascular complications of sickle cell disease.Clin. Hemorheol. Microcirc.2018682-320522110.3233/CH‑18900829614633
    [Google Scholar]
  54. LisB. OlasB. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products – History and present.J. Funct. Foods201959February404810.1016/j.jff.2019.05.012
    [Google Scholar]
  55. SalveJ. PateS. DebnathK. LangadeD. Adaptogenic and anxiolytic effects of ashwagandha root extract in healthy adults: A double-blind, randomized, placebo-controlled clinical study.Cureus20191112e646610.7759/cureus.646632021735
    [Google Scholar]
  56. JimenezK. Kulnigg-DabschS. GascheC. Management of iron deficiency anemia.Gastroenterol. Hepatol. (N. Y.)201511424125027099596
    [Google Scholar]
  57. HussainY. Abdullah KhanF. AlsharifK.F. AlzahraniK.J. SasoL. KhanH. Regulatory effects of curcumin on platelets: An update and future directions.Biomedicines20221012318010.3390/biomedicines1012318036551934
    [Google Scholar]
  58. YangR. YuanB.C. MaY.S. ZhouS. LiuY. The anti-inflammatory activity of licorice, a widely used Chinese herb.Pharm. Biol.201755151810.1080/13880209.2016.122577527650551
    [Google Scholar]
  59. DinarelloC.A. Anti-inflammatory agents: Present and future.Cell2010140693595010.1016/j.cell.2010.02.04320303881
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257325911241113075950
Loading
/content/journals/chamc/10.2174/0118715257325911241113075950
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anemia; blood; cells; drug delivery; gene targeting; haemoglobin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test