Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

RNA modifications play crucial roles in immune system development and function, with dynamic changes essential for diverse cellular processes. Innovative profiling technologies are invaluable for understanding the significance of these modifications in immune cells, both in healthy and diseased states. This review explores the utility of such technologies in uncovering the functions of RNA modifications and their impact on immune responses. Additionally, it delves into the mechanisms through which aberrant RNA modifications influence the tumor microenvironments immune milieu. Despite significant progress, several outstanding research questions remain, highlighting the need for further investigation into the molecular mechanisms underlying RNA modification's effects on immune function in various contexts.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232335322241205063758
2025-01-21
2025-10-29
Loading full text...

Full text loading...

References

  1. QiuL. JingQ. LiY. HanJ. RNA modification: Mechanisms and therapeutic targets.Mol. Biomed.202341252810.1186/s43556‑023‑00139‑x37612540
    [Google Scholar]
  2. WangQ. WangZ. HeY. XiongB. LiY. WangF. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications.Trends Analyt. Chem.202315911691011691510.1016/j.trac.2022.116910
    [Google Scholar]
  3. OntiverosR.J. StouteJ. LiuK.F. The chemical diversity of RNA modifications.Biochem. J.201947681227124510.1042/BCJ2018044531028151
    [Google Scholar]
  4. CuiL. MaR. CaiJ. GuoC. ChenZ. YaoL. WangY. FanR. WangX. ShiY. RNA modifications: Importance in immune cell biology and related diseases.Signal Transduct. Target. Ther.20227133435010.1038/s41392‑022‑01175‑936138023
    [Google Scholar]
  5. RoyB. Effects of mRNA modifications on translation: An overview.RNA Modif.: Methods Protoc.202132735610.1007/978‑1‑0716‑1374‑0_20
    [Google Scholar]
  6. LiX. MaS. YiC. Pseudouridine: The fifth RNA nucleotide with renewed interests.Curr. Opin. Chem. Biol.20163310811610.1016/j.cbpa.2016.06.01427348156
    [Google Scholar]
  7. LuoY. YaoY. WuP. ZiX. SunN. HeJ. The potential role of N7-methylguanosine (m7G) in cancer.J. Hematol. Oncol.2022151636810.1186/s13045‑022‑01285‑535590385
    [Google Scholar]
  8. WangC. HouX. GuanQ. ZhouH. ZhouL. LiuL. LiuJ. LiF. LiW. LiuH. RNA modification in cardiovascular disease: Implications for therapeutic interventions.Signal Transduct. Target. Ther.20238141242010.1038/s41392‑023‑01638‑737884527
    [Google Scholar]
  9. BatistaP.J. The RNA modification N 6-methyladenosine and its implications in human disease.Genomics Proteomics Bioinformatics201715315416310.1016/j.gpb.2017.03.00228533023
    [Google Scholar]
  10. ZhangQ. LiuF. ChenW. MiaoH. LiangH. LiaoZ. ZhangZ. ZhangB. The role of RNA m 5 C modification in cancer metastasis.Int. J. Biol. Sci.202117133369338010.7150/ijbs.6143934512153
    [Google Scholar]
  11. IbisB. AliazisK. CaoC. YenyuwadeeS. BoussiotisV.A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases.Front. Immunol.2023141197364119737010.3389/fimmu.2023.119736437342323
    [Google Scholar]
  12. YangS.H. GaoC. LiL. ChangC. LeungP.S.C. GershwinM.E. LianZ.X. The molecular basis of immune regulation in autoimmunity.Clin. Sci.20181321436710.1042/CS2017115429305419
    [Google Scholar]
  13. WangW.Y. TanM.S. YuJ.T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013626207229
    [Google Scholar]
  14. ChenL. LiuS. TaoY. Regulating tumor suppressor genes: Post-translational modifications.Signal Transduct. Target. Ther.202051909510.1038/s41392‑020‑0196‑932532965
    [Google Scholar]
  15. BarbieriI. KouzaridesT. Role of RNA modifications in cancer.Nat. Rev. Cancer202020630332210.1038/s41568‑020‑0253‑232300195
    [Google Scholar]
  16. HuangH. WengH. DengX. ChenJ. RNA modifications in cancer: Functions, mechanisms, and therapeutic implications.Annu. Rev. Cancer Biol.20204122124010.1146/annurev‑cancerbio‑030419‑033357
    [Google Scholar]
  17. TundoG.R. SbardellaD. LacalP.M. GrazianiG. MariniS. On the horizon: Targeting next-generation immune checkpoints for cancer treatment.Chemotherapy2019642628010.1159/00050090231387102
    [Google Scholar]
  18. McCubreyJ.A. SteelmanL.S. ChappellW.H. AbramsS.L. FranklinR.A. MontaltoG. CervelloM. NicolettiF. MalaponteG. MassarinoC. LibraM. New agents and approaches for targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell survival pathways.Cell Death Signaling in Cancer Biology and TreatmentHumana PressNew York, NY201333137210.1007/978‑1‑4614‑5847‑0_13
    [Google Scholar]
  19. CaoX. GengQ. FanD. WangQ. WangX. ZhangM. ZhaoL. JiaoY. DengT. LiuH. ZhouJ. JiaL. XiaoC. m6A methylation: A process reshaping the tumour immune microenvironment and regulating immune evasion.Mol. Cancer2023221424610.1186/s12943‑022‑01704‑836859310
