Skip to content
2000
image of Development of Lentiviral Packaging Cells and Scale Up of Production to Meet the Growing Demand in Cell and Gene Therapy

Abstract

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components. Alternatively, stable packaging cell lines were developed and engineered to express all vector components . Currently, these cells are mostly cultured in cell stacks, where they grow adherently in 2D layers, limiting the scale-up of vector production. The production of viral vectors using stable suspension cell lines enables larger-scale production and higher yields under controlled conditions. Here, we review the improvements made to enhance vector safety and production yield. Current advancements in the establishment of stable packaging cell lines enabling inducible and constitutive LVV production are summarized and discussed. Manufacturing processes for lentiviral vectors using bioreactors with perfusion systems are required to meet the growing demand in cell and gene therapy and to reduce production and therapy costs.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232332412241118063211
2025-01-13
2025-09-10
Loading full text...

Full text loading...

References

  1. Collins M. Thrasher A. Gene therapy: Progress and predictions. Proc. Biol. Sci. 2015 282 1821 20143003 10.1098/rspb.2014.3003 26702034
    [Google Scholar]
  2. Gregory-Evans K. Bashar A.M.A.E. Tan M. Ex vivo gene therapy and vision. Curr. Gene Ther. 2012 12 2 103 115 10.2174/156652312800099607 22424554
    [Google Scholar]
  3. Volodina O. Smirnikhina S. The future of gene therapy: A review of in vivo and ex vivo delivery methods for genome editing-based therapies. Mol. Biotechnol. 2024 10.1007/s12033‑024‑01070‑4 38363528
    [Google Scholar]
  4. Mendell J.R. Al-Zaidy S.A. Rodino-Klapac L.R. Goodspeed K. Gray S.J. Kay C.N. Boye S.L. Boye S.E. George L.A. Salabarria S. Corti M. Byrne B.J. Tremblay J.P. Current clinical applications of in vivo gene therapy with AAVs Mol. Ther. 2021 29 2 464 488
    [Google Scholar]
  5. Gowing G. Svendsen S. Svendsen C.N. Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 2017 230 99 132 10.1016/bs.pbr.2016.11.003 28552237
    [Google Scholar]
  6. Tani K. Current status of ex vivo gene therapy for hematological disorders: A review of clinical trials in Japan around the world. Int. J. Hematol. 2016 104 1 42 72 10.1007/s12185‑016‑2030‑2 27289360
    [Google Scholar]
  7. Lundstrom K. Viral vectors in gene therapy: Where do we stand in 2023? Viruses 2023 15 3 698 10.3390/v15030698 36992407
    [Google Scholar]
  8. Bulcha J.T. Wang Y. Ma H. Tai P.W.L. Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021 6 1 53 10.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  9. Li X. Le Y. Zhang Z. Nian X. Liu B. Yang X. Viral vector-based gene therapy. Int. J. Mol. Sci. 2023 24 9 7736 10.3390/ijms24097736 37175441
    [Google Scholar]
  10. Williams D.A. Lemischka I.R. Nathan D.G. Mulligan R.C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984 310 5977 476 480 10.1038/310476a0 6087158
    [Google Scholar]
  11. Blaese R.M. Culver K.W. Miller A.D. Carter C.S. Fleisher T. Clerici M. Shearer G. Chang L. Chiang Y. Tolstoshev P. Greenblatt J.J. Rosenberg S.A. Klein H. Berger M. Mullen C.A. Ramsey W.J. Muul L. Morgan R.A. Anderson W.F. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995 270 5235 475 480 10.1126/science.270.5235.475 7570001
    [Google Scholar]
  12. Bordignon C. Notarangelo L.D. Nobili N. Ferrari G. Casorati G. Panina P. Mazzolari E. Maggioni D. Rossi C. Servida P. Ugazio A.G. Mavilio F. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- Immunodeficient patients. Science 1995 270 5235 470 475 10.1126/science.270.5235.470 7570000
    [Google Scholar]
  13. Kohn D.B. Weinberg K.I. Nolta J.A. Heiss L.N. Lenarsky C. Crooks G.M. Hanley M.E. Annett G. Brooks J.S. El-Khoureiy A. Lawrence K. Wells S. Moen R.C. Bastian J. Williams-Herman D.E. Elder M. Wara D. Bowen T. Hershfield M.S. Mullen C.A. Blaese R.M. Parkman R. Engraftment of gene–modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1995 1 10 1017 1023 10.1038/nm1095‑1017 7489356
    [Google Scholar]
  14. Gordon E.M. Hall F.L. Rexin-G, a targeted genetic medicine for cancer. Expert Opin. Biol. Ther. 2010 10 5 819 832 10.1517/14712598.2010.481666 20384524
