Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Overproduction of reactive nitrogen and oxygen species (RNS and ROS) has been linked to the pathogenesis of diabetes, hypertension, hyperlipidemia, stroke, angina, and other cardiovascular diseases. These species are produced in part by the mitochondrial respiratory chain, NADPH oxidase, and xanthine oxidase. RNS and ROS both contribute to oxidative stress, which is necessary for the development of cardiovascular disorders. In addition to ROS species like hydroxyl ion, hydrogen peroxide, and superoxide anion, RNS species like nitric oxide, peroxynitrous acid, peroxynitrite, and nitrogen dioxide radicals have also been linked to a number of cardiovascular conditions. They promote endothelial dysfunction, vascular inflammation, lipid peroxidation, and oxidative damage, all of which contribute to the development of cardiovascular pathologies. It's crucial to understand the mechanisms that result in the production of RNS and ROS in order to identify potential therapeutic targets. Redox biomarkers serve as indicators of oxidative stress, making them crucial tools for diagnosing and predicting cardiovascular states. The advancements in proteomics, metabolomics, genomics, and transcriptomics have made the identification and detection of these small molecules possible. The following redox biomarkers are notable examples: 3-nitrotyrosine, 4-hydroxy-2-nonenal, 8-iso-prostaglandin F2, 8-hydroxy-2-deoxyguanosine, malondialdehyde, Diacron reactive oxygen metabolites, total thiol, and specific microRNAs (. miRNA199, miRNA21, miRNA1254, miRNA1306-5p, miRNA26b-5p, and miRNA660-5p) are examples. Although redox biomarkers have great potential, their clinical applicability faces challenges. Redox biomarkers frequently have a short half-life and exist in small quantities in the blood, making them challenging to identify and measure. The interpretation of biomarker data may also be influenced by confounding factors and the complex interplay of various oxidative stress pathways. Therefore, in-depth validation studies and the development of sensitive and precise detection methods are needed to address these problems. In the search for redox biomarkers, cutting-edge techniques like mass spectrometry, immunoassays, and molecular diagnostics are applied. New platforms and technologies have made it possible to accurately detect and monitor redox biomarkers, which facilitates their use in clinical settings. Our expanding knowledge of RNS and ROS involvement in cardiovascular disorders has made it possible to develop redox biomarkers as diagnostic and prognostic tools. Overcoming the challenges associated with their utility and utilizing advanced detection techniques, which will improve their clinical applicability, will ultimately benefit the management and treatment of cardiovascular conditions.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257282030240130095754
2025-06-01
2025-09-15
Loading full text...

Full text loading...

References

  1. Al-ShamsiS. RegmiD. GovenderR.D. Incidence of cardiovascular disease and its associated risk factors in at-risk men and women in the United Arab Emirates: A 9-year retrospective cohort study.BMC Cardiovasc. Disord.201919114810.1186/s12872‑019‑1131‑2 31208354
    [Google Scholar]
  2. ZhaoD. Epidemiological features of cardiovascular disease in Asia.JACC Asia20211111310.1016/j.jacasi.2021.04.007 36338365
    [Google Scholar]