    [Google Scholar]
  20. LiuC. YangZ. LiR. WuY. ChiM. GaoS. SunX. MengX. WangB. Potential roles of N6-methyladenosine (m6A) in immune cells.J. Transl. Med.202119125125510.1186/s12967‑021‑02918‑y34103054
    [Google Scholar]
  21. NombelaP. Miguel-LópezB. BlancoS. The role of m6A, m5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities.Mol. Cancer2021201182210.1186/s12943‑020‑01263‑w33461542
    [Google Scholar]
  22. ChatterjeeB. ShenC.K.J. MajumderP. RNA modifications and RNA metabolism in neurological disease pathogenesis.Int. J. Mol. Sci.20212221118701187510.3390/ijms22211187034769301
    [Google Scholar]
  23. TongJ. ZhangW. ChenY. YuanQ. QinN.N. QuG. The emerging role of RNA modifications in the regulation of antiviral innate immunity.Front. Microbiol.20221384562510.3389/fmicb.2022.84562535185855
    [Google Scholar]
  24. HaruehanroengraP. ZhengY.Y. ZhouY. HuangY. ShengJ. RNA modifications and cancer.RNA Biol.202017111560157510.1080/15476286.2020.172244931994439
    [Google Scholar]
  25. PomavilleM.M. HeC. Advances in targeting RNA modifications for anticancer therapy.Trends Cancer20239752854210.1016/j.trecan.2023.04.00337147166
    [Google Scholar]
  26. TuncelG. KalkanR. Importance of m N6-methyladenosine (m6A) RNA modification in cancer.Med. Oncol.2019364364010.1007/s12032‑019‑1260‑630879160
    [Google Scholar]
  27. ShimaH. MatsumotoM. IshigamiY. EbinaM. MutoA. SatoY. KumagaiS. OchiaiK. SuzukiT. IgarashiK. S-Adenosylmethionine synthesis is regulated by selective N6-adenosine methylation and mRNA degradation involving METTL16 and YTHDC1.Cell Rep.201721123354336310.1016/j.celrep.2017.11.09229262316
    [Google Scholar]
  28. RuszkowskaA. METTL16, methyltransferase-like protein 16: Current insights into structure and function.Int. J. Mol. Sci.20212242176218010.3390/ijms2204217633671635
    [Google Scholar]
  29. FanY. LiX. SunH. GaoZ. ZhuZ. YuanK. Role of WTAP in cancer: From mechanisms to the therapeutic potential.Biomolecules20221291224123010.3390/biom1209122436139062
    [Google Scholar]
  30. HuangQ. MoJ. LiaoZ. ChenX. ZhangB. The RNA m6A writer WTAP in diseases: Structure, roles, and mechanisms.Cell Death Dis.2022131085286010.1038/s41419‑022‑05268‑936207306
    [Google Scholar]
  31. GuhaniyogiJ. BrewerG. Regulation of mRNA stability in mammalian cells.Gene20012651-2112310.1016/S0378‑1119(01)00350‑X11255003
    [Google Scholar]
  32. ZhaoY. ChenY. JinM. WangJ. The crosstalk between m6A RNA methylation and other epigenetic regulators: A novel perspective in epigenetic remodeling.Theranostics20211194549456610.7150/thno.5496733754077
    [Google Scholar]
  33. ZhengH. ZhangX. SuiN. Advances in the profiling of N6-methyladenosine (m6A) modifications.Biotechnol. Adv.20204510765610766210.1016/j.biotechadv.2020.10765633181242
    [Google Scholar]
  34. MolinieB GiallourakisCC Genome-wide location analyses of n6-methyladenosine modifications (m6A-Seq).Methods Mol. Biol.201715624553
    [Google Scholar]
  35. GeR. HeM.E. TangW. N 6-methyladenosine in mammalian messenger RNA: Function, location, and quantitation.Isr. J. Chem.2024643-4e20230018110.1002/ijch.202300181
    [Google Scholar]
  36. Ontiveros RJ. Coregulation of gene expression by mRNA and tRNA modifications. Doctoral dissertation, University of Pennsylvania 2022. Available from: https://repository.upenn.edu/entities/publication/ca3115eb-ebe4-4b65-9992-eb22ec8f1a25
  37. XiongX. LiX. YiC. N1-methyladenosine methylome in messenger RNA and non-coding RNA.Curr. Opin. Chem. Biol.20184517918610.1016/j.cbpa.2018.06.01730007213
    [Google Scholar]
  38. ChenZ. ZhangZ. DingW. ZhangJ. TanZ. MeiY. HeW. WangX. Expression and potential biomarkers of regulators for M7G RNA modification in gliomas.Front. Neurol.20221388624688625710.3389/fneur.2022.88624635614925
    [Google Scholar]
  39. ZhouY. KongY. FanW. TaoT. XiaoQ. LiN. ZhuX. Principles of RNA methylation and their implications for biology and medicine.Biomed. Pharmacother.202013111073111073510.1016/j.biopha.2020.11073132920520
    [Google Scholar]
  40. SongH. ZhangJ. LiuB. XuJ. CaiB. YangH. StraubeJ. YuX. MaT. Biological roles of RNA m5C modification and its implications in Cancer immunotherapy.Biomarker Res.20221011536240321
    [Google Scholar]
  41. ZhangY. 5-methylcytosine (m5C) RNA modification controls the innate immune response to virus infection by regulating type I interferons.Proc. Natl. Acad. Sci. USA202211942e2123338119
    [Google Scholar]
  42. MonnéM. MarobbioC.M.T. AgrimiG. PalmieriL. PalmieriF. Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review †.IUBMB Life202274757359110.1002/iub.265835730628
    [Google Scholar]
