Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Background

Significant variations in immune profiles across different age groups manifest distinct clinical symptoms and prognoses in Coronavirus Disease 2019 (COVID-19) patients. Predominantly, severe COVID-19 cases that require hospitalization occur in the elderly, with the risk of severe illness escalating with age among young adults, children, and adolescents.

Objective

This study aimed to delineate the unique immune characteristics of COVID-19 across various age groups and evaluate the feasibility of detecting COVID-19-induced immune alterations through peripheral blood analysis.

Methods

By employing a machine learning approach, we analyzed gene expression data from nasopharyngeal and peripheral blood samples of COVID-19 patients across different age brackets. Nasopharyngeal data reflected the immune response to COVID-19 in the upper respiratory tract, while peripheral blood samples provided insights into the overall immune system status. Both datasets encompassed COVID-19 patients and healthy controls, with patients divided into children, adolescents, and adult age groups. The analysis included the expression levels of 62,703 genes per patient. Then, 9 feature-sequencing methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, random forest, ridge regression, adaptive boosting, categorical boosting, extremely randomized trees, and extreme gradient boosting) were employed to evaluate the association of the genes with COVID-19. Key genes were then utilized to develop efficient classification models.

Results

The findings identified specific markers: insulin-like growth factor binding protein 3 (downregulated in the peripheral blood of COVID-19 patients), interferon alpha-inducible protein 27 (upregulated), and (upregulated in nasopharyngeal tissues). In addition, fibulin-2 was downregulated in adolescent patients, but upregulated in the other groups, while epoxide hydrolase 3 was upregulated in healthy controls, but downregulated in children and adolescents.

Conclusion

This study offers valuable insights into the local and systemic immune responses of COVID-19 patients across age groups, aiding in identifying potential therapeutic targets and formulating personalized treatment strategies.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232316769240912061652
2024-09-27
2025-10-04
Loading full text...

Full text loading...

