Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1871-5257
  • E-ISSN: 1875-6182

Abstract

Hypertrophic Cardiomyopathy (HCM) is a heart disease that can cause left ventricular hypertrophy, arrhythmias, heart failure, and sudden cardiac death. Currently, pharmacological treatment is limited and ineffective. Mavacamten (CamzyosTM) is a cardiac myosin inhibitor developed as a therapeutic option to reduce myocardial contractility and restoration of myocardial function. The Food and Drug Administration (FDA) approved the use of Mavacamten in 2022 for HCM symptoms. Clinical studies have proven that Mavacamten can reduce Left Ventricular Outflow Tract (LVOT) involvement, cardiac hypercontraction, and hypertrophy. This review provides an overview of HCM, its pathophysiology, current treatments, synthesis of Mavacamten, and the clinical trials of Mavacamten.

Loading

Article metrics loading...

/content/journals/chamc/10.2174/0118715257283752240325082733
2025-06-01
2025-09-16
Loading full text...

Full text loading...

References

  1. AguiarT. MartinsE. Mavacamten, a novel revolutionizing therapy in hypertrophic obstructive cardiomyopathy: A literature review.Rev. Port. Cardiol.202241869370310.1016/j.repc.2021.09.013
    [Google Scholar]
  2. MaronB.J. Clinical course and management of hypertrophic cardiomyopathy.N. Engl. J. Med.20183797655668
    [Google Scholar]
  3. StewartS. MasonD.T. BraunwaldE. Impaired rate of left ventricular filling in idiopathic hypertrophic subaortic stenosis and valvular aortic stenosis.Circulation1968371814
    [Google Scholar]
  4. WilsonW.S. CrileyJ.M. Dynamics of left ventricular emptying in hypertrophic subaortic stenosis: A cineangiographic and hemodynamic study.Am. Heart J.1967731416
    [Google Scholar]
  5. GeskeJ.B. OmmenS.R. GershB.J. Hypertrophic cardiomyopathy.JACC Heart Fail.20186536437510.1016/j.jchf.2018.02.010 29655825
    [Google Scholar]
  6. MarianA.J. BraunwaldE. Hypertrophic cardiomyopathy.Circ. Res.2017121774977010.1161/CIRCRESAHA.117.311059 28912181
    [Google Scholar]
  7. OlivottoI. GirolamiF. NistriS. RossiA. RegaL. GarbiniF. GrifoniC. CecchiF. YacoubM.H. The many faces of hypertrophic cardiomyopathy: From developmental biology to clinical practice.J. Cardiovasc. Transl. Res.20092434936710.1007/s12265‑009‑9137‑2 20559994
    [Google Scholar]
  8. OmmenS.R. MitalS. BurkeM.A. DayS.M. DeswalA. ElliottP. EvanovichL.L. HungJ. JoglarJ.A. KantorP. KimmelstielC. KittlesonM. LinkM.S. MaronM.S. MartinezM.W. MiyakeC.Y. SchaffH.V. SemsarianC. SorajjaP. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American college of cardiology/American heart association joint committee on clinical practice guidelines.Circulation202014225e558e631 33215931
    [Google Scholar]
  9. ElliottP.M. AnastasakisA. BorgerM.A. BorggrefeM. CecchiF. CharronP. HagegeA.A. LafontA. LimongelliG. MahrholdtH. McKennaW.J. MogensenJ. NihoyannopoulosP. NistriS. PieperP.G. PieskeB. RapezziC. RuttenF.H. TillmannsC. WatkinsH. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy.Eur. Heart J.201435392733277910.1093/eurheartj/ehu284 25173338
    [Google Scholar]
  10. HoC.Y. DayS.M. AxelssonA. RussellM.W. ZahkaK. LeverH.M. PereiraA.C. ColanS.D. MargossianR. MurphyA.M. CanterC. BachR.G. WheelerM.T. RossanoJ.W. OwensA.T. BundgaardH. BensonL. MestroniL. TaylorM.R.G. PatelA.R. WilmotI. ThrushP. VargasJ.D. SoslowJ.H. BeckerJ.R. SeidmanC.E. LakdawalaN.K. CirinoA.L. KriegerJ.E. SacilottoL. ArteagaE. AntunesM.O. HallE.K. ChoudhuryL. PahlE. LinK.Y. LewisG.D. DesaiA.S. BurnsK.M. McMurrayJ.J.V. MacRaeC.A. SolomonS.D. OravE.J. BraunwaldE. Valsartan in early-stage hypertrophic cardiomyopathy: A randomized phase 2 trial.Nat. Med.202127101818182410.1038/s41591‑021‑01505‑4 34556856