  43. WnukM. SlipekP. DziedzicM. LewinskaA. The roles of host 5-methylcytosine RNA methyltransferases during viral infections.Int. J. Mol. Sci.20202121817610.3390/ijms2121817633142933
    [Google Scholar]
  44. LiM. TaoZ. ZhaoY. LiL. ZhengJ. LiZ. ChenX. 5-methylcytosine RNA methyltransferases and their potential roles in cancer.J. Transl. Med.202220121410.1186/s12967‑022‑03427‑235562754
    [Google Scholar]
  45. ChellamuthuA. GrayS.G. The RNA methyltransferase NSUN2 and its potential roles in cancer.Cells202098175810.3390/cells908175832708015
    [Google Scholar]
  46. LiD. LiuJ. ZhuB. The emerging significance of RNA 5-methylcytosine modification in human cancers.Oncologie202426336136710.1515/oncologie‑2023‑0440
    [Google Scholar]
  47. XueC. ZhaoY. LiL. Advances in RNA cytosine-5 methylation: Detection, regulatory mechanisms, biological functions and links to cancer.Biomark. Res.2020814310.1186/s40364‑020‑00225‑032944246
    [Google Scholar]
  48. ZongT. YangY. ZhaoH. LiL. LiuM. FuX. TangG. ZhouH. AungL.H.H. LiP. WangJ. WangZ. YuT. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets.Cell Prolif.2021543e12977e1298510.1111/cpr.1297733507586
    [Google Scholar]
  49. ChenY.S. YangW.L. ZhaoY.L. YangY.G. Dynamic transcriptomic m 5 C and its regulatory role in RNA processing.Wiley Interdiscip. Rev. RNA2021124e163910.1002/wrna.163933438329
    [Google Scholar]
  50. LianH. WangQ.H. ZhuC.B. MaJ. JinW.L. Deciphering the epitranscriptome in cancer.Trends Cancer20184320722110.1016/j.trecan.2018.01.00629506671
    [Google Scholar]
  51. YangF. ZhangX. XieY. YuanJ. GaoJ. ChenH. LiX. The pathogenesis of food allergy and protection offered by dietary compounds from the perspective of epigenetics.J. Nutr. Biochem.202412810959310959810.1016/j.jnutbio.2024.10959338336123
    [Google Scholar]
  52. LuM. XueM. WangH.T. KairisE.L. AhmadS. WeiJ. ZhangZ. LiuQ. ZhangY. GaoY. GarcinD. PeeplesM.E. SharmaA. HurS. HeC. LiJ. Nonsegmented negative-sense RNA viruses utilize N 6-methyladenosine (m6A) as a common strategy to evade host innate immunity.J. Virol.2021959e01939-2010.1128/JVI.01939‑2033536170
    [Google Scholar]
  53. XiaoM.Z. LiuJ.M. XianC.L. ChenK.Y. LiuZ.Q. ChengY.Y. Therapeutic potential of ALKB homologs for cardiovascular disease.Biomed. Pharmacother.202013111064511065210.1016/j.biopha.2020.11064532942149
    [Google Scholar]
  54. ChenL. FuY. HuZ. DengK. SongZ. LiuS. LiM. OuX. WuR. LiuM. LiR. GaoS. ChengL. ChenS. XuA. Nuclear m6A reader YTHDC1 suppresses proximal alternative polyadenylation sites by interfering with the 3′ processing machinery.EMBO Rep.20222311e54686e7010.15252/embr.20225468636094741
    [Google Scholar]
  55. LiuB. CaoJ. WangX. GuoC. LiuY. WangT. Deciphering the tRNA-derived small RNAs: Origin, development, and future.Cell Death Dis.2021131242810.1038/s41419‑021‑04472‑334934044
    [Google Scholar]
  56. SafraM. Sas-ChenA. NirR. WinklerR. NachshonA. Bar-YaacovD. ErlacherM. RossmanithW. Stern-GinossarN. SchwartzS. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution.Nature2017551767925125510.1038/nature2445629072297
    [Google Scholar]
  57. EisenbergA.R. HigdonA.L. HollererI. FieldsA.P. JungreisI. DiamondP.D. KellisM. JovanovicM. BrarG.A. Translation initiation site profiling reveals widespread synthesis of non-AUG-initiated protein isoforms in yeast.Cell Syst.2020112145160.e510.1016/j.cels.2020.06.01132710835
    [Google Scholar]
  58. GrozhikA.V. Olarerin-GeorgeA.O. SindelarM. LiX. GrossS.S. JaffreyS.R. Antibody cross-reactivity accounts for widespread appearance of m1A in 5’UTRs.Nat. Commun.20191015126513010.1038/s41467‑019‑13146‑w31719534
    [Google Scholar]
  59. NiuY. ZhaoX. WuY.S. LiM.M. WangX.J. YangY.G. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function.Genomics Proteomics Bioinformatics201311181710.1016/j.gpb.2012.12.00223453015
    [Google Scholar]
  60. TanguayR.L. GallieD.R. Translational efficiency is regulated by the length of the 3′ untranslated region.Mol. Cell. Biol.199616114615610.1128/MCB.16.1.1468524291
    [Google Scholar]
  61. AltayliE. Regulator non-coding RNAs: miRNA, siRNA, piRNA, lncRNA, circRNA.J. Clin. Med. Kazakhstan.2020660293910.23950/jcmk/9258
    [Google Scholar]
  62. YueY. LiuJ. CuiX. CaoJ. LuoG. ZhangZ. ChengT. GaoM. ShuX. MaH. WangF. WangX. ShenB. WangY. FengX. HeC. LiuJ. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation.Cell Discov.201841101510.1038/s41421‑018‑0019‑029507755
    [Google Scholar]
  63. ZhouH. YinK. ZhangY. TianJ. WangS. The RNA m6A writer METTL14 in cancers: Roles, structures, and applications.Biochim. Biophys. Acta Rev. Cancer20211876218860918871010.1016/j.bbcan.2021.18860934375716
    [Google Scholar]