References

  1. HamidiZ. Jabraeili-SiahroudS. Taati-AlamdariY. AghbashP.S. ShamekhA. BaghiH.B. A comprehensive review of COVID-19 symptoms and treatments in the setting of autoimmune diseases.Virol. J.2023201110.1186/s12985‑023‑01967‑7 36611166
    [Google Scholar]
  2. MontazersahebS. Hosseiniyan KhatibiS.M. HejaziM.S. COVID-19 infection: an overview on cytokine storm and related interventions.Virol. J.20221919210.1186/s12985‑022‑01814‑1 35619180
    [Google Scholar]
  3. HashmiH.A.S. AsifH.M. Early detection and assessment of COVID-19.Front. Med. (Lausanne)2020731110.3389/fmed.2020.00311 32582748
    [Google Scholar]
  4. IwamuraA.P.D. Tavares da SilvaM.R. HümmelgenA.L. Immunity and inflammatory biomarkers in COVID‐19: A systematic review.Rev. Med. Virol.2021314e219910.1002/rmv.2199 34260778
    [Google Scholar]
  5. ChenL. LiZ. ZengT. Identifying COVID-19-specific transcriptomic biomarkers with machine learning methods.BioMed Res. Int.2021202111110.1155/2021/9939134 34307679
    [Google Scholar]
  6. YanQ. LiP. YeX. Longitudinal peripheral blood transcriptional analysis reveals molecular signatures of disease progression in COVID-19 patients.J. Immunol.202120692146215910.4049/jimmunol.2001325 33846224
    [Google Scholar]
  7. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑8 32346093
    [Google Scholar]
  8. MakinodanT. KayM.M.B. Age Influence on the Immune System. KunkelH.G. DixonF.J. Advances in Immunology.Academic Press1980287330
    [Google Scholar]
  9. CunhaL.L. PerazzioS.F. AzziJ. CravediP. RiellaL.V. Remodeling of the immune response with aging: Immunosenescence and its potential impact on COVID-19 immune response.Front. Immunol.202011174810.3389/fimmu.2020.01748 32849623
    [Google Scholar]
  10. LiuY. MaoB. LiangS. Association between age and clinical characteristics and outcomes of COVID-19.Eur. Respir. J.2020555200111210.1183/13993003.01112‑2020 32312864
    [Google Scholar]
  11. CatanzaroM. FagianiF. RacchiM. CorsiniE. GovoniS. LanniC. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.Signal Transduct. Target. Ther.2020518410.1038/s41392‑020‑0191‑1 32467561
    [Google Scholar]
  12. ElshazliR.M. ToraihE.A. ElgamlA. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients.PLoS One2020158e023816010.1371/journal.pone.0238160 32822430
    [Google Scholar]
  13. YanezN.D. WeissN.S. RomandJ.A. TreggiariM.M. COVID-19 mortality risk for older men and women.BMC Public Health2020201174210.1186/s12889‑020‑09826‑8 33213391
    [Google Scholar]
  14. BajajV. GadiN. SpihlmanA.P. WuS.C. ChoiC.H. MoultonV.R. Aging, immunity, and COVID-19: How age influences the host immune response to coronavirus infections?Front. Physiol.20211157141610.3389/fphys.2020.571416 33510644
    [Google Scholar]
  15. ChenY. KleinS.L. GaribaldiB.T. Aging in COVID-19: Vulnerability, immunity and intervention.Ageing Res. Rev.20216510120510.1016/j.arr.2020.101205 33137510
    [Google Scholar]
  16. MehrpooyaA. Saberi-MovahedF. AzizizadehN. High dimensionality reduction by matrix factorization for systems pharmacology.Brief. Bioinform.2022231bbab41010.1093/bib/bbab410 34891155
    [Google Scholar]
  17. ChenL. PanX. HuX. Gene expression differences among different MSI statuses in colorectal cancer.Int. J. Cancer201814371731174010.1002/ijc.31554 29696646
    [Google Scholar]
  18. TownesF.W. HicksS.C. AryeeM.J. IrizarryR.A. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.Genome Biol.201920129510.1186/s13059‑019‑1861‑6 31870412
    [Google Scholar]
  19. Saberi-MovahedF. MohammadifardM. MehrpooyaA. Decoding clinical biomarker space of COVID-19: Exploring matrix factorization-based feature selection methods.Comput. Biol. Med.202214610542610.1016/j.compbiomed.2022.105426 35569336
    [Google Scholar]
