Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

The dopamine (DA) system is central to mood regulation, motivation, and reward processing, making it a critical focus for understanding Major Depressive Disorder (MDD). While the dopaminergic system's role in MDD pathophysiology has been acknowledged, gaps remain in linking specific receptor subtypes and genetic factors to depression-like phenotypes. This study explores the interplay between dopamine receptor subtypes (D1-D5) and associated genetic variations, particularly focusing on receptor heterodimers and polymorphisms influencing dopamine biosynthesis, signalling, and metabolism. A comprehensive review of molecular mechanisms highlights key findings; alterations in D1-D2 heterodimers contribute to mood dysregulation; D3 receptor downregulation correlates with depressive behaviour; and genetic polymorphisms, including those in tyrosine hydroxylase and dopamine transporter (DAT) genes, influence dopamine levels and receptor functions. Emerging data from neuroimaging and animal models confirm the pivotal role of dopamine receptor subtypes in MDD, offering insights into their therapeutic targeting. Here, we show that dopaminergic dysfunction underpins MDD's pathophysiology, with receptor-specific mechanisms presenting novel drug targets. Understanding these pathways facilitates precision medicine approaches, bridging the gap between genetic predisposition and receptor pharmacology, and paving the way for tailored antidepressant strategies with improved efficacy and reduced side effects.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232334693250110175517
2025-01-21
2025-10-04
Loading full text...

Full text loading...

References

  1. RiceF. RiglinL. LomaxT. Adolescent and adult differences in major depression symptom profiles.J. Affect. Disord.201924317518110.1016/j.jad.2018.09.015 30243197
    [Google Scholar]
  2. XuM. WuG. The clinical significance of serum IL-33 and sST2 alterations in the post-stroke depression.J. Multidiscip. Healthc.2021142009201510.2147/JMDH.S310524 34354360
    [Google Scholar]
  3. FoxM.E. LoboM.K. The molecular and cellular mechanisms of depression: A focus on reward circuitry.Mol. Psychiatry201924121798181510.1038/s41380‑019‑0415‑3 30967681
    [Google Scholar]
  4. NormannS.J. CorneliusJ. Concurrent depression of tumor macrophage infiltration and systemic inflammation by progressive cancer growth.Cancer Res.1978381034533459 99232
    [Google Scholar]
  5. KatholR.G. JaeckleR.S. LopezJ.F. MellerW.H. Pathophysiology of HPA axis abnormalities in patients with major depression: An update.Am. J. Psychiatry1989146331131710.1176/ajp.146.3.311 2645793
    [Google Scholar]
  6. PengG. TianJ. GaoX. ZhouY. QinX. Research on the pathological mechanism and drug treatment mechanism of depression.Curr. Neuropharmacol.201513451452310.2174/1570159X1304150831120428 26412071
    [Google Scholar]
  7. NuttD.J. Relationship of neurotransmitters to the symptoms of major depressive disorder.J. Clin. Psychiatry200869Suppl. E147 18494537
    [Google Scholar]
  8. PerettiS. JudgeR. HindmarchI. Safety and tolerability considerations: Tricyclic antidepressants vs. selective serotonin reuptake inhibitors.Acta Psychiatr. Scand.2000101S403172510.1111/j.1600‑0447.2000.tb10944.x 11019931
    [Google Scholar]
  9. GeorgeS.R. KernA. SmithR.G. FrancoR. Dopamine receptor heteromeric complexes and their emerging functions.Prog Brain Res201421118320010.1016/B978‑0‑444‑63425‑2.00008‑8 24968781
    [Google Scholar]
  10. YeraganiV. TancerM. ChokkaP. BakerG. Arvid Carlsson, and the story of dopamine.Indian J. Psychiatry2010521878810.4103/0019‑5545.58907 20174530
    [Google Scholar]
  11. HornykiewiczO. A quarter century of brain dopamine research Dopaminergic Systems and their Regulation.LondonMacmillan1986318
    [Google Scholar]
  12. HornykiewiczO. Dopamine miracle: From brain homogenate to dopamine replacement.Mov. Disord.200217350150810.1002/mds.10115 12112197
    [Google Scholar]
  13. BlaschkoH. Metabolism and storage of biogenic amines.Experientia195713191210.1007/BF02156938 13404987
    [Google Scholar]
  14. MontaguK.A. Catechol compounds in rat tissues and in brains of different animals.Nature1957180457924424510.1038/180244a0 13451690
    [Google Scholar]