  64. JiangX. LiuB. NieZ. DuanL. XiongQ. JinZ. YangC. ChenY. The role of m6A modification in the biological functions and diseases.Signal Transduct. Target. Ther.202161747810.1038/s41392‑020‑00450‑x33611339
    [Google Scholar]
  65. ElsabbaghR.A. RadyM. WatzlC. Abou-AishaK. GadM.Z. Impact of N6-methyladenosine (m6A) modification on immunity.Cell Commun. Signal.202220114014510.1186/s12964‑022‑00939‑836085064
    [Google Scholar]
  66. RoundtreeI.A. EvansM.E. PanT. HeC. Dynamic RNA modifications in gene expression regulation.Cell201716971187120010.1016/j.cell.2017.05.04528622506
    [Google Scholar]
  67. EnrothC. PoulsenL.D. IversenS. KirpekarF. AlbrechtsenA. VintherJ. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing.Nucleic Acids Res.20194720e126e13010.1093/nar/gkz73631504776
    [Google Scholar]
  68. Covelo-MolaresH. BartosovicM. VanacovaS. RNA methylation in nuclear pre-mRNA processing.Wiley Interdiscip. Rev. RNA201896e1489e149410.1002/wrna.148929921017
    [Google Scholar]
  69. ZorbasC. NicolasE. WacheulL. HuvelleE. Heurgué-HamardV. LafontaineD.L.J. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis.Mol. Biol. Cell201526112080209510.1091/mbc.E15‑02‑007325851604
    [Google Scholar]
  70. FuruichiY. Discovery of m7G-cap in eukaryotic mRNAs.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201591839440910.2183/pjab.91.39426460318
    [Google Scholar]
  71. MoneckeT. DickmannsA. FicnerR. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1.Nucleic Acids Res.200937123865387710.1093/nar/gkp24919386620
    [Google Scholar]
  72. ArangoD. SturgillD. OberdoerfferS. Immunoprecipitation and sequencing of acetylated RNA.Bio Protoc.2019912e3278e328510.21769/BioProtoc.327833654795
    [Google Scholar]
  73. ItoS. HorikawaS. SuzukiT. KawauchiH. TanakaY. SuzukiT. SuzukiT. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA).J. Biol. Chem.201428952357243573010.1074/jbc.C114.60269825411247
    [Google Scholar]
  74. JinG. XuM. ZouM. DuanS. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: A systematic review.Mol. Ther. Nucleic Acids202020132410.1016/j.omtn.2020.01.03732171170
    [Google Scholar]
  75. ArangoD. SturgillD. AlhusainiN. DillmanA.A. SweetT.J. HansonG. HosoganeM. SinclairW.R. NananK.K. MandlerM.D. FoxS.D. ZengeyaT.T. AndressonT. MeierJ.L. CollerJ. OberdoerfferS. Acetylation of cytidine in mRNA promotes translation efficiency.Cell2018175718721886.e2410.1016/j.cell.2018.10.03030449621
    [Google Scholar]
  76. SchiffersS. OberdoerfferS. ac4C: A fragile modification with stabilizing functions in RNA metabolism.RNA202430558359410.1261/rna.079948.12438531654
    [Google Scholar]
  77. ZaringhalamM. PapavasiliouF.N. Pseudouridylation meets next-generation sequencing.Methods2016107637210.1016/j.ymeth.2016.03.00126968262
    [Google Scholar]
  78. HassanD. AcevedoD. DaulatabadS.V. MirQ. JangaS.C. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.Methods202220347848710.1016/j.ymeth.2022.02.00535182749
    [Google Scholar]
  79. MaraiaR. ArimbasseriA. Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon–codon use.Biomolecules201771263010.3390/biom701002628282871
    [Google Scholar]
  80. BooS.H. KimY.K. The emerging role of RNA modifications in the regulation of mRNA stability.Exp. Mol. Med.202052340040810.1038/s12276‑020‑0407‑z32210357
    [Google Scholar]
  81. AphasizhevR. SuematsuT. ZhangL. AphasizhevaI. Constructive edge of uridylation-induced RNA degradation.RNA Biol.201613111078108310.1080/15476286.2016.122973627715485
    [Google Scholar]
  82. SiomiM.C. SatoK. PezicD. AravinA.A. PIWI-interacting small RNAs: The vanguard of genome defence.Nat. Rev. Mol. Cell Biol.201112424625810.1038/nrm308921427766
    [Google Scholar]
  83. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  84. XueC. ChuQ. ZhengQ. JiangS. BaoZ. SuY. LuJ. LiL. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine.Signal Transduct. Target. Ther.20227114210.1038/s41392‑022‑01003‑035484099
    [Google Scholar]
  85. De AlmeidaC. ScheerH. ZuberH. GagliardiD. RNA uridylation: A key posttranscriptional modification shaping the coding and noncoding transcriptome.Wiley Interdiscip. Rev. RNA201891e1440e144310.1002/wrna.144028984054
    [Google Scholar]
  86. ObbardD.J. GordonK.H.J. BuckA.H. JigginsF.M. The evolution of RNAi as a defence against viruses and transposable elements.Philos. Trans. R. Soc. Lond. B Biol. Sci.200936415139911510.1098/rstb.2008.016818926973
    [Google Scholar]
  87. ChristofiT. ZaravinosA. RNA editing in the forefront of epitranscriptomics and human health.J. Transl. Med.201917131910.1186/s12967‑019‑2071‑431547885
    [Google Scholar]
  88. KeeganL.P. LeroyA. SproulD. O’ConnellM.A. Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes.Genome Biol.20045220910.1186/gb‑2004‑5‑2‑20914759252
    [Google Scholar]