    [Google Scholar]
  15. Schimmer J. Breazzano S. Investor outlook: Rising from the Ashes; GSK’s European approval of Strimvelis for ADA-SCID. Hum. Gene Ther. Clin. Dev. 2016 27 2 57 61 10.1089/humc.2016.29010.ind 27267267
    [Google Scholar]
  16. Lu J. Jiang G. The journey of CAR-T therapy in hematological malignancies. Mol. Cancer 2022 21 1 194 10.1186/s12943‑022‑01663‑0 36209106
    [Google Scholar]
  17. Modlich U. Navarro S. Zychlinski D. Maetzig T. Knoess S. Brugman M.H. Schambach A. Charrier S. Galy A. Thrasher A.J. Bueren J. Baum C. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors Mol. Ther. 2009 Nov 17 11 1919 1928
    [Google Scholar]
  18. Naldini L. Blömer U. Gallay P. Ory D. Mulligan R. Gage F.H. Verma I.M. Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996 272 5259 263 267 10.1126/science.272.5259.263 8602510
    [Google Scholar]
  19. Gutierrez-Guerrero A. Cosset F.L. Verhoeyen E. Lentiviral vector Pseudotypes: Precious tools to improve gene modification of Hematopoietic cells for research and gene therapy. Viruses 2020 12 9 1016 10.3390/v12091016 32933033
    [Google Scholar]
  20. Naldini L. Blömer U. Gage F.H. Trono D. Verma I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 1996 93 21 11382 11388 10.1073/pnas.93.21.11382 8876144
    [Google Scholar]
  21. Segura E.E.R. Ayoub P.G. Hart K.L. Kohn D.B. Gene therapy for β-Hemoglobinopathies: From discovery to clinical trials. Viruses 2023 15 3 713 10.3390/v15030713 36992422
    [Google Scholar]
  22. Labbé R.P. Vessillier S. Rafiq Q.A. Lentiviral vectors for T cell engineering: Clinical applications, bioprocessing and future perspectives. Viruses 2021 13 8 1528 10.3390/v13081528 34452392
    [Google Scholar]
  23. Viral vector manufacturing market. 2024 Available from: https://www.rootsanalysis.com/reports/viral-vector- manufacturing-market.html
  24. Cavazzana-Calvo M. Payen E. Negre O. Wang G. Hehir K. Fusil F. Down J. Denaro M. Brady T. Westerman K. Cavallesco R. Gillet-Legrand B. Caccavelli L. Sgarra R. Maouche-Chrétien L. Bernaudin F. Girot R. Dorazio R. Mulder G.J. Polack A. Bank A. Soulier J. Larghero J. Kabbara N. Dalle B. Gourmel B. Socie G. Chrétien S. Cartier N. Aubourg P. Fischer A. Cornetta K. Galacteros F. Beuzard Y. Gluckman E. Bushman F. Hacein-Bey-Abina S. Leboulch P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010 467 7313 318 322 10.1038/nature09328 20844535
    [Google Scholar]
  25. Aiuti A. Biasco L. Scaramuzza S. Ferrua F. Cicalese M.P. Baricordi C. Dionisio F. Calabria A. Giannelli S. Castiello M.C. Bosticardo M. Evangelio C. Assanelli A. Casiraghi M. Di Nunzio S. Callegaro L. Benati C. Rizzardi P. Pellin D. Di Serio C. Schmidt M. Von Kalle C. Gardner J. Mehta N. Neduva V. Dow D.J. Galy A. Miniero R. Finocchi A. Metin A. Banerjee P.P. Orange J.S. Galimberti S. Valsecchi M.G. Biffi A. Montini E. Villa A. Ciceri F. Roncarolo M.G. Naldini L. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013 341 6148 1233151 10.1126/science.1233151 23845947
    [Google Scholar]
  26. Biffi A. Montini E. Lorioli L. Cesani M. Fumagalli F. Plati T. Baldoli C. Martino S. Calabria A. Canale S. Benedicenti F. Vallanti G. Biasco L. Leo S. Kabbara N. Zanetti G. Rizzo W.B. Mehta N.A.L. Cicalese M.P. Casiraghi M. Boelens J.J. Del Carro U. Dow D.J. Schmidt M. Assanelli A. Neduva V. Di Serio C. Stupka E. Gardner J. von Kalle C. Bordignon C. Ciceri F. Rovelli A. Roncarolo M.G. Aiuti A. Sessa M. Naldini L. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013 341 6148 1233158 10.1126/science.1233158 23845948
    [Google Scholar]
  27. Cartier N. Hacein-Bey-Abina S. Bartholomae C.C. Veres G. Schmidt M. Kutschera I. Vidaud M. Abel U. Dal-Cortivo L. Caccavelli L. Mahlaoui N. Kiermer V. Mittelstaedt D. Bellesme C. Lahlou N. Lefrère F. Blanche S. Audit M. Payen E. Leboulch P. l’Homme B. Bougnères P. Von Kalle C. Fischer A. Cavazzana-Calvo M. Aubourg P. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009 326 5954 818 823 10.1126/science.1171242 19892975
    [Google Scholar]
  28. Merten O.W. Hebben M. Bovolenta C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 2016 3 16017 10.1038/mtm.2016.17 27110581
    [Google Scholar]
  29. Berkowitz R. Ilves H. Lin W.Y. Eckert K. Coward A. Tamaki S. Veres G. Plavec I. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J. Virol. 2001 75 7 3371 3382 10.1128/JVI.75.7.3371‑3382.2001 11238863