    [Google Scholar]
  11. OlivottoI. OreziakA. VillaB.R. AbrahamT.P. MasriA. PaviaG.P. SaberiS. LakdawalaN.K. WheelerM.T. OwensA. KubanekM. WojakowskiW. JensenM.K. Gimeno-BlanesJ. AfsharK. MyersJ. HegdeS.M. SolomonS.D. SehnertA.J. ZhangD. LiW. BhattacharyaM. EdelbergJ.M. WaldmanC.B. LesterS.J. WangA. HoC.Y. JacobyD. BartunekJ. BondueA. Van CraenenbroeckE. KubanekM. ZemanekD. JensenM. MogensenJ. ThuneJ.J. CharronP. HagegeA. LairezO. TrochuJ-N. AxthelmC. DuengenH-D. FreyN. MitrovicV. PreuschM. MengerS.J. SeidlerT. AradM. HalabiM. KatzA. MonakierD. PazO. ViskinS. ZwasD. OlivottoI. RoccaB.L.H.P. MichelsM. DudekD. SarnowskaO.Z. OreziakA. WojakowskiW. CardimN. PereiraH. VillaB.R. PaviaG.P. BlanesG.J. UrbanoH.R. DiazR.L.M. ElliottP. YousefZ. AbrahamT. AfsharK. AlvarezP. BachR. BeckerR. ChoudhuryL. FerminD. JacobyD. JefferiesJ. KramerC. LakdawalaN. LesterS. MarianA. MasriA. MaurerM. NaguehS. OwensA. OwensD. RaderF. SaberiS. SherridM. ShiraniJ. SymanskiJ. TurerA. WangA. PinzonW.O. WheelerM. WongT. YamaniM. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet20203961025375976910.1016/S0140‑6736(20)31792‑X 32871100
    [Google Scholar]
  12. MaronM.S. OlivottoI. BetocchiS. CaseyS.A. LesserJ.R. LosiM.A. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy.N. Engl. J. Med.2003348429530310.1056/NEJMoa021332
    [Google Scholar]
  13. RoR. HalpernD. SahnD.J. HomelP. ArabadjianM. LoprestoC. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic left ventricular flow and the mitral valve.J. Am. Coll. Cardiol.201464191984199510.1016/j.jacc.2014.04.090
    [Google Scholar]
  14. GershB.J. MaronB.J. BonowR.O. DearaniJ.A. FiferM.A. LinkM.S. NaiduS.S. NishimuraR.A. OmmenS.R. RakowskiH. SeidmanC.E. TowbinJ.A. UdelsonJ.E. YancyC.W. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy.J. Am. Coll. Cardiol.20115825e212e26010.1016/j.jacc.2011.06.011 22075469
    [Google Scholar]
  15. Tower-RaderA. RamchandJ. NissenS.E. DesaiM.Y. Mavacamten: A novel small molecule modulator of β-cardiac myosin for treatment of hypertrophic cardiomyopathy.Expert Opin. Investig. Drugs202029111171117810.1080/13543784.2020.1821361 32897741
    [Google Scholar]
  16. SternJ.A. MarkovaS. UedaY. KimJ.B. PascoeP.J. EvanchikM.J. GreenE.M. HarrisS.P. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy.PLoS One20161112e016840710.1371/journal.pone.0168407 27973580
    [Google Scholar]
  17. GentryJ.L.III MentzR.J. HurdleM. WangA. Ranolazine for treatment of angina or dyspnea in hypertrophic cardiomyopathy patients (RHYME).J. Am. Coll. Cardiol.201668161815181710.1016/j.jacc.2016.07.758 27737749
    [Google Scholar]
  18. MaronM.S. ChanR.H. KapurN.K. JaffeI.Z. McGrawA.P. KerurR. MaronB.J. UdelsonJ.E. Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy.Am. J. Med.2018131783784110.1016/j.amjmed.2018.02.025 29604289
    [Google Scholar]
  19. AxelssonA. IversenK. VejlstrupN. HoC. NorskJ. LanghoffL. AhtarovskiK. CorellP. HavndrupO. JensenM. BundgaardH. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: The INHERIT randomised, double-blind, placebo-controlled trial.Lancet Diabetes Endocrinol.20153212313110.1016/S2213‑8587(14)70241‑4 25533774
    [Google Scholar]