  3. BenjaminE.J. ViraniS.S. CallawayC.W. ChamberlainA.M. ChangA.R. ChengS. ChiuveS.E. CushmanM. DellingF.N. DeoR. de FerrantiS.D. FergusonJ.F. FornageM. GillespieC. IsasiC.R. JiménezM.C. JordanL.C. JuddS.E. LacklandD. LichtmanJ.H. LisabethL. LiuS. LongeneckerC.T. LutseyP.L. MackeyJ.S. MatcharD.B. MatsushitaK. MussolinoM.E. NasirK. O’FlahertyM. PalaniappanL.P. PandeyA. PandeyD.K. ReevesM.J. RitcheyM.D. RodriguezC.J. RothG.A. RosamondW.D. SampsonU.K.A. SatouG.M. ShahS.H. SpartanoN.L. TirschwellD.L. TsaoC.W. VoeksJ.H. WilleyJ.Z. WilkinsJ.T. WuJ.H.Y. AlgerH.M. WongS.S. MuntnerP. Heart disease and stroke statistics—2018 update: A report from the American Heart Association.Circulation201813712e67e49210.1161/CIR.0000000000000558 29386200
    [Google Scholar]
  4. HagemanS.H.J. McKayA.J. UedaP. GunnL.H. JernbergT. HagströmE. BhattD.L. StegP.G. LällK. MägiR. GynnildM.N. EllekjærH. SaltvedtI. TuñónJ. MahílloI. AceñaÁ. KaminskiK. ChlabiczM. SawickaE. TillmanT. McEvoyJ.W. Di AngelantonioE. GrahamI. De BacquerD. RayK.K. DorresteijnJ.A.N. VisserenF.L.J. Estimation of recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular disease: The updated SMART2 algorithm.Eur. Heart J.202243181715172710.1093/eurheartj/ehac056 35165703
    [Google Scholar]
  5. GreenlandP. AlpertJ.S. BellerG.A. BenjaminE.J. BudoffM.J. FayadZ.A. FosterE. HlatkyM.A. HodgsonJ.M. KushnerF.G. LauerM.S. ShawL.J. SmithS.C.Jr TaylorA.J. WeintraubW.S. WengerN.K. JacobsA.K. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation2010122252748276410.1161/CIR.0b013e3182051bab 21098427
    [Google Scholar]
  6. KumarA. The impact of obesity on cardiovascular disease risk factor.Asian J. Med. Sci.2019101112
    [Google Scholar]
  7. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  8. EgeaJ. FabregatI. FrapartY.M. GhezziP. GörlachA. KietzmannT. KubaichukK. KnausU.G. LopezM.G. Olaso-GonzalezG. PetryA. SchulzR. VinaJ. WinyardP. AbbasK. AdemowoO.S. AfonsoC.B. AndreadouI. AntelmannH. AntunesF. AslanM. BachschmidM.M. BarbosaR.M. BelousovV. BerndtC. BernlohrD. BertránE. BindoliA. BottariS.P. BritoP.M. CarraraG. CasasA.I. ChatziA. ChondrogianniN. ConradM. CookeM.S. CostaJ.G. CuadradoA. My-Chan DangP. De SmetB. Debelec-ButunerB. DiasI.H.K. DunnJ.D. EdsonA.J. El AssarM. El-BennaJ. FerdinandyP. FernandesA.S. FladmarkK.E. FörstermannU. GiniatullinR. GiriczZ. GörbeA. GriffithsH. HamplV. HanfA. HergetJ. Hernansanz-AgustínP. HillionM. HuangJ. IlikayS. Jansen-DürrP. JaquetV. JolesJ.A. KalyanaramanB. KaminskyyD. KarbaschiM. KleanthousM. KlotzL.O. KoracB. KorkmazK.S. KozielR. KračunD. KrauseK.H. KřenV. KriegT. LaranjinhaJ. LazouA. LiH. Martínez-RuizA. MatsuiR. McBeanG.J. MeredithS.P. MessensJ. MiguelV. MikhedY. MilisavI. MilkovićL. Miranda-VizueteA. MojovićM. MonsalveM. MouthuyP.A. MulveyJ. MünzelT. MuzykantovV. NguyenI.T.N. OelzeM. OliveiraN.G. PalmeiraC.M. PapaevgeniouN. PavićevićA. PedreB. PeyrotF. PhylactidesM. PircalabioruG.G. PittA.R. PoulsenH.E. PrietoI. RigobelloM.P. Robledinos-AntónN. Rodríguez-MañasL. RoloA.P. RoussetF. RuskovskaT. SaraivaN. SassonS. SchröderK. SemenK. SeredeninaT. ShakirzyanovaA. SmithG.L. SoldatiT. SousaB.C. SpickettC.M. StancicA. StasiaM.J. SteinbrennerH. StepanićV. StevenS. TokatlidisK. TuncayE. TuranB. UrsiniF. VacekJ. VajnerovaO. ValentováK. Van BreusegemF. VarisliL. VealE.A. YalçınA.S. YelisyeyevaO. ŽarkovićN. ZatloukalováM. ZielonkaJ. TouyzR.M. PapapetropoulosA. GruneT. LamasS. SchmidtH.H.H.W. Di LisaF. DaiberA. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).Redox Biol.201713May9416210.1016/j.redox.2017.05.007 28577489
    [Google Scholar]