  89. HanS.W. KimH.P. ShinJ.Y. JeongE.G. LeeW.C. KimK.Y. ParkS.Y. LeeD.W. WonJ.K. JeongS.Y. ParkK.J. ParkJ.G. KangG.H. SeoJ.S. KimJ.I. KimT.Y. RNA editing in RHOQ promotes invasion potential in colorectal cancer.J. Exp. Med.2014211461362110.1084/jem.2013220924663214
    [Google Scholar]
  90. WengX PengS ZouG YuanK ZhouX. Methods for mapping of nucleic acids epigenetic modifications and its clinic applications.Nucleic Acids in Medicinal Chemistry and Chemical Biology: Drug Development and Clinical ApplicationsJohn Wiley & Sons, Inc.2023182226
    [Google Scholar]
  91. ChenH.X. ZhangZ. MaD.Z. ChenL.Q. LuoG.Z. Mapping single-nucleotide m6A by m6A-REF-seq.Methods202220339239810.1016/j.ymeth.2021.06.01334174388
    [Google Scholar]
  92. ZhangL.S. DaiQ. HeC. Base-resolution sequencing methods for whole-transcriptome quantification of mRNA modifications.Acc. Chem. Res.2024571475810.1021/acs.accounts.3c0053238079380
    [Google Scholar]
  93. HuY. GongC. LiZ. LiuJ. ChenY. HuangY. LuoQ. WangS. HouY. YangS. XiaoY. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification.Mol. Cancer2022211344010.1186/s12943‑022‑01522‑y35114989
    [Google Scholar]
  94. MengL. ZhangQ. HuangX. Comprehensive analysis of 5-methylcytosine profiles of messenger RNA in human high-grade serous ovarian cancer by MeRIP sequencing.Cancer Manag. Res.2021136005601810.2147/CMAR.S31931234377020
    [Google Scholar]
  95. SundbergC.D. HankinsonO. CRISPR/Cas9 whole-genome screen identifies genes required for aryl hydrocarbon receptor-dependent induction of functional CYP1A1.Toxicol. Sci.2019170231031910.1093/toxsci/kfz11131086989
    [Google Scholar]
  96. LiY. WangH. ZhangL. DingZ. XuS. GuZ. ShiG. Efficient genome editing in Bacillus licheniformis mediated by a conditional CRISPR/Cas9 system.Microorganisms20208575476010.3390/microorganisms805075432429599
    [Google Scholar]
  97. WangN. TangH. WangX. WangW. FengJ. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes.Biochem. Biophys. Res. Commun.20174931949910.1016/j.bbrc.2017.09.06928919411
    [Google Scholar]
  98. ConstantS.L. BottomlyK. Induction of Th1 and Th2 CD4+ T cell responses: The alternative approaches.Annu. Rev. Immunol.199715129732210.1146/annurev.immunol.15.1.2979143690
    [Google Scholar]
  99. DeshpandeA. KlompasM. GuoN. ImreyP.B. PallottaA.M. HigginsT. HaesslerS. ZilberbergM.D. LindenauerP.K. RothbergM.B. Intravenous to oral antibiotic switch therapy among patients hospitalized with community-acquired pneumonia.Clin. Infect. Dis.202377217418510.1093/cid/ciad19637011018
    [Google Scholar]
  100. ZhouJ. ZhangX. HuJ. QuR. YuZ. XuH. ChenH. YanL. DingC. ZouQ. YeY. WangZ. FlavellR.A. LiH.B. m6A demethylase ALKBH5 controls CD4 + T cell pathogenicity and promotes autoimmunity.Sci. Adv.2021725eabg047047710.1126/sciadv.abg047034134995
    [Google Scholar]
  101. TianH. XingJ. TangX. ChiH. ShengX. ZhanW. Identification and characterization of a master transcription factor of Th1 cells, T-bet, within flounder (Paralichthys olivaceus).Front. Immunol.20211270432470433010.3389/fimmu.2021.70432434262572
    [Google Scholar]
  102. BarnerM. MohrsM. BrombacherF. KopfM. Differences between IL-4Rα-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses.Curr. Biol.199881166967210.1016/S0960‑9822(98)70256‑89635196
    [Google Scholar]
  103. GonçalvesG.A.R. PaivaR.M.A. Gene therapy: Advances, challenges and perspectives.Einstein201715336937510.1590/s1679‑45082017rb402429091160
    [Google Scholar]
  104. LuS. WeiX. ZhuH. HuZ. ZhengM. WuJ. ZhaoC. YangS. FengD. JiaS. ZhaoH. ZhaoM. m6A methyltransferase METTL3 programs CD4+ T-cell activation and effector T-cell differentiation in systemic lupus erythematosus.Mol. Med.2023291465010.1186/s10020‑023‑00643‑437013484
    [Google Scholar]
  105. HuR. LiaoP. XuB. QiuY. ZhangH. LiY. N6-methyladenosine RNA modifications: A potential therapeutic target for AML.Ann. Hematol.202410382601261210.1007/s00277‑023‑05302‑637548690
    [Google Scholar]
  106. SprentJ. SurhC.D. Normal T cell homeostasis: The conversion of naive cells into memory-phenotype cells.Nat. Immunol.201112647848410.1038/ni.201821739670
    [Google Scholar]
  107. LiJ. WangW. ZhouY. LiuL. ZhangG. GuanK. CuiX. LiuX. HuangM. CuiG. SunR. m6A regulator-associated modification patterns and immune infiltration of the tumor microenvironment in hepatocarcinoma.Front. Cell Dev. Biol.2021968775668776210.3389/fcell.2021.68775634277630
    [Google Scholar]
  108. GuoL. YangH. ZhouC. ShiY. HuangL. ZhangJ. N6-Methyladenosine RNA modification in the tumor immune microenvironment: novel implications for immunotherapy.Front. Immunol.20211277357077357910.3389/fimmu.2021.77357034956201
    [Google Scholar]