    [Google Scholar]
  30. Metharom P. Takyar S. Xia H.H. Ellem K.A.O. Macmillan J. Shepherd R.W. Wilcox G.E. Wei M.Q. Novel bovine lentiviral vectors based on Jembrana disease virus. J. Gene Med. 2000 2 3 176 185 10.1002/(SICI)1521‑2254(200005/06)2:3<176::AID‑JGM106>3.0.CO;2‑Q 10894263
    [Google Scholar]
  31. Berkowitz R.D. Ilves H. Plavec I. Veres G. Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity. Virology 2001 279 1 116 129 10.1006/viro.2000.0659 11145895
    [Google Scholar]
  32. Mukherjee S. Lee H.L.R. Pacchia A.L. Ron Y. Dougherty J.P. A HIV-2-based self-inactivating vector for enhanced gene transduction. J. Biotechnol. 2007 127 4 745 757 10.1016/j.jbiotec.2006.08.004 16979253
    [Google Scholar]
  33. Kloke B.P. Schüle S. Mühlebach M.D. Wolfrum N. Cichutek K. Schweizer M. Functional HIV‐2‐ and SIVsmmPBj‐ derived lentiviral vectors generated by a novel polymerase chain reaction‐based approach. J. Gene Med. 2010 12 5 446 452 10.1002/jgm.1454 20440755
    [Google Scholar]
  34. Kim S.S. Kothari N. You X.J. Robinson W.E. Jr Schnell T. Uberla K. Fan H. Generation of replication-defective helper-free vectors based on simian immunodeficiency virus. Virology 2001 282 1 154 167 10.1006/viro.2000.0808 11259198
    [Google Scholar]
  35. White S.M. Renda M. Nam N.Y. Klimatcheva E. Zhu Y. Fisk J. Halterman M. Rimel B.J. Federoff H. Pandya S. Rosenblatt J.D. Planelles V. Lentivirus vectors using human and simian immunodeficiency virus elements. J. Virol. 1999 73 4 2832 2840 10.1128/JVI.73.4.2832‑2840.1999 10074131
    [Google Scholar]
  36. Stitz J. Mühlebach M.D. Blömer U. Scherr M. Selbert M. Wehner P. Steidl S. Schmitt I. König R. Schweizer M. Cichutek K. A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology 2001 291 2 191 197 10.1006/viro.2001.1183 11878888
    [Google Scholar]
  37. Mühlebach M.D. Wolfrum N. Schüle S. Tschulena U. Sanzenbacher R. Flory E. Cichutek K. Schweizer M. Stable transduction of primary human monocytes by simian lentiviral vector PBj. Mol. Ther. 2005 12 6 1206 1216 10.1016/j.ymthe.2005.06.483 16150648
    [Google Scholar]
  38. Poeschla E.M. Wong-Staal F. Looney D.J. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 1998 4 3 354 357 10.1038/nm0398‑354 9500613
    [Google Scholar]
  39. Wang G. Slepushkin V. Zabner J. Keshavjee S. Johnston J.C. Sauter S.L. Jolly D.J. Dubensky T.W. Jr Davidson B.L. McCray P.B. Jr Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J. Clin. Invest. 1999 104 11 R55 R62 10.1172/JCI8390 10587528
    [Google Scholar]
  40. Mitrophanous K.A. Yoon S. Rohll J.B. Patil D. Wilkes F.J. Kim V.N. Kingsman S.M. Kingsman A.J. Mazarakis N.D. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 1999 6 11 1808 1818 10.1038/sj.gt.3301023 10602376
    [Google Scholar]
  41. Mselli-Lakhal L. Favier C. Da Silva Teixeira M.F. Chettab K. Legras C. Ronfort C. Verdier G. Mornex J.F. Chebloune Y. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch. Virol. 1998 143 4 681 695 10.1007/s007050050323 9638141
    [Google Scholar]
  42. Dull T. Zufferey R. Kelly M. Mandel R.J. Nguyen M. Trono D. Naldini L. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 1998 72 11 8463 8471 10.1128/JVI.72.11.8463‑8471.1998 9765382
    [Google Scholar]
  43. Reiser J. Harmison G. Kluepfel-Stahl S. Brady R.O. Karlsson S. Schubert M. Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 1996 93 26 15266 15271 10.1073/pnas.93.26.15266 8986799
    [Google Scholar]
  44. Akkina R.K. Walton R.M. Chen M.L. Li Q.X. Planelles V. Chen I.S. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 1996 70 4 2581 2585 10.1128/jvi.70.4.2581‑2585.1996 8642689
    [Google Scholar]
  45. Burns J.C. Friedmann T. Driever W. Burrascano M. Yee J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 1993 90 17 8033 8037 10.1073/pnas.90.17.8033 8396259
    [Google Scholar]
  46. Miyoshi H. Blömer U. Takahashi M. Gage F.H. Verma I.M. Development of a self-inactivating lentivirus vector. J. Virol. 1998 72 10 8150 8157 10.1128/JVI.72.10.8150‑8157.1998 9733856
    [Google Scholar]
  47. Zufferey R. Dull T. Mandel R.J. Bukovsky A. Quiroz D. Naldini L. Trono D. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 1998 72 12 9873 9880 10.1128/JVI.72.12.9873‑9880.1998 9811723
    [Google Scholar]