  15. CarlssonA. LindqvistM. MagnussonT. WaldeckB. On the presence of 3-hydroxytyramine in brain.Science1958127329647110.1126/science.127.3296.471.a 13529006
    [Google Scholar]
  16. BertlerÅ. RosengrenE. Occurrence and distribution of dopamine in brain and other tissues.Experientia1959151101110.1007/BF02157069 13619664
    [Google Scholar]
  17. EhringerH. HornykiewiczO. Verteilung von noradrenalin und dopamin (3-hydroxytyramin) im gehirn des menschen und ihr verhalten bei erkrankungen des extrapyramidalen systems.Klin. Wochenschr.196038241236123910.1007/BF01485901 13726012
    [Google Scholar]
  18. CorrodiH. JonssonG. The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review of the methodology.J. Histochem. Cytochem.1967152657810.1177/15.2.65
    [Google Scholar]
  19. VogtM. Functional aspects of the role of catecholamines in the central nervous system.Br. Med. Bull.197329216817110.1093/oxfordjournals.bmb.a070989 4593944
    [Google Scholar]
  20. Dahlstro¨mA. Aminergic transmission. Introduction and short review.Brain Res.197362244146010.1016/0006‑8993(73)90708‑7 4148551
    [Google Scholar]
  21. CarlssonA. Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems.J. Neural Transm. (Vienna)20021095-677778710.1007/s007020200064 12111467
    [Google Scholar]
  22. DiehlD.J. GershonS. The role of dopamine in mood disorders.Compr. Psychiatry199233211512010.1016/0010‑440X(92)90007‑D 1347497
    [Google Scholar]
  23. OpmeerE.M. KortekaasR. AlemanA. Depression and the role of genes involved in dopamine metabolism and signalling.Prog. Neurobiol.201092211213310.1016/j.pneurobio.2010.06.003 20558238
    [Google Scholar]
  24. KebabianJ.W. PetzoldG.L. GreengardP. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”.Proc. Natl. Acad. Sci. USA19726982145214910.1073/pnas.69.8.2145 4403305
    [Google Scholar]
  25. KebabianJ.W. CalneD.B. Multiple receptors for dopamine.Nature19792775692939610.1038/277093a0 215920
    [Google Scholar]
  26. SchultzW. The phasic reward signal of primate dopamine neurons.Adv. Pharmacol.19974268669010.1016/S1054‑3589(08)60841‑8 9327992
    [Google Scholar]
  27. Der-AvakianA. MarkouA. The neurobiology of anhedonia and other reward-related deficits.Trends Neurosci.2012351687710.1016/j.tins.2011.11.005 22177980
    [Google Scholar]
  28. KilbournM.R. ShermanP.S. PisaniT. Repeated reserpine administration reduces in vivo [18F]GBR 13119 binding to the dopamine uptake site.Eur. J. Pharmacol.1992216110911210.1016/0014‑2999(92)90216‑Q 1526249
    [Google Scholar]
  29. KramM.L. KramerG.L. RonanP.J. SteciukM. PettyF. Dopamine receptors and learned helplessness in the rat.Prog. Neuropsychopharmacol. Biol. Psychiatry200226463964510.1016/S0278‑5846(01)00222‑6 12188094
    [Google Scholar]
  30. FriedmanA. FriedmanY. DremencovE. YadidG. VTA dopamine neuron bursting is altered in an animal model of depression and corrected by desipramine.J. Mol. Neurosci.200834320120910.1007/s12031‑007‑9016‑8 18197479
    [Google Scholar]
  31. TyeK.M. MirzabekovJ.J. WardenM.R. Dopamine neurons modulate neural encoding and expression of depression-related behaviour.Nature2013493743353754110.1038/nature11740 23235822
    [Google Scholar]
  32. BestJ.A. NijhoutH.F. ReedM.C. Homeostatic mechanisms in dopamine synthesis and release: A mathematical model.Theor. Biol. Med. Model.2009612110.1186/1742‑4682‑6‑21 19740446
    [Google Scholar]
  33. MeiserJ. WeindlD. HillerK. Complexity of dopamine metabolism.Cell Commun. Signal.20131113410.1186/1478‑811X‑11‑34 23683503
    [Google Scholar]
  34. WimalasenaK. Vesicular monoamine transporters: Structure‐function, pharmacology, and medicinal chemistry.Med. Res. Rev.201131448351910.1002/med.20187 20135628
    [Google Scholar]
  35. GermanC.L. BaladiM.G. McFaddenL.M. HansonG.R. FleckensteinA.E. Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease.Pharmacol. Rev.20156741005102410.1124/pr.114.010397 26408528
    [Google Scholar]
  36. Rougé-PontF. UsielloA. Benoit-MarandM. GononF. PiazzaP.V. BorrelliE. Changes in extracellular dopamine induced by morphine and cocaine: Crucial control by D2 receptors.J. Neurosci.20022283293330110.1523/JNEUROSCI.22‑08‑03293.2002 11943831
    [Google Scholar]
  37. LericheL. BezardE. GrossC. The dopamine D3 receptor: A therapeutic target for the treatment of neuropsychiatric disorders.CNS Neurol. Disord. Drug Targets200651254310.2174/187152706784111551 16613552