  20. ByeonS.K. MadugunduA.K. GarapatiK. Development of a multiomics model for identification of predictive biomarkers for COVID-19 severity: A retrospective cohort study.Lancet Digit. Health202249e632e64510.1016/S2589‑7500(22)00112‑1 35835712
    [Google Scholar]
  21. LiX. ZhouX. DingS. Identification of transcriptome biomarkers for severe COVID-19 with machine learning methods.Biomolecules20221212173510.3390/biom12121735 36551164
    [Google Scholar]
  22. YuanF. RenJ. LiaoH. Identification of whole-blood DNA methylation signatures and rules associated with COVID-19 severity.Frontiers in Bioscience-Landmark2023281128410.31083/j.fbl2811284 38062828
    [Google Scholar]
  23. FreundY. SchapireR.E. A decision-theoretic generalization of on-line learning and an application to boosting.J. Comput. Syst. Sci.199755111913910.1006/jcss.1997.1504
    [Google Scholar]
  24. ProkhorenkovaL. CatBoost: Unbiased boosting with categorical features.Adv. Neural Inf. Process. Syst.2018201831
    [Google Scholar]
  25. TibshiraniR. Regression shrinkage and selection via the lasso.J. R. Stat. Soc. Series B Stat. Methodol.199658126728810.1111/j.2517‑6161.1996.tb02080.x
    [Google Scholar]
  26. KeG. MengQ. FinleyT. Lightgbm: A highly efficient gradient boosting decision tree.Adv. Neural Inf. Process. Syst.20173031463154
    [Google Scholar]
  27. LiJ. Feature selection: A data perspective.ACM computing surveys (CSUR)2017506145
    [Google Scholar]
  28. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  29. HoerlA.E. KennardR.W. Ridge regression: Biased estimation for nonorthogonal problems.Technometrics1970121556710.1080/00401706.1970.10488634
    [Google Scholar]
  30. GeurtsP. ErnstD. WehenkelL. Extremely randomized trees.Mach. Learn.200663134210.1007/s10994‑006‑6226‑1
    [Google Scholar]
  31. ChenT. GuestrinC.J.P. MiningD. XGBoost: A Scalable Tree Boosting System.KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining August 13-17, 2016 San Francisco, CA, USA11010.1145/2939672.2939785
    [Google Scholar]
  32. LiuH. SetionoR. Incremental feature selection.Appl. Intell.19989321723010.1023/A:1008363719778
    [Google Scholar]
  33. SafavianS.R. LandgrebeD. A survey of decision tree classifier methodology.IEEE Trans. Syst. Man Cybern.199121366067410.1109/21.97458
    [Google Scholar]
  34. NobleW.S. What is a support vector machine?Nat. Biotechnol.200624121565156710.1038/nbt1206‑1565 17160063
    [Google Scholar]
  35. CoverT. HartP. Nearest neighbor pattern classification.IEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.1053964
    [Google Scholar]
  36. HurstJ.H. Differential host responses within the upper respiratory tract and peripheral blood of children and adults with SARS-CoV-2 infection.medRxiv20232023.07.31.2329333710.1101/2023.07.31.23293337
    [Google Scholar]
  37. LiH. HuangF. LiaoH. Identification of COVID-19-specific immune markers using a machine learning method.Front. Mol. Biosci.2022995262610.3389/fmolb.2022.952626 35928229
    [Google Scholar]
  38. RenJ. GaoQ. ZhouX. Identification of key gene expression associated with quality of life after recovery from COVID-19.Med. Biol. Eng. Comput.20246241031104810.1007/s11517‑023‑02988‑8 38123886
    [Google Scholar]
  39. RenJ.X. ChenL. GuoW. FengK.Y. CaiY-D. HuangT. Patterns of gene expression profiles associated with colorectal cancer in colorectal mucosa by using machine learning methods.Comb. Chem. High Throughput Screen.202427192921293410.2174/0113862073266300231026103844 37957897
    [Google Scholar]
  40. TibshiraniR. Regression shrinkage and selection via the lasso: a retrospective.J. R. Stat. Soc. Series B Stat. Methodol.201173327328210.1111/j.1467‑9868.2011.00771.x
    [Google Scholar]