  20. CoatsC.J. PavlouM. WatkinsonO.T. ProtonotariosA. MossL. HylandR. RantellK. PantazisA.A. TomeM. McKennaW.J. FrenneauxM.P. OmarR. ElliottP.M. Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy.JAMA Cardiol.20194323023510.1001/jamacardio.2018.4847 30725091
    [Google Scholar]
  21. ForceT. BonowR.O. HouserS.R. SolaroR.J. HershbergerR.E. AdhikariB. AndersonM.E. BoineauR. ByrneB.J. CappolaT.P. KalluriR. LeWinterM.M. MaronM.S. MolkentinJ.D. OmmenS.R. RegnierM. TangW.H.W. TianR. KonstamM.A. MaronB.J. SeidmanC.E. Research priorities in hypertrophic cardiomyopathy.Circulation2010122111130113310.1161/CIRCULATIONAHA.110.950089 20837938
    [Google Scholar]
  22. EdelbergJ.M. SehnertA.J. MealiffeM.E. RioD.C.L. McDowellR. The impact of mavacamten on the pathophysiology of hypertrophic cardiomyopathy: A narrative review.Am. J. Cardiovasc. Drugs202222549751010.1007/s40256‑022‑00532‑x
    [Google Scholar]
  23. KeamS.J. Mavacamten: First approval.Drugs202282101127113510.1007/s40265‑022‑01739‑7 35802255
    [Google Scholar]
  24. NagS. GollapudiS.K. del RíoC.L. SpudichJ.A. McDowellR. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients.Sci. Adv.2023930eabo762210.1126/sciadv.abo7622 37506209
    [Google Scholar]
  25. HoC.Y. CharronP. RichardP. GirolamiF. ZwartsV.S.K.Y. PintoY. Genetic advances in sarcomeric cardiomyopathies: state of the art.Cardiovasc. Res.2015105439740810.1093/cvr/cvv025 25634555
    [Google Scholar]
  26. ThierfelderL. WatkinsH. MacRaeC. LamasR. McKennaW. VosbergH.P. SeldmanJ.G. SeidmanC.E. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere.Cell199477570171210.1016/0092‑8674(94)90054‑X 8205619
    [Google Scholar]
  27. Van DriestS.L. EllsworthE.G. OmmenS.R. TajikA.J. GershB.J. AckermanM.J. Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy.Circulation2003108444545110.1161/01.CIR.0000080896.52003.DF 12860912
    [Google Scholar]
  28. CoppiniR. HoC.Y. AshleyE. DayS. FerrantiniC. GirolamiF. TomberliB. BardiS. TorricelliF. CecchiF. MugelliA. PoggesiC. TardiffJ. OlivottoI. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations.J. Am. Coll. Cardiol.201464242589260010.1016/j.jacc.2014.09.059 25524337
    [Google Scholar]
  29. BelusA. PiroddiN. ScelliniB. TesiC. AmatiG.D. GirolamiF. YacoubM. CecchiF. OlivottoI. PoggesiC. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils.J. Physiol.2008586153639364410.1113/jphysiol.2008.155952 18565996
    [Google Scholar]
  30. FerrantiniC. BelusA. PiroddiN. ScelliniB. TesiC. PoggesiC. Mechanical and energetic consequences of HCM-causing mutations.J. Cardiovasc. Transl. Res.20092444145110.1007/s12265‑009‑9131‑8 20560002
    [Google Scholar]
  31. SpudichJ.A. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations.Pflugers Arch.2019471570171710.1007/s00424‑019‑02259‑2 30767072
    [Google Scholar]
  32. TardiffJ.C. CarrierL. BersD.M. PoggesiC. FerrantiniC. CoppiniR. MaierL.S. AshrafianH. HukeS. van der VeldenJ. Targets for therapy in sarcomeric cardiomyopathies.Cardiovasc. Res.2015105445747010.1093/cvr/cvv023 25634554
    [Google Scholar]
  33. HoskinsA.C. JacquesA. BardswellS.C. McKennaW.J. TsangV. dos RemediosC.G. EhlerE. AdamsK. JalilzadehS. AvkiranM. WatkinsH. RedwoodC. MarstonS.B. KentishJ.C. Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy.J. Mol. Cell. Cardiol.201049573774510.1016/j.yjmcc.2010.06.006 20615414
    [Google Scholar]
  34. CoppiniR. FerrantiniC. YaoL. FanP. Del LungoM. StillitanoF. SartianiL. TosiB. SuffrediniS. TesiC. YacoubM. OlivottoI. BelardinelliL. PoggesiC. CerbaiE. MugelliA. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy.Circulation2013127557558410.1161/CIRCULATIONAHA.112.134932 23271797