    [Google Scholar]
  38. ShihJ.C. ChenK. RiddM.J. Role of MAO A and B in neurotransmitter metabolism and behavior.Pol. J. Pharmacol.19995112529 10389141
    [Google Scholar]
  39. SimpsonE.H. MorudJ. WinigerV. Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum.Learn. Mem.201421420521410.1101/lm.032094.113 24639487
    [Google Scholar]
  40. NaK.S. WonE. KangJ. Differential effect of COMT gene methylation on the prefrontal connectivity in subjects with depression versus healthy subjects.Neuropharmacology2018137597010.1016/j.neuropharm.2018.04.030 29723539
    [Google Scholar]
  41. Adamiak-GieraU. JawieńW. PierzchlińskaA. Pharmacokinetics of Levodopa and 3-O-Methyldopa in parkinsonian patients treated with levodopa and ropinirole and in patients with motor complications.Pharmaceutics2021139139510.3390/pharmaceutics13091395 34575471
    [Google Scholar]
  42. ZhaoF. ChengZ. PiaoJ. CuiR. LiB. Dopamine receptors: Is it possible to become a therapeutic target for depression?Front. Pharmacol.20221394778510.3389/fphar.2022.947785 36059987
    [Google Scholar]
  43. ZhangT. HongJ. DiT. ChenL. MPTP impairs dopamine D1 receptor-mediated survival of newborn neurons in ventral hippocampus to cause depressive-like behaviors in adult mice.Front. Mol. Neurosci.2016910110.3389/fnmol.2016.00101 27790091
    [Google Scholar]
  44. O’SullivanGJ RothBL KinsellaA WaddingtonJL. SK&F 83822 distinguishes adenylyl cyclase from phospholipase Ccoupled dopamine D1-like receptors: Behavioural topography.Eur. J. Pharmacol.2004486327328010.1016/j.ejphar.2004.01.004 14985049
    [Google Scholar]
  45. KoutsokeraM. KafkaliasP. GiompresP. KouvelasE.D. MitsacosA. Expression and phosphorylation of glutamate receptor subunits and CaMKII in a mouse model of Parkinsonism.Brain Res.20141549223110.1016/j.brainres.2013.12.023 24418465
    [Google Scholar]
  46. ChenJ. RusnakM. LuedtkeR.R. SidhuA. D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade.J. Biol. Chem.200427938393173933010.1074/jbc.M403891200 15247297
    [Google Scholar]
  47. Hernández-EcheagarayE. CepedaC. ArianoM.A. LoboM.K. SibleyD.R. LevineM.S. Dopamine reduction of GABA currents in striatal medium-sized spiny neurons is mediated principally by the D(1) receptor subtype.Neurochem. Res.200732222924010.1007/s11064‑006‑9141‑8 17031565
    [Google Scholar]
  48. HamiltonJ.P. SacchetM.D. HjørnevikT. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: A concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation.Transl. Psychiatry20188126410.1038/s41398‑018‑0316‑2 30504860
    [Google Scholar]
  49. YokokuraM. TakebasashiK. TakaoA. In vivo imaging of dopamine D1 receptor and activated microglia in attention-deficit/hyperactivity disorder: A positron emission tomography study.Mol. Psychiatry20212694958496710.1038/s41380‑020‑0784‑7 32439845
    [Google Scholar]
  50. HagenaH. Manahan-VaughanD. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning.Front. Synaptic Neurosci.201683110.3389/fnsyn.2016.00031 27721791
    [Google Scholar]
  51. LazenkaM.F. FreitasK.C. HenckS. NegusS.S. Relief of pain-depressed behavior in rats by activation of D1-like dopamine receptors.J. Pharmacol. Exp. Ther.20173621142310.1124/jpet.117.240796 28411257
    [Google Scholar]
  52. DesormeauxC. DemarsF. DavenasE. JayT.M. LavergneF. Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats.J. Psychopharmacol.202034121443144810.1177/0269881120959613 33256509
    [Google Scholar]
  53. AlthobaitiY.S. Quetiapine-induced place preference in mice: Possible dopaminergic pathway.Pharmaceuticals (Basel)202114215610.3390/ph14020156 33672850
    [Google Scholar]
  54. RamiresL.K. de Souza da RosaA.C. SeveroP.S. Souza e SilvaS. MarksS.N. Billig Mello-CarpesP. One single physical exercise session improves memory persistence by hippocampal activation of D1 dopamine receptors and PKA signaling in rats.Brain Res.2021176214743910.1016/j.brainres.2021.147439 33753064
    [Google Scholar]
  55. HareB.D. ShinoharaR. LiuR.J. PothulaS. DiLeoneR.J. DumanR.S. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects.Nat. Commun.201910122310.1038/s41467‑018‑08168‑9 30644390
    [Google Scholar]
  56. FedotovaJ. OrdyanN. Involvement of D1 receptors in depression-like behavior of ovariectomized rats.Acta Physiol. Hung.201198216517610.1556/APhysiol.98.2011.2.8 21616775