  48. Iwakuma T. Cui Y. Chang L.J. Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 1999 261 1 120 132 10.1006/viro.1999.9850 10441560
    [Google Scholar]
  49. Pauwels K. Gijsbers R. Toelen J. Schambach A. Willard-Gallo K. Verheust C. Debyser Z. Herman P. State-of-the-art lentiviral vectors for research use: Risk assessment and biosafety recommendations. Curr. Gene Ther. 2009 9 6 459 474 10.2174/156652309790031120 20021330
    [Google Scholar]
  50. Schambach A. Zychlinski D. Ehrnstroem B. Baum C. Biosafety features of lentiviral vectors. Hum. Gene Ther. 2013 24 2 132 142 10.1089/hum.2012.229 23311447
    [Google Scholar]
  51. Ferreira M.V. Cabral E.T. Coroadinha A.S. Progress and perspectives in the development of lentiviral vector producer cells. Biotechnol. J. 2021 16 1 2000017 10.1002/biot.202000017 32686901
    [Google Scholar]
  52. Tihanyi B. Nyitray L. Recent advances in CHO cell line development for recombinant protein production. Drug Discov. Today. Technol. 2020 38 25 34 10.1016/j.ddtec.2021.02.003 34895638
    [Google Scholar]
  53. Tan E. Chin C.S.H. Lim Z.F.S. Ng S.K. HEK293 cell line as a platform to produce recombinant proteins and viral vectors. Front. Bioeng. Biotechnol. 2021 9 796991 10.3389/fbioe.2021.796991 34966729
    [Google Scholar]
  54. Merten O.W. Charrier S. Laroudie N. Fauchille S. Dugué C. Jenny C. Audit M. Zanta-Boussif M.A. Chautard H. Radrizzani M. Vallanti G. Naldini L. Noguiez-Hellin P. Galy A. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum. Gene Ther. 2011 22 3 343 356 10.1089/hum.2010.060 21043787
    [Google Scholar]
  55. Gama-Norton L. Botezatu L. Herrmann S. Schweizer M. Alves P.M. Hauser H. Wirth D. Lentivirus production is influenced by SV40 large T-antigen and chromosomal integration of the vector in HEK293 cells. Hum. Gene Ther. 2011 22 10 1269 1279 10.1089/hum.2010.143 21554103
    [Google Scholar]
  56. Ferreira C.B. Sumner R.P. Rodriguez-Plata M.T. Rasaiyaah J. Milne R.S. Thrasher A.J. Qasim W. Towers G.J. Lentiviral vector production titer is not limited in HEK293T by induced intracellular innate immunity. Mol. Ther. Methods Clin. Dev. 2020 17 209 219 10.1016/j.omtm.2019.11.021 31970199
    [Google Scholar]
  57. Ausubel L.J. Hall C. Sharma A. Shakeley R. Lopez P. Quezada V. Couture S. Laderman K. McMahon R. Huang P. Hsu D. Couture L. Production of CGMP-grade lentiviral vectors. Bioprocess Int. 2012 10 2 32 43 22707919
    [Google Scholar]
  58. Kutner R.H. Puthli S. Marino M.P. Reiser J. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol. 2009 9 1 10 10.1186/1472‑6750‑9‑10 19220915
    [Google Scholar]
  59. Bellintani F. Piacenza L. Sciarretta Birolo R. Martelli A. Addamo R.R. Vallanti G. Fracchia S. Salomoni M. Aiuti A. Biffi A. Galy A. Merten O-W. Benati C. Ziliotto R. Bordignon C. Naldini L. Radrizzani M. Large scale process for the production and purification of Lentiviral vectors for clinical applications. Mol. Ther. 2009 S276
    [Google Scholar]
  60. Yacoub N. Romanowska M. Haritonova N. Foerster J. Optimized production and concentration of lentiviral vectors containing large inserts. J. Gene Med. 2007 9 7 579 584 10.1002/jgm.1052 17533614
    [Google Scholar]
  61. Rout-Pitt N. McCarron A. McIntyre C. Parsons D. Donnelley M. Large-scale production of lentiviral vectors using multilayer cell factories. J. Biol. Methods 2018 5 2 1 10.14440/jbm.2018.236 31453241
    [Google Scholar]
  62. Sastry L. Xu Y. Cooper R. Pollok K. Cornetta K. Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum. Gene Ther. 2004 15 2 221 226 10.1089/104303404772680029 14975194
    [Google Scholar]
  63. Shaw A. Bischof D. Jasti A. Ernstberger A. Hawkins T. Cornetta K. Using Pulmozyme DNase treatment in lentiviral vector production. Hum. Gene Ther. Methods 2012 23 1 65 71 10.1089/hgtb.2011.204 22428981
    [Google Scholar]
  64. Tuvesson O. Uhe C. Rozkov A. Lüllau E. Development of a generic transient transfection process at 100 L scale. Cytotechnology 2008 56 2 123 136 10.1007/s10616‑008‑9135‑2 19002850
    [Google Scholar]
  65. Ansorge S. Lanthier S. Transfiguracion J. Durocher Y. Henry O. Kamen A. Development of a scalable process for high‐yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J. Gene Med. 2009 11 10 868 876 10.1002/jgm.1370 19618482
    [Google Scholar]