  9. SalisburyD. BronasU. Reactive oxygen and nitrogen species: Impact on endothelial dysfunction.Nurs. Res.2015641536610.1097/NNR.0000000000000068 25502061
    [Google Scholar]
  10. WattanapitayakulS. BauerJ.A. Oxidative pathways in cardiovascular disease: Roles, mechanisms, and therapeutic implications.Pharmacol. Ther.200189218720610.1016/S0163‑7258(00)00114‑5 11316520
    [Google Scholar]
  11. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.2013 24987008
    [Google Scholar]
  12. KurodaJ. AgoT. MatsushimaS. ZhaiP. SchneiderM.D. SadoshimaJ. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.Proc. Natl. Acad. Sci.201010735155651557010.1073/pnas.1002178107 20713697
    [Google Scholar]
  13. VerhaarM.C. WesterweelP.E. van ZonneveldA.J. RabelinkT.J. Free radical production by dysfunctional eNOS.Br. Heart J.200490549449510.1136/hrt.2003.029405 15084540
    [Google Scholar]
  14. ChenXL ZhangQ ZhaoR MedfordRM Superoxide, H2O2, and iron are required for TNF-α-induced MCP-1 gene expression in endothelial cells: Role of Rac1 and NADPH oxidase.Am J Physiol - Hear Circ Physiol20042863H1001H1007
    [Google Scholar]
  15. Pham-HuyL.A. HeH. Pham-HuycC. Free radicals, antioxidants in disease and health.Int. J. Biomed. Sci.200842899610.59566/IJBS.2008.4089 23675073
    [Google Scholar]
  16. BedardK. KrauseK.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology.Physiol. Rev.200787124531310.1152/physrev.00044.2005 17237347
    [Google Scholar]
  17. BEST(Biomarkers, EndpointS, and other Tools) Resource; FDA-NIH Biomarker Working Group.United StatesNational Institute of Health2016
    [Google Scholar]
  18. YalcinE. de la MonteS. Tobacco nitrosamines as culprits in disease: Mechanisms reviewed.J. Physiol. Biochem.201672110712010.1007/s13105‑016‑0465‑9 26767836
    [Google Scholar]
  19. LeveyA.S.C. CoreshJ. Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. National Kidney Foundation.New YorkNational Kidney Foundation Inc2002
    [Google Scholar]
  20. GundogduF. SoyluF. ErkanL. TatliO. MaviS. YavuzcanA. The role of serum CA-125 levels and CA-125 tissue expression positivity in the prediction of the recurrence of stage III and IV epithelial ovarian tumors (CA-125 levels and tissue CA-125 in ovarian tumors).Arch. Gynecol. Obstet.201128361397140210.1007/s00404‑010‑1589‑8 20645105
    [Google Scholar]
  21. SchickS.F. BlountB.C. JacobP. SalibaN.A. BernertJ.T. El HellaniA. JatlowP. PappasR.S. WangL. FouldsJ. GhoshA. HechtS.S. GomezJ.C. MartinJ.R. MesarosC. SrivastavaS. St HelenG. TarranR. LorkiewiczP.K. BlairI.A. KimmelH.L. DoerschukC.M. BenowitzN.L. BhatnagarA. Biomarkers of exposure to new and emerging tobacco delivery products.Am. J. Physiol. Lung Cell. Mol. Physiol.20173133L425L45210.1152/ajplung.00343.2016 28522563
    [Google Scholar]
  22. BasuN.N. InghamS. HodsonJ. LallooF. BulmanM. HowellA. EvansD.G. Risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: A 30-year semi-prospective analysis.Fam. Cancer201514453153810.1007/s10689‑015‑9825‑9 26239694
    [Google Scholar]
  23. GordetskyJ. EpsteinJ. Grading of prostatic adenocarcinoma: Current state and prognostic implications.Diagn. Pathol.20161112510.1186/s13000‑016‑0478‑2 26956509
    [Google Scholar]
  24. LedermannJ. HarterP. GourleyC. FriedlanderM. VergoteI. RustinG. ScottC. MeierW. Shapira-FrommerR. SafraT. MateiD. MacphersonE. WatkinsC. CarmichaelJ. MatulonisU. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.N. Engl. J. Med.2012366151382139210.1056/NEJMoa1105535 22452356