    [Google Scholar]
  57. AlexanderS.P.H. ChristopoulosA. DavenportA.P. The concise guide to pharmacology 2019/20: G protein‐coupled receptors.Br. J. Pharmacol.2019176S1S21S14110.1111/bph.14748 31710717
    [Google Scholar]
  58. GauthierC. SouaibyL. Advenier-IakovlevE. GaillardR. Pramipexole and electroconvulsive therapy in treatment-resistant depression.Clin. Neuropharmacol.201740626426710.1097/WNF.0000000000000253 29059135
    [Google Scholar]
  59. JollyA.E. RaymontV. ColeJ.H. Dopamine D2/D3 receptor abnormalities after traumatic brain injury and their relationship to post-traumatic depression.Neuroimage Clin.20192410195010.1016/j.nicl.2019.101950 31352218
    [Google Scholar]
  60. FatimaM. AhmadM.H. SrivastavS. RizviM.A. MondalA.C. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats.Neurochem. Int.202013610473010.1016/j.neuint.2020.104730 32201282
    [Google Scholar]
  61. PappM. GrucaP. LasonM. NiemczykM. WillnerP. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression.J. Psychopharmacol.201933674875610.1177/0269881119827889 30789286
    [Google Scholar]
  62. DoughertyD.D. Deep brain stimulation.Psychiatr. Clin. North Am.201841338539410.1016/j.psc.2018.04.004 30098652
    [Google Scholar]
  63. PerreaultM.L. HasbiA. O’DowdB.F. GeorgeS.R. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance.Neuropsychopharmacology201439115616810.1038/npp.2013.148 23774533
    [Google Scholar]
  64. PerreaultM.L. HasbiA. AlijaniaramM. O’DowdB.F. GeorgeS.R. Reduced striatal dopamine D1–D2 receptor heteromer expression and behavioural subsensitivity in juvenile rats.Neuroscience201222513013910.1016/j.neuroscience.2012.08.042 22986162
    [Google Scholar]
  65. RicoA.J. Dopeso-ReyesI.G. Martínez-PinillaE. Neurochemical evidence supporting dopamine D1–D2 receptor heteromers in the striatum of the long-tailed macaque: Changes following dopaminergic manipulation.Brain Struct. Funct.201722241767178410.1007/s00429‑016‑1306‑x 27612857
    [Google Scholar]
  66. HasbiA. FanT. AlijaniaramM. Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth.Proc. Natl. Acad. Sci. USA200910650213772138210.1073/pnas.0903676106 19948956
    [Google Scholar]
  67. PerreaultM.L. FanT. AlijaniaramM. O’DowdB.F. GeorgeS.R. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: Regulation of BDNF, GAD67 and VGLUT1/2.PLoS One201273e3334810.1371/journal.pone.0033348 22428025
    [Google Scholar]
  68. StricklandJ.A. AustenJ.M. SprengelR. SandersonD.J. The GluA1 AMPAR subunit is necessary for hedonic responding but not hedonic value in female mice.Physiol. Behav.202122811320610.1016/j.physbeh.2020.113206 33058902
    [Google Scholar]
  69. LeggioG.M. SalomoneS. BucoloC. Dopamine D3 receptor as a new pharmacological target for the treatment of depression.Eur. J. Pharmacol.20137191-3253310.1016/j.ejphar.2013.07.022 23872400
    [Google Scholar]
  70. DikeosD.G. PapadimitriouG.N. AvramopoulosD. Association between the dopamine D3 receptor gene locus (DRD3) and unipolar affective disorder.Psychiatr. Genet.19999418919610.1097/00041444‑199912000‑00005 10697826
    [Google Scholar]
  71. LevantB. The D3 dopamine receptor: Neurobiology and potential clinical relevance.Pharmacol. Rev.1997493231252 9311022
    [Google Scholar]
  72. SongR. ZhangH.Y. LiX. BiG.H. GardnerE.L. XiZ.X. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors.Proc. Natl. Acad. Sci. USA201210943176751768010.1073/pnas.1205297109 23045656
    [Google Scholar]
  73. FuchsE. KramerM. HermesB. NetterP. HiemkeC. Psychosocial stress in tree shrews: Clomipramine counteracts behavioral and endocrine changes.Pharmacol. Biochem. Behav.199654121922810.1016/0091‑3057(95)02166‑3 8728561
    [Google Scholar]
  74. MogensenJ. PedersenT.K. HolmS. Effects of chronic imipramine on exploration, locomotion, and food/water intake in rats.Pharmacol. Biochem. Behav.199447342743510.1016/0091‑3057(94)90139‑2 8208760
    [Google Scholar]
  75. LeggioM.G. ChiricozziF.R. ClausiS. TedescoA.M. MolinariM. The neuropsychological profile of cerebellar damage: The sequencing hypothesis.Cortex201147113714410.1016/j.cortex.2009.08.011 19786276
    [Google Scholar]
  76. KoeltzowT.E. XuM. CooperD.C. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice.J. Neurosci.19981862231223810.1523/JNEUROSCI.18‑06‑02231.1998 9482807
    [Google Scholar]