  66. Raymond C. Tom R. Perret S. Moussouami P. L’Abbé D. St-Laurent G. Durocher Y. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 2011 55 1 44 51 10.1016/j.ymeth.2011.04.002 21539918
    [Google Scholar]
  67. Bauler M. Roberts J.K. Wu C.C. Fan B. Ferrara F. Yip B.H. Diao S. Kim Y.I. Moore J. Zhou S. Wielgosz M.M. Ryu B. Throm R.E. Production of lentiviral vectors using suspension cells grown in serum-free media. Mol. Ther. Methods Clin. Dev. 2020 17 58 68 10.1016/j.omtm.2019.11.011 31890741
    [Google Scholar]
  68. Valkama A.J. Leinonen H.M. Lipponen E.M. Turkki V. Malinen J. Heikura T. Ylä-Herttuala S. Lesch H.P. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 2018 25 1 39 46 10.1038/gt.2017.91 29345252
    [Google Scholar]
  69. Leinonen H.M. Lepola S. Lipponen E.M. Heikura T. Koponen T. Parker N. Ylä-Herttuala S. Lesch H.P. Benchmarking of scale-X bioreactor system in Lentiviral and Adenoviral vector production. Hum. Gene Ther. 2020 31 5-6 376 384 10.1089/hum.2019.247 32075423
    [Google Scholar]
  70. Tirapelle M.C. Oliveira Lomba A.L. Silvestre R.N. Mizukami A. Covas D.T. Picanço-Castro V. Swiech K. Transition from serum-supplemented monolayer to serum-free suspension lentiviral vector production for generation of chimeric antigen receptor T cells. Cytotherapy 2022 24 8 850 860 10.1016/j.jcyt.2022.03.014 35643755
    [Google Scholar]
  71. Segura M.M. Garnier A. Durocher Y. Coelho H. Kamen A. Production of lentiviral vectors by large‐scale transient transfection of suspension cultures and affinity chromatography purification. Biotechnol. Bioeng. 2007 98 4 789 799 10.1002/bit.21467 17461423
    [Google Scholar]
  72. Henry O. Kamen A. Perrier M. 2006
  73. Côté J. Garnier A. Massie B. Kamen A. Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3F6 cells. Biotechnol. Bioeng. 1998 59 5 567 575 10.1002/(SICI)1097‑0290(19980905)59:5<567::AID‑BIT6>3.0.CO;2‑8 10099373
    [Google Scholar]
  74. Soneoka Y. Cannon P.M. Ramsdale E.E. Griffiths J.C. Romano G. Kingsman S.M. Kingsman A.J. A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 1995 23 4 628 633 10.1093/nar/23.4.628 7899083
    [Google Scholar]
  75. Kawka K. Wilton A.N. Madadkar P. Medina M.F.C. Lichty B.D. Ghosh R. Latulippe D.R. Integrated development of enzymatic DNA digestion and membrane chromatography processes for the purification of therapeutic adenoviruses. Separ. Purif. Tech. 2021 254 117503 10.1016/j.seppur.2020.117503
    [Google Scholar]
  76. Dautzenberg I.J.C. Rabelink M.J.W.E. Hoeben R.C. The stability of envelope-pseudotyped lentiviral vectors. Gene Ther. 2021 28 1-2 89 104 10.1038/s41434‑020‑00193‑y 32973351
    [Google Scholar]
  77. Higashikawa F. Chang L.J. Kinetic analyses of stability of simple and complex retroviral vectors. Virology 2001 280 1 124 131 10.1006/viro.2000.0743 11162826
    [Google Scholar]
  78. Richardson J.H. Child L.A. Lever A.M. Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5′ leader region. J. Virol. 1993 67 7 3997 4005 10.1128/jvi.67.7.3997‑4005.1993 8510213
    [Google Scholar]
  79. Rizvi T.A. Panganiban A.T. Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. J. Virol. 1993 67 5 2681 2688 10.1128/jvi.67.5.2681‑2688.1993 8474168
    [Google Scholar]
  80. Carroll R. Lin J.T. Dacquel E.J. Mosca J.D. Burke D.S. St Louis D.C. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 1994 68 9 6047 6051 10.1128/jvi.68.9.6047‑6051.1994 8057479
    [Google Scholar]
  81. Yu H. Rabson A.B. Kaul M. Ron Y. Dougherty J.P. Inducible human immunodeficiency virus type 1 packaging cell lines. J. Virol. 1996 70 7 4530 4537 10.1128/jvi.70.7.4530‑4537.1996 8676479
    [Google Scholar]
  82. Kaul M. Yu H. Ron Y. Dougherty J.P. Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology 1998 249 1 167 174 10.1006/viro.1998.9327 9740788
    [Google Scholar]
  83. Kafri T. van Praag H. Ouyang L. Gage F.H. Verma I.M. A packaging cell line for lentivirus vectors. J. Virol. 1999 73 1 576 584 10.1128/JVI.73.1.576‑584.1999 9847362
    [Google Scholar]
  84. Planelles V. Bachelerie F. Jowett J.B. Haislip A. Xie Y. Banooni P. Masuda T. Chen I.S. Fate of the human immunodeficiency virus type 1 provirus in infected cells: A role for vpr. J. Virol. 1995 69 9 5883 5889 10.1128/jvi.69.9.5883‑5889.1995 7637036
    [Google Scholar]
  85. Rogel M.E. Wu L.I. Emerman M. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J. Virol. 1995 69 2 882 888 10.1128/jvi.69.2.882‑888.1995 7815556