    [Google Scholar]
  25. StohlW. HilbertD.M. The discovery and development of belimumab: The anti-BLyS–lupus connection.Nat. Biotechnol.2012301697710.1038/nbt.2076 22231104
    [Google Scholar]
  26. Mayer-HamblettN. BoyleM. VanDevanterD. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis.Thorax201671545446110.1136/thoraxjnl‑2015‑208123 26903594
    [Google Scholar]
  27. WasungM.E. ChawlaL.S. MaderoM. Biomarkers of renal function, which and when?Clin. Chim. Acta2015438135035710.1016/j.cca.2014.08.039 25195004
    [Google Scholar]
  28. BatthyányC. BartesaghiS. MastrogiovanniM. LimaA. DemicheliV. RadiR. Tyrosine-nitrated proteins: proteomic and bioanalytical aspects.Antioxid. Redox Signal.201726731332810.1089/ars.2016.6787 27324931
    [Google Scholar]
  29. AbdelmegeedM.A. SongB.J. Functional roles of protein nitration in acute and chronic liver diseases.Oxid. Med. Cell. Longev.2014201412110.1155/2014/149627 24876909
    [Google Scholar]
  30. ShishehborM.H. AvilesR.J. BrennanM.L. FuX. GoormasticM. PearceG.L. GokceN. KeaneyJ.F.Jr PennM.S. SprecherD.L. VitaJ.A. HazenS.L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy.JAMA2003289131675168010.1001/jama.289.13.1675 12672736
    [Google Scholar]
  31. PirroM. SchillaciG. MannarinoM.R. SavareseG. VaudoG. SiepiD. PaltricciaR. MannarinoE. Effects of rosuvastatin on 3-nitrotyrosine and aortic stiffness in hypercholesterolemia.Nutr. Metab. Cardiovasc. Dis.200717643644110.1016/j.numecd.2006.02.009 17134956
    [Google Scholar]
  32. GargiuloS. GambaP. TestaG. RossinD. BiasiF. PoliG. LeonarduzziG. Relation between TLR4/NF‐κB signaling pathway activation by 27‐hydroxycholesterol and 4‐hydroxynonenal, and atherosclerotic plaque instability.Aging Cell201514456958110.1111/acel.12322 25757594
    [Google Scholar]
  33. NakamuraK. KusanoK. NakamuraY. KakishitaM. OhtaK. NagaseS. YamamotoM. MiyajiK. SaitoH. MoritaH. EmoriT. MatsubaraH. ToyokuniS. OheT. Carvedilol decreases elevated oxidative stress in human failing myocardium.Circulation2002105242867287110.1161/01.CIR.0000018605.14470.DD 12070115
    [Google Scholar]
  34. MakS. LehotayD.C. YazdanpanahM. AzevedoE.R. LiuP.P. NewtonG.E. Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure.J. Card. Fail.20006210811410.1016/S1071‑9164(00)90012‑5 10908084
    [Google Scholar]
  35. HaramakiN. IkedaH. TakajoY. KatohA. KanayaS. ShintaniS. HaramakiR. MuroharaT. ImaizumiT. Long-term smoking causes nitroglycerin resistance in platelets by depletion of intraplatelet glutathione.Arterioscler. Thromb. Vasc. Biol.200121111852185610.1161/hq1001.097021 11701477
    [Google Scholar]
  36. BasuS. Fatty acid oxidation and isoprostanes: Oxidative strain and oxidative stress.Prostaglandins Leukot. Essent. Fatty Acids2010824-621922510.1016/j.plefa.2010.02.031 20363116
    [Google Scholar]
  37. SchwedhelmE. BartlingA. LenzenH. TsikasD. MaasR. BrümmerJ. GutzkiF.M. BergerJ. FrölichJ.C. BögerR.H. Urinary 8-iso-prostaglandin F2α as a risk marker in patients with coronary heart disease: a matched case-control study.Circulation2004109784384810.1161/01.CIR.0000116761.93647.30 14757688
    [Google Scholar]
  38. HalliwellB. LeeC.Y.J. Using isoprostanes as biomarkers of oxidative stress: Some rarely considered issues.Antioxid. Redox Signal.201013214515610.1089/ars.2009.2934 20001743
    [Google Scholar]
  39. RoestM. VoorbijH.A.M. Van der SchouwY.T. PeetersP.H.M. TeerlinkT. SchefferP.G. High levels of urinary F2-isoprostanes predict cardiovascular mortality in postmenopausal women.J. Clin. Lipidol.20082429830310.1016/j.jacl.2008.06.004 21291746