  77. BrownA.S. GershonS. Dopamine and depression.J. Neural Transm. (Vienna)1993912-37510910.1007/BF01245227 8099801
    [Google Scholar]
  78. WangJ. LaiS. LiG. Microglial activation contributes to depressive-like behavior in dopamine D3 receptor knockout mice.Brain Behav. Immun.20208322623810.1016/j.bbi.2019.10.016 31626970
    [Google Scholar]
  79. MinamiS. SatoyoshiH. IdeS. InoueT. YoshiokaM. MinamiM. Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment.Neurosci. Lett.2017650727610.1016/j.neulet.2017.04.028 28432029
    [Google Scholar]
  80. AlcaroA. HuberR. PankseppJ. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective.Brain Res. Brain Res. Rev.200756228332110.1016/j.brainresrev.2007.07.014 17905440
    [Google Scholar]
  81. LuckiI. DalviA. MayorgaA. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice.Psychopharmacology (Berl.)2001155331532210.1007/s002130100694 11432695
    [Google Scholar]
  82. XingB. LiuP. JiangW. Effects of immobilization stress on emotional behaviors in dopamine D3 receptor knockout mice.Behav. Brain Res.201324326126610.1016/j.bbr.2013.01.019 23357086
    [Google Scholar]
  83. EischA.J. BolañosC.A. de WitJ. Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: A role in depression.Biol. Psychiatry20035410994100510.1016/j.biopsych.2003.08.003 14625141
    [Google Scholar]
  84. GoodC.H. WangH. ChenY.H. Mejias-AponteC.A. HoffmanA.F. LupicaC.R. Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms.J. Neurosci.20133343168531686410.1523/JNEUROSCI.1844‑13.2013 24155292
    [Google Scholar]
  85. NavakkodeS. ChewK.C.M. TayS.J.N. LinQ. BehnischT. SoongT.W. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus.Sci. Rep.2017711557110.1038/s41598‑017‑15917‑1 29138490
    [Google Scholar]
  86. NagatsuT. LevittM. UdenfriendS. Tyrosine hydroxylase.J. Biol. Chem.196423992910291710.1016/S0021‑9258(18)93832‑9 14216443
    [Google Scholar]
  87. MossP.A.H. DaviesK.E. BoniC. MalletJ. ReedersS.T. Linkage of tyrosine hydroxylase to four other markers on the short arm of chromosome 11.Nucleic Acids Res.198614249927993210.1093/nar/14.24.9927 2880337
    [Google Scholar]
  88. SerrettiA. MacciardiF. CusinC. VergaM. PedriniS. SmeraldiE. Tyrosine hydroxylase gene in linkage disequilibrium with mood disorders.Mol. Psychiatry19983216917410.1038/sj.mp.4000373 9577842
    [Google Scholar]
  89. FurlongR.A. RubinszteinJ.S. HoL. Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders.Am. J. Med. Genet.1999881889410.1002/(SICI)1096‑8628(19990205)88:1<88::AID‑AJMG16>3.0.CO;2‑J 10050974
    [Google Scholar]
  90. SerrettiA. MacciardiF. VergaM. CusinC. PedriniS. SmeraldiE. Tyrosine hydroxylase gene associated with depressive symptomatology in mood disorder.Am. J. Med. Genet.199881212713010.1002/(SICI)1096‑8628(19980328)81:2<127::AID‑AJMG1>3.0.CO;2‑T 9613850
    [Google Scholar]
  91. PolymeropoulosM.H. XiaoH. RathD.S. MerrilC.R. Tetranucleotide repeat polymorphism at the human tyrosine hydroxylase gene (TH).Nucleic Acids Res.19911913375310.1093/nar/19.13.3753 1677184
    [Google Scholar]
  92. YoshidaK. HiguchiH. TakahashiH. Influence of the tyrosine hydroxylase val81met polymorphism and catechol‐ O ‐methyltransferase val158met polymorphism on the antidepressant effect of milnacipran.Hum. Psychopharmacol.200823212112810.1002/hup.907 18023073
    [Google Scholar]
  93. Opacka-JuffryJ. BrooksD.J. L‐Dihydroxyphenylalanine and its decarboxylase: New ideas on their neuroregulatory roles.Mov. Disord.199510324124910.1002/mds.870100302 7651438
    [Google Scholar]
  94. BørglumA.D. BruunT.G. KjeldsenT.E. Two novel variants in the DOPA decarboxylase gene: Association with bipolar affective disorder.Mol. Psychiatry19994654555110.1038/sj.mp.4000559 10578236
    [Google Scholar]
  95. GabrielaM.L. JohnD.G. MagdalenaB.V. Genetic interaction analysis for DRD4 and DAT1 genes in a group of Mexican ADHD patients.Neurosci. Lett.2009451325726010.1016/j.neulet.2009.01.004 19146920
    [Google Scholar]
  96. MeyerJ.H. KrügerS. WilsonA.A. Lower dopamine transporter binding potential in striatum during depression.Neuroreport200112184121412510.1097/00001756‑200112210‑00052 11742250
    [Google Scholar]
  97. KirchheinerJ. NickchenK. SasseJ. BauerM. RootsI. BrockmöllerJ. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment.Pharmacogenomics J.200771485510.1038/sj.tpj.6500398 16702979
    [Google Scholar]