    [Google Scholar]
  86. Kaplan A.H. Swanstrom R. The HIV-1 gag precursor is processed via two pathways: Implications for cytotoxicity. Biomed. Biochim. Acta 1991 50 4-6 647 653 1801737
    [Google Scholar]
  87. Gossen M. Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 1992 89 12 5547 5551 10.1073/pnas.89.12.5547 1319065
    [Google Scholar]
  88. Gossen M. Freundlieb S. Bender G. Müller G. Hillen W. Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995 268 5218 1766 1769 10.1126/science.7792603 7792603
    [Google Scholar]
  89. Xu K. Ma H. McCown T.J. Verma I.M. Kafri T. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol. Ther. 2001 3 1 97 104 10.1006/mthe.2000.0238 11162316
    [Google Scholar]
  90. Farson D. Witt R. McGuinness R. Dull T. Kelly M. Song J. Radeke R. Bukovsky A. Consiglio A. Naldini L. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum. Gene Ther. 2001 12 8 981 997 10.1089/104303401750195935 11387062
    [Google Scholar]
  91. Klages N. Zufferey R. Trono D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol. Ther. 2000 2 2 170 176 10.1006/mthe.2000.0103 10947945
    [Google Scholar]
  92. Pacchia A.L. Adelson M.E. Kaul M. Ron Y. Dougherty J.P. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology 2001 282 1 77 86 10.1006/viro.2000.0787 11259192
    [Google Scholar]
  93. Sparacio S. Pfeiffer T. Schaal H. Bosch V. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol. Ther. 2001 3 4 602 612 10.1006/mthe.2001.0296 11319923
    [Google Scholar]
  94. Ikeda Y. Takeuchi Y. Martin F. Cosset F.L. Mitrophanous K. Collins M. Continuous high-titer HIV-1 vector production. Nat. Biotechnol. 2003 21 5 569 572 10.1038/nbt815 12679787
    [Google Scholar]
  95. Bell A.J. Jr Fegen D. Ward M. Bank A. RD114 envelope proteins provide an effective and versatile approach to pseudotype lentiviral vectors. Exp. Biol. Med. (Maywood) 2010 235 10 1269 1276 10.1258/ebm.2010.010053 20876083
    [Google Scholar]
  96. Stitz J. Buchholz C.J. Engelstädter M. Uckert W. Bloemer U. Schmitt I. Cichutek K. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 2000 273 1 16 20 10.1006/viro.2000.0394 10891403
    [Google Scholar]
  97. Strang B.L. Ikeda Y. Cosset F-L. Collins M.K.L. Takeuchi Y. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther. 2004 11 7 591 598 10.1038/sj.gt.3302189 14724689
    [Google Scholar]
  98. Ni Y. Sun S. Oparaocha I. Humeau L. Davis B. Cohen R. Binder G. Chang Y.N. Slepushkin V. Dropulic B. Generation of a packaging cell line for prolonged large‐scale production of high‐titer HIV‐1‐based lentiviral vector. J. Gene Med. 2005 7 6 818 834 10.1002/jgm.726 15693055
    [Google Scholar]
  99. Cockrell A.S. Ma H. Fu K. McCown T.J. Kafri T. A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Mol. Ther. 2006 14 2 276 284 10.1016/j.ymthe.2005.12.015 16516556
    [Google Scholar]
  100. Throm R.E. Ouma A.A. Zhou S. Chandrasekaran A. Lockey T. Greene M. De Ravin S.S. Moayeri M. Malech H.L. Sorrentino B.P. Gray J.T. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood 2009 113 21 5104 5110 10.1182/blood‑2008‑11‑191049 19286997
    [Google Scholar]
  101. Powers A.D. Drury J.E. Hoehamer C.F. Lockey T.D. Meagher M.M. Lentiviral vector production from a stable packaging cell line using a packed Bed Bioreactor. Mol. Ther. Methods Clin. Dev. 2020 19 1 13 10.1016/j.omtm.2020.08.010 32995355
    [Google Scholar]
  102. Stornaiuolo A. Piovani B.M. Bossi S. Zucchelli E. Corna S. Salvatori F. Mavilio F. Bordignon C. Rizzardi G.P. Bovolenta C. RD2-MolPack-Chim3, a packaging cell line for stable production of lentiviral vectors for anti-HIV gene therapy. Hum. Gene Ther. Methods 2013 24 4 228 240 10.1089/hgtb.2012.190 23767932
    [Google Scholar]
  103. Sandrin V. Boson B. Salmon P. Gay W. Nègre D. Le Grand R. Trono D. Cosset F.L. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002 100 3 823 832 10.1182/blood‑2001‑11‑0042 12130492
    [Google Scholar]
  104. Marin V. Stornaiuolo A. Piovan C. Corna S. Bossi S. Pema M. Giuliani E. Scavullo C. Zucchelli E. Bordignon C. Rizzardi G.P. Bovolenta C. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope. Mol. Ther. Methods Clin. Dev. 2016 3 16033 10.1038/mtm.2016.33 27222840
    [Google Scholar]