  41. DramińskiM. KoronackiJ. rmcfs: An R package for monte carlo feature selection and interdependency discovery.J. Stat. Softw.2018851212810.18637/jss.v085.i12
    [Google Scholar]
  42. KohaviR. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI’95: Proceedings of the 14th international joint conference on Artificial intelligence 20 August 1995 San Francisco, CA, United States199511371143
    [Google Scholar]
  43. ChenL. XuJ. ZhouY. PDATC-NCPMKL: Predicting drug’s Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning.Comput. Biol. Med.202416910786210.1016/j.compbiomed.2023.107862 38150886
    [Google Scholar]
  44. ChenL. LiL. Prediction of drug pathway-based disease classes using multiple properties of drugs.Curr. Bioinform.202419985987210.2174/0115748936284973240105115444
    [Google Scholar]
  45. ChenL. ChenY. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.Brief. Bioinform.2023251bbad45010.1093/bib/bbad450 38066710
    [Google Scholar]
  46. ChenL. HuH. MBPathNCP: A metabolic pathway prediction model for chemicals and enzymes based on network consistency projection.Curr. Bioinform.20244223126253
    [Google Scholar]
  47. ChenL. ZhaoX. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.Math. Biosci. Eng.20232012205532057510.3934/mbe.2023909 38124565
    [Google Scholar]
  48. ChawlaN.V. BowyerK.W. HallL.O. KegelmeyerW.P. SMOTE: Synthetic minority over-sampling technique.J. Artif. Intell. Res.20021632135710.1613/jair.953
    [Google Scholar]
  49. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  50. MatthewsB.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.Biochim. Biophys. Acta Protein Struct.1975405244245110.1016/0005‑2795(75)90109‑9 1180967
    [Google Scholar]
  51. GorodkinJ. Comparing two K-category assignments by a K-category correlation coefficient.Comput. Biol. Chem.2004285-636737410.1016/j.compbiolchem.2004.09.006 15556477
    [Google Scholar]
  52. RenJ. ZhouX. HuangK. Identification of key genes associated with persistent immune changes and secondary immune activation responses induced by influenza vaccination after COVID-19 recovery by machine learning methods.Comput. Biol. Med.202416910788310.1016/j.compbiomed.2023.107883 38157776
    [Google Scholar]
  53. ChenL. ZhangC. XuJ. PredictEFC: a fast and efficient multi-label classifier for predicting enzyme family classes.BMC Bioinformatics20242515010.1186/s12859‑024‑05665‑1 38291384
    [Google Scholar]
  54. ChenL. QuR. LiuX. Improved multi-label classifiers for predicting protein subcellular localization.Math. Biosci. Eng.202321121423610.3934/mbe.2024010 38303420
    [Google Scholar]
  55. LiT. WangL. WangH. Characteristics of laboratory indexes in COVID-19 patients with non-severe symptoms in Hefei City, China: diagnostic value in organ injuries.Eur. J. Clin. Microbiol. Infect. Dis.202039122447245510.1007/s10096‑020‑03967‑9 32613308
    [Google Scholar]
  56. FeizollahiP. matin S, Roghani SA, Mostafaei S, Safarzadeh E, Taghadosi M. Evaluation serum levels of Insulin Growth Factor-1 (IGF-1) and its association with clinical parameters in severe COVID-19.Inflammopharmacology202230119920510.1007/s10787‑021‑00908‑6 35098386
    [Google Scholar]
  57. AhasicA.M. TejeraP. WeiY. Predictors of circulating insulin-like growth factor-1 and insulin-like growth factor–binding protein-3 in critical illness.Crit. Care Med.201543122651265910.1097/CCM.0000000000001314 26427594
    [Google Scholar]
  58. LeiH. A two-gene marker for the two-tiered innate immune response in COVID-19 patients.PLoS One2023181e028039210.1371/journal.pone.0280392 36649304
    [Google Scholar]
  59. HoaglandD.A. MøllerR. UhlS.A. Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity.Immunity2021543557570.e510.1016/j.immuni.2021.01.017 33577760
    [Google Scholar]