    [Google Scholar]
  40. van ’t ErveT.J. KadiiskaM.B. LondonS.J. MasonR.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.Redox Biol.20171258259910.1016/j.redox.2017.03.024 28391180
    [Google Scholar]
  41. ElesberA.A. ElesberA.A. BestP.J. ElesberA.A. BestP.J. LennonR.J. ElesberA.A. BestP.J. LennonR.J. MathewV. ElesberA.A. BestP.J. LennonR.J. MathewV. RihalC.S. ElesberA.A. BestP.J. LennonR.J. MathewV. RihalC.S. LermanL.O. ElesberA.A. BestP.J. LennonR.J. MathewV. RihalC.S. LermanL.O. LermanA. ElesberA.A. BestP.J. LennonR.J. MathewV. RihalC.S. LermanL.O. LermanA. Plasma 8-iso-prostaglandin F 2α a marker of oxidative stress, is increased in patients with acute myocardial infarction.Free Radic. Res.200640438539110.1080/10715760500539154 16517503
    [Google Scholar]
  42. EvansM.D. DizdarogluM. CookeM.S. Oxidative DNA damage and disease: Induction, repair and significance.Mutat. Res. Rev. Mutat. Res.2004567116110.1016/j.mrrev.2003.11.001 15341901
    [Google Scholar]
  43. NagayoshiY. KawanoH. HokamakiJ. UemuraT. SoejimaH. KaikitaK. SugiyamaS. YamabeH. ShiojiI. SasakiS. KurodaY. OgawaH. Differences in oxidative stress markers based on the aetiology of heart failure: Comparison of oxidative stress in patients with and without coronary artery disease.Free Radic. Res.200943121159116610.3109/10715760903214470 19905978
    [Google Scholar]
  44. Roselló-LletíE. BurgosF.G. MorillasP. CortésR. Martínez-DolzL. AlmenarL. GrigorianL. OrosaP. PortolésM. BertomeuV. RiveraM. Impact of cardiovascular risk factors and inflammatory status on urinary 8-OHdG in essential hypertension.Am. J. Hypertens.201225223624210.1038/ajh.2011.202 22052073
    [Google Scholar]
  45. Di MinnoA. TurnuL. PorroB. SquellerioI. CavalcaV. TremoliE. Di MinnoM.N.D. 8-Hydroxy-2-deoxyguanosine levels and cardiovascular disease: A systematic review and meta-analysis of the literature.Antioxid. Redox Signal.2016241054855510.1089/ars.2015.6508 26650622
    [Google Scholar]
  46. Di MinnoA. TurnuL. PorroB. SquellerioI. CavalcaV. TremoliE. Di MinnoM.N.D. 8-Hydroxy-2-deoxyguanosine levels and heart failure: A systematic review and meta-analysis of the literature.Nutr. Metab. Cardiovasc. Dis.201727320120810.1016/j.numecd.2016.10.009 28065503
    [Google Scholar]
  47. WangX. CuiN. LiuX. LiuX. Mitochondrial 8-hydroxy-2′-deoxyguanosine and coronary artery disease in patients with type 2 diabetes mellitus.Cardiovasc. Diabetol.20201912210.1186/s12933‑020‑00998‑6 32075646
    [Google Scholar]
  48. AntoniadesC. TousoulisD. TentolourisC. ToutouzasP. StefanadisC. Oxidative stress, antioxidant vitamins, and atherosclerosis. From basic research to clinical practice.Herz200328762863810.1007/s00059‑003‑2417‑8 14689123
    [Google Scholar]
  49. MoselhyH.F. ReidR.G. YousefS. BoyleS.P. A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC.J. Lipid Res.201354385285810.1194/jlr.D032698 23264677
    [Google Scholar]
  50. TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.Anal. Biochem.2017524133010.1016/j.ab.2016.10.021 27789233
    [Google Scholar]
  51. PilzJ. MeinekeI. GleiterC.H. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative.J. Chromatogr., Biomed. Appl.2000742231532510.1016/S0378‑4347(00)00174‑2 10901136
    [Google Scholar]
  52. RomukE. WojciechowskaC. JachećW. Zemła-WoszekA. MomotA. BuczkowskaM. RozentrytP. Malondialdehyde and uric acid as predictors of adverse outcome in patients with chronic heart failure.Oxid. Med. Cell. Longev.2019201911510.1155/2019/9246138 31687090