  105. Sanber K.S. Knight S.B. Stephen S.L. Bailey R. Escors D. Minshull J. Santilli G. Thrasher A.J. Collins M.K. Takeuchi Y. Construction of stable packaging cell lines for clinical lentiviral vector production. Sci. Rep. 2015 5 1 9021 10.1038/srep09021 25762005
    [Google Scholar]
  106. Ruscic J. Perry C. Mukhopadhyay T. Takeuchi Y. Bracewell D.G. Lentiviral vector purification using nanofiber ion-exchange chromatography. Mol. Ther. Methods Clin. Dev. 2019 15 52 62 10.1016/j.omtm.2019.08.007 31649955
    [Google Scholar]
  107. Perry C. Mujahid N. Takeuchi Y. Rayat A.C.M.E. Insights into product and process related challenges of lentiviral vector bioprocessing. Biotechnol. Bioeng. 2023 37526313
    [Google Scholar]
  108. Stibbs D.J. Silva Couto P. Takeuchi Y. Rafiq Q.A. Jackson N.B. Rayat A.C.M.E. Continuous manufacturing of lentiviral vectors using a stable producer cell line in a fixed-bed bioreactor. Mol. Ther. Methods Clin. Dev. 2024 32 1 101209 10.1016/j.omtm.2024.101209 38435128
    [Google Scholar]
  109. Tijani M. Munis A.M. Perry C. Sanber K. Ferraresso M. Mukhopadhyay T. Themis M. Nisoli I. Mattiuzzo G. Collins M.K. Takeuchi Y. Lentivector producer cell lines with stably expressed vesiculovirus envelopes. Mol. Ther. Methods Clin. Dev. 2018 10 303 312 10.1016/j.omtm.2018.07.013 30182034
    [Google Scholar]
  110. Tomás H.A. Rodrigues A.F. Carrondo M.J.T. Coroadinha A.S. LentiPro26: Novel stable cell lines for constitutive lentiviral vector production. Sci. Rep. 2018 8 1 5271 10.1038/s41598‑018‑23593‑y 29588490
    [Google Scholar]
  111. Konvalinka J. Litterst M.A. Welker R. Kottler H. Rippmann F. Heuser A.M. Kräusslich H.G. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J. Virol. 1995 69 11 7180 7186 10.1128/jvi.69.11.7180‑7186.1995 7474139
    [Google Scholar]
  112. Broussau S. Jabbour N. Lachapelle G. Durocher Y. Tom R. Transfiguracion J. Gilbert R. Massie B. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture Mol. Ther. 2008 Mar 16 3 500 507
    [Google Scholar]
  113. Manceur A.P. Kim H. Misic V. Andreev N. Dorion-Thibaudeau J. Lanthier S. Bernier A. Tremblay S. Gélinas A.M. Broussau S. Gilbert R. Ansorge S. Scalable lentiviral vector production using stable HEK293SF producer cell lines. Hum. Gene Ther. Methods 2017 28 6 330 339 10.1089/hgtb.2017.086 28826344
    [Google Scholar]
  114. Tran M.Y. Kamen A.A. Production of lentiviral vectors using a HEK-293 producer cell line and advanced perfusion processing. Front. Bioeng. Biotechnol. 2022 10 887716 10.3389/fbioe.2022.887716 35774066
    [Google Scholar]
  115. Klimpel M. Terrao M. Ching N. Climenti V. Noll T. Pirzas V. Laux H. Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines. Biotechnol. Bioeng. 2023 120 9 2622 2638 10.1002/bit.28413 37148430
    [Google Scholar]
  116. Broussau S. Lytvyn V. Simoneau M. Guilbault C. Leclerc M. Nazemi-Moghaddam N. Coulombe N. Elahi S.M. McComb S. Gilbert R. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol. Ther. Methods Clin. Dev. 2023 29 40 57 10.1016/j.omtm.2023.02.013 36936448
    [Google Scholar]
  117. Chen Y.H. Pallant C. Sampson C.J. Boiti A. Johnson S. Brazauskas P. Hardwicke P. Marongiu M. Marinova V.M. Carmo M. Sweeney N.P. Richard A. Shillings A. Archibald P. Puschmann E. Mouzon B. Grose D. Mendez-Tavio M. Chen M.X. Warr S.R.C. Senussi T. Carter P.S. Baker S. Jung C. Brugman M.H. Howe S.J. Vink C.A. Rapid lentiviral vector producer cell line generation using a single DNA construct. Mol. Ther. Methods Clin. Dev. 2020 19 47 57 10.1016/j.omtm.2020.08.011 32995359
    [Google Scholar]
  118. Humbert O. Gisch D.W. Wohlfahrt M.E. Adams A.B. Greenberg P.D. Schmitt T.M. Trobridge G.D. Kiem H.-P. Development of third-generation cocal envelope producer cell lines for robust Lentiviral gene transfer into Hematopoietic stem cells and T-cells Mol. Ther. 2016 Aug 24 7 1237 1246
    [Google Scholar]
  119. Trobridge G.D. Wu R.A. Hansen M. Ironside C. Watts K.L. Olsen P. Beard B.C. Kiem H.-P. Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cells Mol. Ther. 2010 Apr 18 4 725 733
    [Google Scholar]
  120. Troyanovsky B. Bitko V. Fouty B. Solodushko V. Simple viral/minimal piggyBac hybrid vectors for stable production of self-inactivating gamma-retroviruses. BMC Res. Notes 2015 8 1 379 10.1186/s13104‑015‑1354‑y 26306622
    [Google Scholar]