  98. VandenberghD.J. PersicoA.M. HawkinsA.L. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR.Genomics19921441104110610.1016/S0888‑7543(05)80138‑7 1478653
    [Google Scholar]
  99. MillJ. AshersonP. BrowesC. D’SouzaU. CraigI. Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: Evidence from brain and lymphocytes using quantitative RT‐PCR.Am. J. Med. Genet.2002114897597910.1002/ajmg.b.10948 12457396
    [Google Scholar]
  100. HünnerkopfR. StrobelA. GutknechtL. BrockeB. LeschK.P. Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits.Neuropsychopharmacology200732122552256010.1038/sj.npp.1301383 17392738
    [Google Scholar]
  101. JacobsenL.K. StaleyJ.K. ZoghbiS.S. Prediction of dopamine transporter binding availability by genotype: A preliminary report.Am. J. Psychiatry2000157101700170310.1176/appi.ajp.157.10.1700 11007732
    [Google Scholar]
  102. van DyckC.H. MalisonR.T. JacobsenL.K. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene.J. Nucl. Med.2005465745751 15872345
    [Google Scholar]
  103. HaeffelG.J. GetchellM. KoposovR.A. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees.Psychol. Sci.2008191626910.1111/j.1467‑9280.2008.02047.x 18181793
    [Google Scholar]
  104. DongC. WongM-L. LicinioJ. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans.Mol. Psychiatry200914121105111810.1038/mp.2009.92 19844206
    [Google Scholar]
  105. GrandyD.K. ZhouQ.Y. AllenL. A human D1 dopamine receptor gene is located on chromosome 5 at q35.1 and identifies an EcoRI RFLP.Am. J. Hum. Genet.1990475828834 1977312
    [Google Scholar]
  106. NiX. TrakaloJ.M. MundoE. Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder.Biol. Psychiatry200252121144115010.1016/S0006‑3223(02)01433‑6 12488059
    [Google Scholar]
  107. KõksS. NikopensiusT. KoidoK. Analysis of SNP profiles in patients with major depressive disorder.Int. J. Neuropsychopharmacol.20069216717410.1017/S1461145705005468 15927089
    [Google Scholar]
  108. GrandyD.K. LittM. AllenL. The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP.Am. J. Hum. Genet.1989455778785 2573278
    [Google Scholar]
  109. NevilleM.J. JohnstoneE.C. WaltonR.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.Hum. Mutat.200423654054510.1002/humu.20039 15146457
    [Google Scholar]
  110. JönssonE.G. NöthenM.M. GrünhageF. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers.Mol. Psychiatry19994329029610.1038/sj.mp.4000532 10395223
    [Google Scholar]
  111. NobleE.P. BlumK. RitchieT. MontgomeryA. SheridanP.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism.Arch. Gen. Psychiatry199148764865410.1001/archpsyc.1991.01810310066012 2069496
    [Google Scholar]
  112. BermanS.M. OzkaragozT. NobleE.P. Differential associations of sex and D2 dopamine receptor (DRD2) genotype with negative affect and other substance abuse risk markers in children of alcoholics.Alcohol200330320121010.1016/j.alcohol.2003.06.002 13679114
    [Google Scholar]
  113. ElovainioM. JokelaM. KivimäkiM. Genetic variants in the DRD2 gene moderate the relationship between stressful life events and depressive symptoms in adults: Cardiovascular risk in young Finns study.Psychosom. Med.200769539139510.1097/psy.0b013e31806bf365 17585060
    [Google Scholar]
  114. VaskeJ. MakariosM. BoisvertD. BeaverK.M. WrightJ.P. The interaction of DRD2 and violent victimization on depression: An analysis by gender and race.J. Affect. Disord.20091121-312012510.1016/j.jad.2008.03.027 18501970
    [Google Scholar]
  115. CusinC. SerrettiA. LattuadaE. LilliR. LorenziC. SmeraldiE. Association study of MAO‐A, COMT, 5‐HT2A, DRD2, and DRD4 polymorphisms with illness time course in mood disorders.Am. J. Med. Genet.2002114438039010.1002/ajmg.10358 11992560
    [Google Scholar]
  116. FurlongR.A. ColemanT.A. HoL. No association of a functional polymorphism in the dopamine D2 receptor promoter region with bipolar or unipolar affective disorders.Am. J. Med. Genet.199881538538710.1002/(SICI)1096‑8628(19980907)81:5<385::AID‑AJMG6>3.0.CO;2‑S 9754623
    [Google Scholar]
  117. HuuhkaK. AnttilaS. HuuhkaM. Dopamine 2 receptor C957T and catechol-o-methyltransferase Val158Met polymorphisms are associated with treatment response in electroconvulsive therapy.Neurosci. Lett.20084481798310.1016/j.neulet.2008.10.015 18929622
    [Google Scholar]