    [Google Scholar]
  53. RadovanovicS. Savic-RadojevicA. Pljesa-ErcegovacM. DjukicT. SuvakovS. KrotinM. SimicD.V. MaticM. RadojicicZ. PekmezovicT. SimicT. Markers of oxidative damage and antioxidant enzyme activities as predictors of morbidity and mortality in patients with chronic heart failure.J. Card. Fail.201218649350110.1016/j.cardfail.2012.04.003 22633308
    [Google Scholar]
  54. KotaniK. TaniguchiN. The association between reactive oxygen metabolites and metabolic syndrome in asymptomatic Japanese men.J. Clin. Med. Res.20113524725110.4021/jocmr668w 22383912
    [Google Scholar]
  55. IshizakaY. YamakadoM. TodaA. TaniM. IshizakaN. Relationship between estimated glomerular filtration rate, albuminuria, and oxidant status in the Japanese population.BMC Nephrol.201314119110.1186/1471‑2369‑14‑191 24016221
    [Google Scholar]
  56. VerdeV. FoglianoV. RitieniA. MaianiG. MoriscoF. CaporasoN. Use of N,N-dimethyl-p-phenylenediamine to evaluate the oxidative status of human plasma.Free Radic. Res.200236886987310.1080/1071576021000005302 12420745
    [Google Scholar]
  57. MasakiN. SatoA. HoriiS. KimuraT. ToyaT. YasudaR. NambaT. YadaH. KawamuraA. AdachiT. Usefulness of the d-ROMs test for prediction of cardiovascular events.Int. J. Cardiol.201622222623210.1016/j.ijcard.2016.07.225 27497099
    [Google Scholar]
  58. KoningA.M. MeijersW.C. PaschA. LeuveninkH.G.D. FrenayA.R.S. DekkerM.M. FeelischM. de BoerR.A. van GoorH. Serum free thiols in chronic heart failure.Pharmacol. Res.2016111145245810.1016/j.phrs.2016.06.027 27378569
    [Google Scholar]
  59. FrenayA.R.S. de BorstM.H. BachtlerM. TschoppN. KeyzerC.A. van den BergE. BakkerS.J.L. FeelischM. PaschA. van GoorH. Serum free sulfhydryl status is associated with patient and graft survival in renal transplant recipients.Free Radic. Biol. Med.201699Oct34535110.1016/j.freeradbiomed.2016.08.024 27554970
    [Google Scholar]
  60. AbdulleA.E. van RoonA.M. SmitA.J. PaschA. MeursM. BootsmaH. BakkerS.J.L. SaidM.Y. FernandezB.O. FeelischM. GoorH. MulderD.J. Rapid free thiol rebound is a physiological response following cold‐induced vasoconstriction in healthy humans, primary Raynaud and systemic sclerosis.Physiol. Rep.201976e1401710.14814/phy2.14017 30916482
    [Google Scholar]
  61. O’BrienJ. HayderH. ZayedY. PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.20189340210.3389/fendo.2018.00402 30123182
    [Google Scholar]
  62. CarbonellT. GomesA.V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury.Redox Biol.202036June10160710.1016/j.redox.2020.101607 32593128
    [Google Scholar]
  63. FuX. ZhouY. ChengZ. LiaoX. ZhouX. MicroRNAs: Novel players in aortic aneurysm.BioMed Res. Int.201520151910.1155/2015/831641 26221607
    [Google Scholar]
  64. ZhangJ. CaiW. FanZ. YangC. WangW. XiongM. MaC. YangJ. MicroRNA-24 inhibits the oxidative stress induced by vascular injury by activating the Nrf2/Ho-1 signaling pathway.Atherosclerosis2019290September91810.1016/j.atherosclerosis.2019.08.023 31539718
    [Google Scholar]
  65. JakobP. KacprowskiT. Briand-SchumacherS. HegD. KlingenbergR. StähliB.E. JaguszewskiM. RodondiN. NanchenD. RäberL. VogtP. MachF. WindeckerS. VölkerU. MatterC.M. LüscherT.F. LandmesserU. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction.Eur. Heart J.2017387511515 28011706
    [Google Scholar]