    [Google Scholar]
  35. SherridM.V. GunsburgD.Z. MoldenhauerS. PearleG. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy.J. Am. Coll. Cardiol.20003641344135410.1016/S0735‑1097(00)00830‑5 11028493
    [Google Scholar]
  36. BraunwaldE. LambrewC.T. RockoffS.D. RossJ.Jr MorrowA.G. Idiopathic hypertrophic subaortic stenosis. I. A description of the disease based upon an analysis of 64 patients.Circulation1964295 (S4)4-3-11910.1161/01.CIR.29.5S4.IV‑3 14227306
    [Google Scholar]
  37. MalikR. MaronM.S. RastegarH. PandianN.G. Hypertrophic cardiomyopathy with right ventricular outflow tract and left ventricular intracavitary obstruction.Echocardiography201431568268510.1111/echo.12543 24649889
    [Google Scholar]
  38. AndersonR.L. TrivediD.V. SarkarS.S. HenzeM. MaW. GongH. RogersC.S. GorhamJ.M. WongF.L. MorckM.M. SeidmanJ.G. RuppelK.M. IrvingT.C. CookeR. GreenE.M. SpudichJ.A. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers.Proc. Natl. Acad. Sci.201811535E8143E815210.1073/pnas.1809540115 30104387
    [Google Scholar]
  39. KawasR.F. AndersonR.L. IngleS.R.B. SongY. SranA.S. RodriguezH.M. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle.J. Biol. Chem.201729240165711657710.1074/jbc.M117.776815 28808052
    [Google Scholar]
  40. GrilloM.P. ErveJ.C.L. DickR. DriscollJ.P. HasteN. MarkovaS. BrunP. CarlsonT.J. EvanchikM. In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin.Xenobiotica201949671873310.1080/00498254.2018.1495856 30044681
    [Google Scholar]
  41. HeitnerS.B. JacobyD. LesterS.J. OwensA. WangA. ZhangD. LambingJ. LeeJ. SemigranM. SehnertA.J. Mavacamten treatment for obstructive hypertrophic cardiomyopathy.Ann. Intern. Med.20191701174174810.7326/M18‑3016 31035291
    [Google Scholar]
  42. FDACAMZYOS (mavacamten): US prescribing information: US FDA.2022Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf
    [Google Scholar]
  43. PyszP. Rajtar-SalwaR. SmolkaG. OlivottoI. WojakowskiW. DimitrowP.P. Mavacamten — A new disease-specific option for pharmacological treatment of symptomatic patients with hypertrophic cardiomyopathy.Kardiol. Pol.202179994995410.33963/KP.a2021.0064 34268723
    [Google Scholar]
  44. GreenE.M. WakimotoH. AndersonR.L. EvanchikM.J. GorhamJ.M. HarrisonB.C. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.Science2016351627361762110.1126/science.aad3456
    [Google Scholar]
  45. ScelliniB. PiroddiN. DenteM. VitaleG. PionerJ.M. CoppiniR. Mavacamten has a differential impact on force generation in myofibrils from rabbit psoas and human cardiac muscle.J. Gen. Physiol.20211537e20201278910.1085/jgp.202012789
    [Google Scholar]
  46. AwindaP.O. BishawY. WatanabeM. GuglinM.A. CampbellK.S. Effects of mavacamten on Ca2+ sensitivity of contraction as sarcomere length varied in human myocardium.Br. J. Pharmacol.20201772456095621
    [Google Scholar]
  47. AwindaP.O. WatanabeM. BishawY. HuckabeeA.M. AgoniasK.B. KazmierczakK. Mavacamten decreases maximal force and Ca2+ sensitivity in the N47K-myosin regulatory light chain mouse model of hypertrophic cardiomyopathy.Am. J. Physiol. Heart Circ. Physiol.20213202H881H890
    [Google Scholar]
  48. SparrowA.J. WatkinsH. DanielsM.J. RedwoodC. RobinsonP. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca 2+ flux caused by thin filament hypertrophic cardiomyopathy mutations.Am. J. Physiol. Heart Circ. Physiol.20203183H715H72210.1152/ajpheart.00023.2020 32083971
    [Google Scholar]