  60. ShojaeiM. ShamshirianA. MonkmanJ. IFI27 transcription is an early predictor for COVID-19 outcomes, a multi-cohort observational study.Front. Immunol.202313106043810.3389/fimmu.2022.1060438 36685600
    [Google Scholar]
  61. WuX. SunM. YangZ. The roles of CCR9/CCL25 in inflammation and inflammation-associated diseases.Front. Cell Dev. Biol.2021968654810.3389/fcell.2021.686548 34490243
    [Google Scholar]
  62. YaoY. YeF. LiK. Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19.Signal Transduct. Target. Ther.2021618510.1038/s41392‑021‑00519‑1 33619245
    [Google Scholar]
  63. SimsJ.T. PoorbaughJ. ChangC.Y. Relationship between gene expression patterns from nasopharyngeal swabs and serum biomarkers in patients hospitalized with COVID-19, following treatment with the neutralizing monoclonal antibody bamlanivimab.J. Transl. Med.202220113410.1186/s12967‑022‑03345‑3 35303909
    [Google Scholar]
  64. Gómez-CarballaA. Rivero-CalleI. Pardo-SecoJ. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity.Environ. Res.202221011289010.1016/j.envres.2022.112890 35202626
    [Google Scholar]
  65. AdesanyaT.M.A. CampbellC.M. ChengL. OgboguP.U. KahwashR. C1 esterase inhibition: Targeting multiple systems in COVID-19.J. Clin. Immunol.202141472973210.1007/s10875‑021‑00972‑1 33474624
    [Google Scholar]
  66. ShenB. YiX. SunY. Proteomic and metabolomic characterization of COVID-19 patient sera.Cell202018215972.e1510.1016/j.cell.2020.05.032 32492406
    [Google Scholar]
  67. DemichevV. Tober-LauP. NazarenkoT. A proteomic survival predictor for COVID-19 patients in intensive care.PLOS Digit. Health202211e000000710.1371/journal.pdig.0000007 36812516
    [Google Scholar]
  68. HausburgM.A. WilliamsJ.S. BantonK.L. MainsC.W. RoshonM. Bar-OrD. C1 esterase inhibitor-mediated immunosuppression in COVID-19: Friend or foe?Clinical Immunol Commun20222839010.1016/j.clicom.2022.05.001 38013973
    [Google Scholar]
  69. UrwylerP. MoserS. CharitosP. Treatment of COVID-19 with conestat alfa, a regulator of the complement, contact activation and kallikrein-kinin system.Front. Immunol.202011207210.3389/fimmu.2020.02072 32922409
    [Google Scholar]
  70. ChengW. ChenS. LiR. ChenY. WangM. GuoD. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor.Virol. Sin.201530215316110.1007/s12250‑015‑3581‑8 25907116
    [Google Scholar]
  71. ZhangW. ZhouH. CenM. N-myc and STAT interactor is a novel biomarker of severity in community-acquired pneumonia: A prospective study.Respir. Res.202223125310.1186/s12931‑022‑02139‑x 36123652
    [Google Scholar]
  72. XiahouZ. WangX. ShenJ. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury.Nat. Commun.20178195010.1038/s41467‑017‑00930‑9 29038465
    [Google Scholar]
  73. WrenschF. WinklerM. PöhlmannS. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: Evidence for cholesterol-independent mechanisms.Viruses2014693683369810.3390/v6093683 25256397
    [Google Scholar]
  74. ArefiniaN. YaghoubiR. RamezaniA. FarokhniaM. ZadehA. SarvariJ. Association of IFITM1 promoter methylation with severity of SARS-CoV-2 infection.Clin. Lab.202369410.7754/Clin.Lab.2022.220622 37057950
    [Google Scholar]
  75. Prelli BozzoC. NchiouaR. VolcicM. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro.Nat. Commun.2021121458410.1038/s41467‑021‑24817‑y 34321474
    [Google Scholar]
  76. ZhengQ. HouJ. ZhouY. YangY. XieB. CaoX. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27.Cell Res.201525101121113610.1038/cr.2015.108 26358190
    [Google Scholar]
  77. RuffinN. Gea-MallorquíE. BrouillerF. Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors.Proc. Natl. Acad. Sci. USA201911643216852169310.1073/pnas.1911007116 31591213
    [Google Scholar]