  66. Rivera-CaravacaJ.M. Teruel-MontoyaR. RoldánV. Cifuentes-RiquelmeR. Crespo-MatasJ.A. de los Reyes-GarcíaA.M. ÁguilaS. Fernández-PérezM.P. Reguilón-GallegoL. Zapata-MartínezL. García-BarberáN. VicenteV. MarínF. MartínezC. González-ConejeroR. Pilot study on the role of circulating mirnas for the improvement of the predictive ability of the 2mace score in patients with atrial fibrillation.J. Clin. Med.2020911364510.3390/jcm9113645 33198388
    [Google Scholar]
  67. VettoriS. GayS. DistlerO. Role of MicroRNAs in fibrosis.Open Rheumatol. J.20126113013910.2174/1874312901206010130 22802911
    [Google Scholar]
  68. SygitowiczG. TomaniakM. BłaszczykO. KołtowskiŁ. FilipiakK.J. SitkiewiczD. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results.Arch. Cardiovasc. Dis.20151081263464210.1016/j.acvd.2015.07.003 26498537
    [Google Scholar]
  69. Bayés-GenisA. LanfearD.E. de RondeM.W.J. LupónJ. LeendersJ.J. LiuZ. ZuithoffN.P.A. EijkemansM.J.C. ZamoraE. De AntonioM. ZwindermanA.H. Pinto-SietsmaS.J. PintoY.M. Prognostic value of circulating microRNAs on heart failure‐related morbidity and mortality in two large diverse cohorts of general heart failure patients.Eur. J. Heart Fail.2018201677510.1002/ejhf.984 28949058
    [Google Scholar]
  70. MilneG.L. YinH. HardyK.D. DaviesS.S. RobertsL.J.II Isoprostane generation and function.Chem. Rev.2011111105973599610.1021/cr200160h 21848345
    [Google Scholar]
  71. MilneG.L. DaiQ. RobertsL.J.II The isoprostanes—25 years later.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20151851443344510.1016/j.bbalip.2014.10.007 25449649
    [Google Scholar]
  72. HolderC. AdamsA. McGaheeE. XiaB. BlountB.C. WangL. High-throughput and sensitive analysis of free and total 8-isoprostane in urine with isotope-dilution liquid chromatography-tandem mass spectrometry.ACS Omega2020519109191092610.1021/acsomega.0c00661 32455212
    [Google Scholar]
  73. TsikasD. RothmannS. SchneiderJ.Y. SuchyM.T. TrettinA. ModunD. StukeN. MaassenN. FrölichJ.C. Development, validation and biomedical applications of stable-isotope dilution GC–MS and GC–MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15(S)-8- iso -prostaglandin F 2α and nitric oxide (NO).J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.201610199511110.1016/j.jchromb.2015.10.009 26522895
    [Google Scholar]
  74. DreiβigackerU. SuchyM.T. MaassenN. TsikasD. Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF2α may be markedly compromised by hemolysis: Evidence by GC-MS/MS and potential analytical and biological ramifications.Clin. Biochem.2010431-215916710.1016/j.clinbiochem.2009.10.002 19850019
    [Google Scholar]
  75. FreitasD.A. Rocha-VieiraE. SoaresB.A. NonatoL.F. FonsecaS.R. MartinsJ.B. MendonçaV.A. LacerdaA.C. MassensiniA.R. PoortamnsJ.R. MeeusenR. LeiteH.R. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats.Physiol. Behav.201818461110.1016/j.physbeh.2017.10.027 29111230
    [Google Scholar]
  76. Taty ZauJ.F. CostaZ.R. SandrineM.N. FernandesM.G. ManoelS.S. da CunhaB.T. LimaM.D. PereiraB.B. do NascimentoM.E. FilhoW.D. PedrosaC.R. PedrosaC.R. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.Redox Rep.2018231949910.1080/13510002.2017.1418191 29279041
    [Google Scholar]
  77. Advanced protocols in oxidative stress I.Methods In Molecular BiologyHumana Press ArmstrongD. 20084773139
    [Google Scholar]
  78. JansenE.H.J.M. BeekhofP.K. CremersJ.W.J.M. ViezelieneD. MuzakovaV. SkalickyJ. Short-term stability of biomarkers of oxidative stress and antioxidant status in human serum.ISRN Biomarkers201320131510.1155/2013/316528
    [Google Scholar]