  121. Berg K. Schäfer V.N. Bartnicki N. Eggenschwiler R. Cantz T. Stitz J. Rapid establishment of stable retroviral packaging cells and recombinant susceptible target cell lines employing novel transposon vectors derived from Sleeping Beauty. Virology 2019 531 40 47 10.1016/j.virol.2019.02.014 30852270
    [Google Scholar]
  122. van Heuvel Y. Berg K. Hirch T. Winn K. Modlich U. Stitz J. Establishment of a novel stable human suspension packaging cell line producing ecotropic retroviral MLV(PVC-211) vectors efficiently transducing murine hematopoietic stem and progenitor cells. J. Virol. Methods 2021 297 114243 10.1016/j.jviromet.2021.114243 34314749
    [Google Scholar]
  123. van Heuvel Y. Schatz S. Hein M. Dogra T. Kazenmaier D. Tschorn N. Genzel Y. Stitz J. Novel suspension retroviral packaging cells generated by transposition using transposase encoding mRNA advance vector yields and enable production in bioreactors. Front. Bioeng. Biotechnol. 2023 11 1076524 10.3389/fbioe.2023.1076524 37082212
    [Google Scholar]
  124. Moreira A.S. Cavaco D.G. Faria T.Q. Alves P.M. Carrondo M.J.T. Peixoto C. Advances in Lentivirus purification. Biotechnol. J. 2021 16 1 2000019 10.1002/biot.202000019 33089626
    [Google Scholar]
  125. Rodrigues T. Carrondo M.J.T. Alves P.M. Cruz P.E. Purification of retroviral vectors for clinical application: Biological implications and technological challenges. J. Biotechnol. 2007 127 3 520 541 10.1016/j.jbiotec.2006.07.028 16950534
    [Google Scholar]
  126. Valkama A.J. Oruetxebarria I. Lipponen E.M. Leinonen H.M. Käyhty P. Hynynen H. Turkki V. Malinen J. Miinalainen T. Heikura T. Parker N.R. Ylä-Herttuala S. Lesch H.P. Development of large-scale downstream processing for lentiviral vectors. Mol. Ther. Methods Clin. Dev. 2020 17 717 730 10.1016/j.omtm.2020.03.025 32346549
    [Google Scholar]
  127. Gautam S. Chiramel A.I. Pach R. Bioprocess and analytics development for virus-based advanced therapeutics and medicinal products (ATMPs) Springer 2023
    [Google Scholar]
  128. Bandeira V. Peixoto C. Rodrigues A.F. Cruz P.E. Alves P.M. Coroadinha A.S. Carrondo M.J.T. Downstream processing of lentiviral vectors: Releasing bottlenecks. Hum. Gene Ther. Methods 2012 23 4 255 263 10.1089/hgtb.2012.059 22934827
    [Google Scholar]
  129. Moreira A.S. Faria T.Q. Oliveira J.G. Kavara A. Schofield M. Sanderson T. Collins M. Gantier R. Alves P.M. Carrondo M.J.T. Peixoto C. Enhancing the purification of Lentiviral vectors for clinical applications. Separ. Purif. Tech. 2021 274 118598 10.1016/j.seppur.2021.118598
    [Google Scholar]
  130. Transfiguracion J. Jaalouk D.E. Ghani K. Galipeau J. Kamen A. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum. Gene Ther. 2003 14 12 1139 1153 10.1089/104303403322167984 12908966
    [Google Scholar]
  131. Segura M.M. Mangion M. Gaillet B. Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin. Biol. Ther. 2013 13 7 987 1011 10.1517/14712598.2013.779249 23590247
    [Google Scholar]
  132. Kramberger P. Urbas L. Štrancar A. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum. Vaccin. Immunother. 2015 11 4 1010 1021 10.1080/21645515.2015.1009817 25751122
    [Google Scholar]
  133. Tinch S. Szczur K. Swaney W. Reeves L. Witting S.R. A Scalable lentiviral vector production and purification method using mustang Q chromatography and tangential flow filtration. Methods Mol. Biol. 2019 1937 135 153 10.1007/978‑1‑4939‑9065‑8_8 30706394
    [Google Scholar]
  134. Truran Richard Buckley Robert Radcliffe Pippa Miskin James Mitrophanous Kyriacos Virus purification Patent US 2017/0073702 A1, 2017
  135. Girard-Gagnepain A. Amirache F. Costa C. Lévy C. Frecha C. Fusil F. Nègre D. Lavillette D. Cosset F.L. Verhoeyen E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014 124 8 1221 1231 10.1182/blood‑2014‑02‑558163 24951430
    [Google Scholar]
  136. Levy C. Fusil F. Amirache F. Costa C. Girard-Gagnepain A. Negre D. Bernadin O. Garaulet G. Rodriguez A. Nair N. Vandendriessche T. Chuah M. Cosset F-L. Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc‐/‐ mice. J. Thromb. Haemost. 2016 14 12 2478 2492 10.1111/jth.13520 27685947
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232332412241118063211
Loading
/content/journals/cgt/10.2174/0115665232332412241118063211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test