  109. NairL. The role of RNA base modification m6A in RNA turnover and genome dynamics in B cell programmed DNA recombination.Columbia University2021
    [Google Scholar]
  110. XuA. ZhangJ. ZuoL. YanH. ChenL. ZhaoF. FanF. XuJ. ZhangB. ZhangY. YinX. ChengQ. GaoS. DengJ. MeiH. HuangZ. SunC. HuY. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner.Mol. Ther.20223031104111810.1016/j.ymthe.2021.12.01234915192
    [Google Scholar]
  111. DongL. CaoY. HouY. LiuG. N 6-methyladenosine RNA methylation: A novel regulator of the development and function of immune cells.J. Cell. Physiol.2022237132934510.1002/jcp.3057634515345
    [Google Scholar]
  112. JiX. WangZ. SunW. ZhangH. The emerging role of m6A modification in endocrine cancer.Cancers2023154103310.3390/cancers1504103336831377
    [Google Scholar]
  113. XuY. HeZ. DuJ. ChenZ. CreemersJ.W.M. WangB. LiF. WangY. Epigenetic modulations of immune cells: from normal development to tumor progression.Int. J. Biol. Sci.202319165120514410.7150/ijbs.8832737928272
    [Google Scholar]
  114. ChenX. YangT. WangW. XiW. ZhangT. LiQ. YangA. WangT. Circular RNAs in immune responses and immune diseases.Theranostics20199258860710.7150/thno.2967830809295
    [Google Scholar]
  115. Wicherska-PawłowskaK. WróbelT. RybkaJ. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases.Int. J. Mol. Sci.202122241339710.3390/ijms22241339734948194
    [Google Scholar]
  116. YangD. ZhaoG. ZhangH.M. m6A reader proteins: the executive factors in modulating viral replication and host immune response.Front. Cell. Infect. Microbiol.2023131151069115107210.3389/fcimb.2023.115106937325513
    [Google Scholar]
  117. BrocardM. RuggieriA. LockerN. m6A RNA methylation, a new hallmark in virus-host interactions.J. Gen. Virol.20179892207221410.1099/jgv.0.00091028869001
    [Google Scholar]
  118. WangS. LvW. LiT. ZhangS. WangH. LiX. WangL. MaD. ZangY. ShenJ. XuY. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Intern 2022; 22(1): 48-52.37221357
    [Google Scholar]
  119. DengX. The roles and implications of RNA m6A modification in cancer.Natur. Rev. Clin. Oncol.2023208507526
    [Google Scholar]
  120. WeinsteinI.B. The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment--twenty-seventh G.H.A. Clowes memorial award lecture.Cancer Res.19884815413541433292040
    [Google Scholar]
  121. XiongH. ZhangZ.G. TianX.Q. SunD.F. LiangQ.C. ZhangY.J. LuR. ChenY.X. FangJ.Y. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells.Neoplasia200810328729710.1593/neo.0797118320073
    [Google Scholar]
  122. LiuJ. XuY.P. LiK. YeQ. ZhouH.Y. SunH. LiX. YuL. DengY.Q. LiR.T. ChengM.L. HeB. ZhouJ. LiX.F. WuA. YiC. QinC.F. The m6A methylome of SARS-CoV-2 in host cells.Cell Res.202131440441410.1038/s41422‑020‑00465‑733510385
    [Google Scholar]
  123. WinklerR. GillisE. LasmanL. SafraM. GeulaS. SoyrisC. NachshonA. Tai-SchmiedelJ. FriedmanN. Le-TrillingV.T.K. TrillingM. MandelboimM. HannaJ.H. SchwartzS. Stern-GinossarN. m6A modification controls the innate immune response to infection by targeting type I interferons.Nat. Immunol.201920217318210.1038/s41590‑018‑0275‑z30559377
    [Google Scholar]
  124. JinS. LiM. ChangH. WangR. ZhangZ. ZhangJ. HeY. MaH. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma.Mol. Cancer20222119710210.1186/s12943‑022‑01572‑235395767
    [Google Scholar]
  125. LiuY. YouY. LuZ. YangJ. LiP. LiuL. XuH. NiuY. CaoX. N 6 -methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication.Science201936564581171117610.1126/science.aax446831439758
    [Google Scholar]
  126. BouyahyaA. MechchateH. OumeslakhtL. ZeoukI. AboulaghrasS. BalahbibA. ZenginG. KamalM.A. GalloM. MontesanoD. El OmariN. The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: Mechanistic pathways and pharmacodynamic actions.Biomolecules202212336710.3390/biom1203036735327559
    [Google Scholar]
  127. HuangH. WengH. ChenJ. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer.Cancer Cell202037327028810.1016/j.ccell.2020.02.00432183948
    [Google Scholar]
  128. JoyceJ.A. FearonD.T. T cell exclusion, immune privilege, and the tumor microenvironment.Science20153486230748010.1126/science.aaa620425838376
    [Google Scholar]
  129. ZhouX. LiC. ChenT. LiW. WangX. YangQ. Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy.Mol. Cancer2023221364010.1186/s12943‑023‑01746‑636810108
    [Google Scholar]
  130. ZhengS. HanH. LinS. N6-methyladenosine (m6A) RNA modification in tumor immunity.Cancer Biol. Med.202219438539710.20892/j.issn.2095‑3941.2021.053435254013
    [Google Scholar]
  131. GeJ. LiuS.L. ZhengJ.X. ShiY. ShaoY. DuanY.J. HuangR. YangL.J. YangT. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8+ T cell infiltration in colorectal cancer.Transl. Oncol.20233410168310.1016/j.tranon.2023.10168337224767