  79. QuidimA.V.L. BrunoT. LeocádioP.C.L. SantosI.S. Alvarez-LeiteJ.I. dos ReisP.L. LotufoP.A. BenseñorI.M. GoulartA.C. The prognostic value of nitrotyrosine levels in coronary heart disease: long-term evaluation in the Acute Coronary Syndrome Registry Strategy (ERICO study).Clin. Biochem.201966374310.1016/j.clinbiochem.2019.02.006 30776353
    [Google Scholar]
  80. ChuC.S. LeeK.T. ChengK.H. LeeM.Y. KuoH.F. LinT.H. SuH.M. VoonW.C. SheuS.H. LaiW.T. Postchallenge responses of nitrotyrosine and TNF-alpha during 75-g oral glucose tolerance test are associated with the presence of coronary artery diseases in patients with prediabetes.Cardiovasc. Diabetol.20121112110.1186/1475‑2840‑11‑21 22397368
    [Google Scholar]
  81. ZhangY. SunQ. HeB. XiaoJ. WangZ. SunX. Anti-inflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion.Int. J. Cardiol.20111481919510.1016/j.ijcard.2010.08.058 20851484
    [Google Scholar]
  82. OliveiraM. TanakaL. AntonioE. BrandizziL. SerraA. Dos SantosL. KriegerJ. LaurindoF. TucciP. Hyperbaric oxygenation improves redox control and reduces mortality in the acute phase of myocardial infarction in a rat model.Mol. Med. Rep.20202131431143810.3892/mmr.2020.10968 32016473
    [Google Scholar]
  83. WuX.Y. LuoA.N.Y.U. ZhouY.R. RenJ.H. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure.Mol. Med. Rep.201410261562410.3892/mmr.2014.2292 24889421
    [Google Scholar]
  84. YanQ.C. XiongA.H. XiaoX. LuoY.T. [Significance of plasma 8-iso-prostaglandin F2alpha level in acute myocardial ischemia and intervention effect of N-acetylcysteine: A study in rats].J. First Mil. Med. Univ.2003236605607 12810389
    [Google Scholar]
  85. YangC. WuK. LiS.H. YouQ. Protective effect of curcumin against cardiac dysfunction in sepsis rats.Pharm. Biol.201351448248710.3109/13880209.2012.742116 23336318
    [Google Scholar]
  86. ŞehirliA.Ö. KoyunD. TetikŞ. ÖzsavcıD. YiğinerÖ. ÇetinelŞ. TokO.E. KayaZ. AkkiprikM. KılıçE. ŞenerG. Melatonin protects against ischemic heart failure in rats.J. Pineal Res.201355213814810.1111/jpi.12054 23551402
    [Google Scholar]
  87. KurokawaS. NiwanoS. NiwanoH. IshikawaS. KishiharaJ. AoyamaY. KosukegawaT. MasakiY. IzumiT. Progression of ventricular remodeling and arrhythmia in the primary hyperoxidative state of glutathione-depleted rats.Circ. J.20117561386139310.1253/circj.CJ‑10‑1089 21498908
    [Google Scholar]
  88. GyongyosiA. TerraneoL. BianciardiP. TosakiA. LekliI. SamajaM. The impact of moderate chronic hypoxia and hyperoxia on the level of apoptotic and autophagic proteins in myocardial tissue.Oxid. Med. Cell. Longev.2018201811210.1155/2018/5786742 30186545
    [Google Scholar]
  89. SchöttkerB. BrennerH. JansenE.H.J.M. GardinerJ. PeaseyA. KubínováR. PająkA. Topor-MadryR. TamosiunasA. SaumK.U. HolleczekB. PikhartH. BobakM. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: A meta-analysis of individual participant data.BMC Med.201513130010.1186/s12916‑015‑0537‑7 26666526
    [Google Scholar]
  90. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells9020276 31979244
    [Google Scholar]
  91. FrijhoffJ. WinyardP.G. ZarkovicN. DaviesS.S. StockerR. ChengD. KnightA.R. TaylorE.L. OettrichJ. RuskovskaT. GasparovicA.C. CuadradoA. WeberD. PoulsenH.E. GruneT. SchmidtH.H.H.W. GhezziP. Clinical relevance of biomarkers of oxidative stress.Antioxid. Redox Signal.201523141144117010.1089/ars.2015.6317 26415143
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257282030240130095754
Loading
/content/journals/chamc/10.2174/0118715257282030240130095754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test