  49. SewananL.R. ShenS. CampbellS.G. Mavacamten preserves length-dependent contractility and improves diastolic function in human engineered heart tissue.Am. J. Physiol. Heart Circ. Physiol.20213203H1112H112310.1152/ajpheart.00325.2020 33449850
    [Google Scholar]
  50. GollapudiS.K. MaW. ChakravarthyS. CombsA.C. SaN. LangerS. IrvingT.C. NagS. Two classes of myosin inhibitors, para-nitroblebbistatin and mavacamten, stabilize β-cardiac myosin in different structural and functional states.J. Mol. Biol.20214332316729510.1016/j.jmb.2021.167295 34627791
    [Google Scholar]
  51. MamidiR. LiJ. DohC.Y. VermaS. StelzerJ.E. Impact of the myosin modulator mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility.J. Am. Heart Assoc.2018717e00962710.1161/JAHA.118.009627 30371160
    [Google Scholar]
  52. HoC.Y. MealiffeM.E. BachR.G. BhattacharyaM. ChoudhuryL. EdelbergJ.M. HegdeS.M. JacobyD. LakdawalaN.K. LesterS.J. MaY. MarianA.J. NaguehS.F. OwensA. RaderF. SaberiS. SehnertA.J. SherridM.V. SolomonS.D. WangA. PinzonW.O. WongT.C. HeitnerS.B. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy.J. Am. Coll. Cardiol.202075212649266010.1016/j.jacc.2020.03.064 32466879
    [Google Scholar]
  53. AbellaL.M.R. HöhmC. HofmannB. GergsU. NeumannJ. Effects of omecamtiv mecarbil and mavacamten in isolated human atrium.Naunyn Schmiedebergs Arch. Pharmacol.2023396349951110.1007/s00210‑022‑02333‑0 36399186
    [Google Scholar]
  54. TianZ. LiL. LiX. WangJ. ZhangQ. LiZ. PengD. YangP. MaW. WangF. JinW. ChengX. SunJ. FuY. LyuC. ZhangS. Effect of mavacamten on chinese patients with symptomatic obstructive hypertrophic cardiomyopathy.JAMA Cardiol.202381095796510.1001/jamacardio.2023.3030 37639259
    [Google Scholar]
  55. RezaN. MarzolfA.B. HornsbyN. VannL.C. de FeriaA. OwensA.T. Real world experience of the use of mavacamten in patients with symptomatic obstructive hypertrophic cardiomyopathy.J. Am. Coll. Cardiol.202381832210.1016/S0735‑1097(23)00766‑0
    [Google Scholar]
  56. PalandriC. SantiniL. ArgiròA. MargaraF. DosteR. OrovioB.A. OlivottoI. CoppiniR. Pharmacological management of hypertrophic cardiomyopathy: From bench to bedside.Drugs202282888991210.1007/s40265‑022‑01728‑w 35696053
    [Google Scholar]
  57. CuiY. WangY. LiuG. Epigallocatechin gallate (EGCG) attenuates myocardial hypertrophy and fibrosis induced by transverse aortic constriction via inhibiting the Akt/mTOR pathway.Pharm. Biol.20215911303131110.1080/13880209.2021.1972124 34607503
    [Google Scholar]
  58. OyamaJ. ShirakiA. NishikidoT. MaedaT. KomodaH. ShimizuT. MakinoN. NodeK. EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice.J. Cardiol.201769241742710.1016/j.jjcc.2016.05.019 27374189
    [Google Scholar]
  59. OslobJ. AndersonR. AubeleD. EvanchikM. FoxJ.C. KaneB. LuP. McDowellR. RodriguezH. SongY. Pyrimidinedione compounds.US Patent OO9585883B22017
  60. IrelandC.G. HoC.Y. Genetic testing in hypertrophic cardiomyopathy.Am. J. Cardiol.2024212SS4S1310.1016/j.amjcard.2023.10.032
    [Google Scholar]
  61. TeekakirikulP. ZhuW. HuangH.C. FungE. Hypertrophic cardiomyopathy: An overview of genetics and management.Biomolecules2019912878810.3390/biom9120878 31888115
    [Google Scholar]
  62. GlavaškiM. Hypertrophic cardiomyopathy: Genetic foundations, outcomes, interconnections, and their modifiers.Medicina-lithuania20235981424
    [Google Scholar]
/content/journals/chamc/10.2174/0118715257283752240325082733
Loading
/content/journals/chamc/10.2174/0118715257283752240325082733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test