    [Google Scholar]
  132. ShibruB. FeyK. FrickeS. BlaudszunA.R. FürstF. WeiseM. SeiffertS. WeyhM.K. KöhlU. SackU. BoldtA. Detection of immune checkpoint receptors–a current challenge in clinical flow cytometry.Front. Immunol.20211269405569406210.3389/fimmu.2021.69405534276685
    [Google Scholar]
  133. MaS. YanJ. BarrT. ZhangJ. ChenZ. WangL.S. SunJ.C. ChenJ. CaligiuriM.A. YuJ. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity.J. Exp. Med.20212188e20210279e2021028210.1084/jem.2021027934160549
    [Google Scholar]
  134. GalliF. AguileraJ.V. PalermoB. MarkovicS.N. NisticòP. SignoreA. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy.J. Exp. Clin. Cancer Res.20203918910.1186/s13046‑020‑01586‑y32423420
    [Google Scholar]
  135. YuH. LiuJ. BuX. MaZ. YaoY. LiJ. ZhangT. SongW. XiaoX. SunY. XiongW. ShiJ. DaiP. XiangB. DuanH. YanX. WuF. ZhangW.C. LinD. HuH. ZhangH. SlackF.J. HeH.H. FreemanG.J. WeiW. ZhangJ. Targeting METTL3 reprograms the tumor microenvironment to improve cancer immunotherapy.Cell Chem. Biol.2024314776791.e710.1016/j.chembiol.2023.09.00137751743
    [Google Scholar]
  136. SzetoC. LobosC.A. NguyenA.T. GrasS. TCR recognition of peptide–MHC-I: Rule makers and breakers.Int. J. Mol. Sci.2020221687410.3390/ijms2201006833374673
    [Google Scholar]
  137. QiuZ. ZhaoL. ShenJ.Z. LiangZ. WuQ. YangK. MinL. GimpleR.C. YangQ. BhargavaS. JinC. KimC. HinzD. DixitD. BernatchezJ.A. PragerB.C. ZhangG. DongZ. LvD. WangX. KimL.J.Y. ZhuZ. JonesK.A. ZhengY. WangX. Siqueira-NetoJ.L. ChavezL. FuX.D. SpruckC. RichJ.N. Transcription elongation machinery is a druggable dependency and potentiates immunotherapy in glioblastoma stem cells.Cancer Discov.202212250252110.1158/2159‑8290.CD‑20‑184834615656
    [Google Scholar]
  138. SunY. JiangL. WenT. GuoX. ShaoX. QuH. ChenX. SongY. WangF. QuX. LiZ. Trends in the research into immune checkpoint blockade by anti-PD1/PDL1 antibodies in cancer immunotherapy: A bibliometric study.Front. Pharmacol.20211267090010.3389/fphar.2021.67090034489691
    [Google Scholar]
  139. KokV.C. Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer.Front. Oncol.20201026827310.3389/fonc.2020.0026832185135
    [Google Scholar]
  140. ChongW. ShangL. LiuJ. FangZ. DuF. WuH. LiuY. WangZ. ChenY. JiaS. ChenL. LiL. ChenH. m 6 A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer.Theranostics20211152201221710.7150/thno.5271733500720
    [Google Scholar]
  141. ChenY. ShenJ. Mucosal immunity and tRNA, tRF, and tiRNA.J. Mol. Med.2021991475610.1007/s00109‑020‑02008‑433200232
    [Google Scholar]
  142. ZhuC. SunB. NieA. ZhouZ. The tRNA-associated dysregulation in immune responses and immune diseases.Acta Physiol.20202282e1339110.1111/apha.1339131529760
    [Google Scholar]
  143. XuX. HuangJ. OcanseyD.K.W. XiaY. ZhaoZ. XuZ. YanY. ZhangX. MaoF. The emerging clinical application of m6A RNA modification in inflammatory bowel disease and its associated colorectal cancer.J. Inflamm. Res.2021143289330610.2147/JIR.S32044934290515
    [Google Scholar]
  144. LiuX. WangJ.M. Iridoid glycosides fraction of Folium syringae leaves modulates NF-κB signal pathway and intestinal epithelial cells apoptosis in experimental colitis.PLoS One201169e24740e2474410.1371/journal.pone.002474021931839
    [Google Scholar]
  145. Fernandez RodriguezG. CesaroB. FaticaA. Multiple roles of m6A RNA modification in translational regulation in cancer.Int. J. Mol. Sci.202223168971897710.3390/ijms2316897136012237
    [Google Scholar]
  146. GarboS. ZwergelC. BattistelliC. m6A RNA methylation and beyond – The epigenetic machinery and potential treatment options.Drug Discov. Today202126112559257410.1016/j.drudis.2021.06.00434126238
    [Google Scholar]
  147. FuY. DominissiniD. RechaviG. HeC. Gene expression regulation mediated through reversible m6A RNA methylation.Nat. Rev. Genet.201415529330610.1038/nrg372424662220
    [Google Scholar]
  148. LiK. PengJ. YiC. Sequencing methods and functional decoding of mRNA modifications.Fundamental Research20233573874810.1016/j.fmre.2023.05.01038933299
    [Google Scholar]
  149. LiuZ.X. LiL.M. SunH.L. LiuS.M. Link between m6A modification and cancers.Front. Bioeng. Biotechnol.20186899110.3389/fbioe.2018.0008930062093
    [Google Scholar]
  150. TianS. LaiJ. YuT. LiQ. ChenQ. Regulation of gene expression associated with the N6-methyladenosine (m6A) enzyme system and its significance in cancer.Front. Oncol.20211062363410.3389/fonc.2020.62363433552994
    [Google Scholar]
  151. RamanathanA. RobbG.B. ChanS.H. mRNA capping: Biological functions and applications.Nucleic Acids Res.201644167511752610.1093/nar/gkw55127317694
    [Google Scholar]
  152. OuyangW. HuangZ. WanK. NieT. ChenH. YaoH. RNA ac4C modification in cancer: Unraveling multifaceted roles and promising therapeutic horizons.Cancer Lett.202460121715921716410.1016/j.canlet.2024.21715939128536