  118. Le ConiatM. SokoloffP. HillionJ. Chromosomal localization of the human D3 dopamine receptor gene.Hum. Genet.199187561862010.1007/BF00209024 1916765
    [Google Scholar]
  119. RietschelM. NöthenM.M. LannfeltL. A serine to glycine substitution at position 9 in the extracellular N-terminal part of the dopamine D3 receptor protein: No role in the genetic predisposition to bipolar affective disorder.Psychiatry Res.199346325325910.1016/0165‑1781(93)90093‑V 8493294
    [Google Scholar]
  120. GarriockH.A. DelgadoP. KlingM.A. Number of risk genotypes is a risk factor for major depressive disorder: A case control study.Behav. Brain Funct.2006212410.1186/1744‑9081‑2‑24 16822313
    [Google Scholar]
  121. ZhiY. YuanY. SiQ. The association between DRD3 Ser9Gly polymorphism and depression severity in Parkinson’s disease.Parkinsons Dis.201920191810.1155/2019/1642087 31143436
    [Google Scholar]
  122. AngelopoulouE. BougeaA. PaudelY.N. GeorgakopoulouV.E. PapageorgiouS.G. PiperiC. Genetic insights into the molecular pathophysiology of depression in Parkinson’s disease.Medicina (Kaunas)2023596113810.3390/medicina59061138 37374342
    [Google Scholar]
  123. WangJ. LaiS. WangR. Dopamine D3 receptor in the nucleus accumbens alleviates neuroinflammation in a mouse model of depressive-like behavior.Brain Behav. Immun.202210116517910.1016/j.bbi.2021.12.019 34971757
    [Google Scholar]
  124. GelernterJ. KennedyJ.L. van TolH.H.M. CivelliO. KiddK.K. The D4 dopamine receptor (DRD4) maps to distal 11p close to HRAS.Genomics199213120821010.1016/0888‑7543(92)90222‑E 1349574
    [Google Scholar]
  125. LichterJ.B. BarrC.L. KennedyJ.L. Van TolH.H.M. KiddK.K. LivakK.J. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene.Hum. Mol. Genet.19932676777310.1093/hmg/2.6.767 8353495
    [Google Scholar]
  126. ChangF.M. KiddJ.R. LivakK.J. PakstisA.J. KiddK.K. The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus.Hum. Genet.19969819110110.1007/s004390050166 8682515
    [Google Scholar]
  127. HerrmannM.J. WalterA. SchreppelT. D4 receptor gene variation modulates activation of prefrontal cortex during working memory.Eur. J. Neurosci.200726102713271810.1111/j.1460‑9568.2007.05921.x 17970718
    [Google Scholar]
  128. MankiH. KanbaS. MuramatsuT. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders.J. Affect. Disord.1996401-271310.1016/0165‑0327(96)00035‑3 8882909
    [Google Scholar]
  129. ReistC. OzdemirV. WangE. HashemzadehM. MeeS. MoyzisR. Novelty seeking and the dopamine D4 receptor gene (DRD4) revisited in Asians: Haplotype characterization and relevance of the 2‐repeat allele.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2007144B445345710.1002/ajmg.b.30473 17474081
    [Google Scholar]
  130. GrandyD.K. AllenL.J. ZhangY. MagenisR.E. CivelliO. Chromosomal localization of three human D5 dopamine receptor genes.Genomics199213496897310.1016/0888‑7543(92)90009‑H 1387108
    [Google Scholar]
  131. HungC.W.A. BuckleC.E. Van TolH.H.M. Polymorphisms in dopamine receptors: What do they tell us?Eur. J. Pharmacol.20004102-318320310.1016/S0014‑2999(00)00815‑3 11134669
    [Google Scholar]
  132. FitzmauriceA.G. RhodesS.L. LullaA. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.Proc. Natl. Acad. Sci. USA2013110263664110.1073/pnas.1220399110 23267077
    [Google Scholar]
  133. FlicekP. AmodeM.R. BarrellD. Ensembl 2014.Nucleic Acids Res.201442D1D749D75510.1093/nar/gkt1196 24316576
    [Google Scholar]
  134. WurstF.M. TabakoffB. AllingC. World Health Organization/International Society for Biomedical Research on Alcoholism study on state and trait markers of alcohol use and dependence: Back to the future.Alcohol. Clin. Exp. Res.20052971268127510.1097/01.ALC.0000171483.93724.96 16088983
    [Google Scholar]
  135. WeinshilboumR. AxelrodJ. Serum dopamine-beta-hydroxylase activity.Circ. Res.197128330731510.1161/01.RES.28.3.307 4925832
    [Google Scholar]
  136. CraigS.P. BuckleV.J. LamourouxA. MalletJ. CraigI.W. Localization of the human dopamine beta hydroxylase (DBH) gene to chromosome 9q34.Cytogenet. Genome Res.1988481485010.1159/000132584 3180847
    [Google Scholar]
  137. CubellsJ.F. van KammenD.P. KelleyM.E. Dopamine β-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation.Hum. Genet.1998102553354010.1007/s004390050736 9654201
    [Google Scholar]