  78. DoehnJ.M. TabelingC. BiesenR. CD169/SIGLEC1 is expressed on circulating monocytes in COVID-19 and expression levels are associated with disease severity.Infection202149475776210.1007/s15010‑021‑01606‑9 33825125
    [Google Scholar]
  79. Perez-ZsoltD. Muñoz-BasagoitiJ. RodonJ. SARS-CoV-2 interaction with Siglec-1 mediates trans-infection by dendritic cells.Cell. Mol. Immunol.202118122676267810.1038/s41423‑021‑00794‑6 34782760
    [Google Scholar]
  80. OommenA. CunninghamS. JoshiL. Transcriptomic analysis of respiratory tissue and cell line models to examine glycosylation machinery during SARS-CoV-2 infection.Viruses20211318210.3390/v13010082 33435561
    [Google Scholar]
  81. PanT.C. SasakiT. ZhangR.Z. FässlerR. TimplR. ChuM.L. Structure and expression of fibulin-2, a novel extracellular matrix protein with multiple EGF-like repeats and consensus motifs for calcium binding.J. Cell Biol.199312351269127710.1083/jcb.123.5.1269 8245130
    [Google Scholar]
  82. RochaJ.L.M. de OliveiraW.C.F. NoronhaN.C. Mesenchymal stromal cells in viral infections: Implications for COVID-19.Stem Cell Rev. Rep.2021171719310.1007/s12015‑020‑10032‑7 32895900
    [Google Scholar]
  83. IbrahimA.M. SabetS. El-GhorA.A. Fibulin-2 is required for basement membrane integrity of mammary epithelium.Sci. Rep.2018811413910.1038/s41598‑018‑32507‑x 30237579
    [Google Scholar]
  84. GilbertC. LefeuvreC. PreisserL. Age-related expression of IFN-λ1 versus IFN-I and beta-defensins in the nasopharynx of SARS-CoV-2-infected individuals.Front. Immunol.20211275027910.3389/fimmu.2021.750279 34858406
    [Google Scholar]
  85. ChakrabortyS. GonzalezJ.C. SieversB.L. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity.Sci. Transl. Med.202214635eabm785310.1126/scitranslmed.abm7853 35040666
    [Google Scholar]
  86. VälikangasT. JunttilaS. RytkönenK.T. Kukkonen-MacchiA. SuomiT. EloL.L. COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts.Front. Genet.20221392988710.3389/fgene.2022.929887 35991542
    [Google Scholar]
  87. DhochakN. SinghalT. KabraS.K. LodhaR. Pathophysiology of COVID-19: Why children fare better than adults?Indian J. Pediatr.202087753754610.1007/s12098‑020‑03322‑y 32410003
    [Google Scholar]
  88. MoS. DaiL. WangY. SongB. YangZ. GuW. Comprehensive analysis of the systemic transcriptomic alternations and inflammatory response during the occurrence and progress of COVID‐19.Oxid. Med. Cell. Longev.202120211999869710.1155/2021/9998697 34457122
    [Google Scholar]
  89. FelsensteinS. HedrichC.M. COVID-19 in children and young people.Lancet Rheumatol.202029e514e51610.1016/S2665‑9913(20)30212‑5 32838308
    [Google Scholar]
  90. DingS. HongQ. DuanT. miRNA-mediated low expression of EPHX3 is associated with poor prognosis and tumor immune infiltration in head and neck squamous cell carcinomas.J. Oncol.2022202211710.1155/2022/7633720 35401746
    [Google Scholar]
  91. LiJ. WuT. SongK. Integrative network analysis reveals subtype-specific long non-coding RNA regulatory mechanisms in head and neck squamous cell carcinoma.Comput. Struct. Biotechnol. J.20232153554910.1016/j.csbj.2022.12.030 36659932
    [Google Scholar]
  92. WendischD. DietrichO. MariT. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis.Cell20211842662436261.e2710.1016/j.cell.2021.11.033 34914922
    [Google Scholar]
  93. ChengkunW. CRISPRa screening with real world evidence identifies potassium channels as neuronal entry factors and druggable targets for SARS-CoV-2.bioRxiv20222021.07.01.450475
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232316769240912061652
Loading
/content/journals/cgt/10.2174/0115665232316769240912061652
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): COVID-19; cytokine; gene expression; immune response; machine learning; nasopharynx
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test