    [Google Scholar]
  153. MeiZ. ShenZ. PuJ. LiuQ. LiuG. HeX. WangY. YueJ. GeS. LiT. YuanY. YangL. NAT10 mediated ac4C acetylation driven m6A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma.Cell Commun. Signal.2024221515510.1186/s12964‑023‑01321‑y38233839
    [Google Scholar]
  154. Munoz-TelloP. RajappaL. CoquilleS. ThoreS. Polyuridylation in eukaryotes: A 3′-end modification regulating RNA life.BioMed Res. Int.20152015111210.1155/2015/96812726078976
    [Google Scholar]
  155. LimJ. HaM. ChangH. KwonS.C. SimanshuD.K. PatelD.J. KimV.N. Uridylation by TUT4 and TUT7 marks mRNA for degradation.Cell201415961365137610.1016/j.cell.2014.10.05525480299
    [Google Scholar]
  156. ZinshteynB. NishikuraK. Adenosine-to-inosine RNA editing.Wiley Interdiscip. Rev. Syst. Biol. Med.20091220220910.1002/wsbm.1020835992
    [Google Scholar]
  157. GatsiouA. VlachogiannisN. LunellaF.F. SachseM. StellosK. Adenosine-to-inosine RNA editing in health and disease.Antioxid. Redox Signal.201829984686310.1089/ars.2017.729528762759
    [Google Scholar]
  158. ShenS. ZhangL.S. The regulation of antiviral innate immunity through non-m6A RNA modifications.Front. Immunol.2023141286820128682810.3389/fimmu.2023.128682037915585
    [Google Scholar]
  159. LambertM. BenmoussaA. ProvostP. Small non-coding RNAs derived from eukaryotic ribosomal RNA.Noncoding RNA2019511610.3390/ncrna501001630720712
    [Google Scholar]
  160. GeissmannF. AuffrayC. PalframanR. WirrigC. CioccaA. CampisiL. Narni-MancinelliE. LauvauG. Blood monocytes: Distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T‐cell responses.Immunol. Cell Biol.200886539840810.1038/icb.2008.1918392044
    [Google Scholar]
  161. DongN. LiD. CaiH. ShiL. HuangL. Expression of lncRNA MIR193BHG in serum of preeclampsia patients and its clinical significance.J. Gynecol. Obstet. Hum. Reprod.202251510235710236110.1016/j.jogoh.2022.10235735301154
    [Google Scholar]
  162. RaoZ. HeZ. HeY. GuoZ. KongD. LiuJ. MicroRNA-512-3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells.Mol. Med. Rep.201817158659329115469
    [Google Scholar]
  163. NalbantE. Akkaya-UlumY.Z. Exploring regulatory mechanisms on miRNAs and their implications in inflammation-related diseases.Clin. Exp. Med.202424114214510.1007/s10238‑024‑01334‑y38958690
    [Google Scholar]
  164. MohanN. DashwoodR.H. RajendranP. A–Z of epigenetic readers: Targeting alternative splicing and histone modification variants in cancer.Cancers20241661104111510.3390/cancers1606110438539439
    [Google Scholar]
  165. KongZ. HanQ. ZhuB. WanL. FengE. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR -136-5p/ YWHAZ axis.Thorac. Cancer202314191831184210.1111/1759‑7714.1492837192740
    [Google Scholar]
  166. XiaoP. LiM. ZhouM. ZhaoX. WangC. QiuJ. FangQ. JiangH. DongH. ZhouR. TTP protects against acute liver failure by regulating CCL2 and CCL5 through m6A RNA methylation.JCI Insight2021623e14927610.1172/jci.insight.14927634877932
    [Google Scholar]
  167. PapoutsoglouP. RNA-modifying enzymes as novel targets for anti-cancer therapies.Health Res. J.202173959710.12681/healthresj.27472
    [Google Scholar]
  168. LiG. FuQ. LiuC. PengY. GongJ. LiS. HuangY. ZhangH. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets.Front. Oncol.2022121074307107431710.3389/fonc.2022.107430736561529
    [Google Scholar]
  169. ZhuH. ShiJ. LiW. Bioinformatics analysis of ceRNA network of autophagy-related genes in pediatric asthma.Medicine202310248e36343e3634510.1097/MD.000000000003634338050261
    [Google Scholar]
  170. BabarQ. SaeedA. TabishT.A. SarwarM. ThoratN.D. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics.Biochim. Biophys. Acta Mol. Basis Dis.20231869616674616675210.1016/j.bbadis.2023.16674637160171
    [Google Scholar]
  171. Labani-MotlaghA. Ashja-MahdaviM. LoskogA. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses.Front. Immunol.20201194094410.3389/fimmu.2020.0094032499786
    [Google Scholar]
  172. SmythM.J. NgiowS.F. RibasA. TengM.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment.Nat. Rev. Clin. Oncol.201613314315810.1038/nrclinonc.2015.20926598942
    [Google Scholar]
  173. ZengC. HuangW. LiY. WengH. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting.J. Hematol. Oncol.202013111712110.1186/s13045‑020‑00951‑w32854717
    [Google Scholar]
  174. AnY. DuanH. The role of m6A RNA methylation in cancer metabolism.Mol. Cancer2022211141810.1186/s12943‑022‑01500‑435022030
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232335322241205063758
Loading
/content/journals/cgt/10.2174/0115665232335322241205063758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test