  138. TogsverdM. WergeT.M. TankóL.B. Association of a dopamine beta-hydroxylase gene variant with depression in elderly women possibly reflecting noradrenergic dysfunction.J. Affect. Disord.20081061-216917210.1016/j.jad.2007.06.010 17698206
    [Google Scholar]
  139. GrossmanM.H. EmanuelB.S. BudarfM.L. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1→q11.2.Genomics199212482282510.1016/0888‑7543(92)90316‑K 1572656
    [Google Scholar]
  140. BadeP. ChristW. RakowD. CoperH. Comparison of catechol-O-methyltransferase from rat brain, erythrocytes and liver.Life Sci.197619121833184410.1016/0024‑3205(76)90115‑6 12439
    [Google Scholar]
  141. LachmanH.M. PapolosD.F. SaitoT. YuY.M. SzumlanskiC.L. WeinshilboumR.M. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders.Pharmacogenetics19966324325010.1097/00008571‑199606000‑00007 8807664
    [Google Scholar]
  142. MassatI. SoueryD. Del-FaveroJ. Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study.Mol. Psychiatry200510659860510.1038/sj.mp.4001615 15583702
    [Google Scholar]
  143. BauneB.T. HohoffC. BergerK. Association of the COMT val158met variant with antidepressant treatment response in major depression.Neuropsychopharmacology200833492493210.1038/sj.npp.1301462 17522626
    [Google Scholar]
  144. PerlisR.H. FijalB. AdamsD.H. SuttonV.K. TrivediM.H. HoustonJ.P. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder.Biol. Psychiatry200965978579110.1016/j.biopsych.2008.10.002 19095219
    [Google Scholar]
  145. LevyE. PowellJ.F. BuckleV.J. HsuY.P. BreakefieldX.O. CraigI.W. Localization of human monoamine oxidase-A gene to Xp11.23-11.4 by in situ hybridization: Implications for norrie disease.Genomics19895236837010.1016/0888‑7543(89)90072‑4 2793188
    [Google Scholar]
  146. DeckertJ. CatalanoM. SyagailoY.V. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder.Hum. Mol. Genet.19998462162410.1093/hmg/8.4.621 10072430
    [Google Scholar]
  147. GutiérrezB. AriasB. GastóC. Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders.Psychiatr. Genet.200414420320810.1097/00041444‑200412000‑00007 15564894
    [Google Scholar]
  148. DoornbosB. Dijck-BrouwerD.A.J. KemaI.P. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT.Prog. Neuropsychopharmacol. Biol. Psychiatry20093371250125410.1016/j.pnpbp.2009.07.013 19625011
    [Google Scholar]
  149. ChristiansenL. TanQ. IachinaM. Candidate gene polymorphisms in the serotonergic pathway: Influence on depression symptomatology in an elderly population.Biol. Psychiatry200761222323010.1016/j.biopsych.2006.03.046 16806099
    [Google Scholar]
  150. DuL. BakishD. RavindranA. HrdinaP.D. MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males.Neuroreport200415132097210110.1097/00001756‑200409150‑00020 15486489
    [Google Scholar]
  151. DuL. FaludiG. PalkovitsM. SotonyiP. BakishD. HrdinaP.D. High activity-related allele of MAO-A gene associated with depressed suicide in males.Neuroreport20021391195119810.1097/00001756‑200207020‑00025 12151768
    [Google Scholar]
  152. MuramatsuT. MatsushitaS. KanbaS. Monoamine oxidase genes polymorphisms and mood disorder.Am. J. Med. Genet.199774549449610.1002/(SICI)1096‑8628(19970919)74:5<494::AID‑AJMG7>3.0.CO;2‑O 9342198
    [Google Scholar]
  153. LinS. JiangS. WuX. Association analysis between mood disorder and monoamine oxidase gene.Am. J. Med. Genet.2000961121410.1002/(SICI)1096‑8628(20000207)96:1<12::AID‑AJMG4>3.0.CO;2‑S 10686545
    [Google Scholar]
  154. ZakariaF.H. SamhaniI. MustafaM.Z. ShafinN. Pathophysiology of depression: Stingless bee honey promising as an antidepressant.Molecules20222716509110.3390/molecules27165091 36014336
    [Google Scholar]
  155. TianH HuZ XuJ WangC The molecular pathophysiology of depression and the new therapeutics. MedComm (2020)202233e15610.1002/mco2.156 35875370
    [Google Scholar]
  156. CuiL. LiS. WangS. Major depressive disorder: Hypothesis, mechanism, prevention and treatment.Signal Transduct. Target. Ther.2024913010.1038/s41392‑024‑01738‑y 38331979
    [Google Scholar]
  157. FouadM. TadrosM.G. MichelH.E. A comprehensive review of the pathophysiology of depression.Archives of Pharma Sci Ain Shams Uni20248112213210.21608/aps.2024.271710.1160
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232334693250110175517
Loading
/content/journals/cgt/10.2174/0115665232334693250110175517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test