Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components. Alternatively, stable packaging cell lines were developed and engineered to express all vector components . Currently, these cells are mostly cultured in cell stacks, where they grow adherently in 2D layers, limiting the scale-up of vector production. The production of viral vectors using stable suspension cell lines enables larger-scale production and higher yields under controlled conditions. Here, we review the improvements made to enhance vector safety and production yield. Current advancements in the establishment of stable packaging cell lines enabling inducible and constitutive LVV production are summarized and discussed. Manufacturing processes for lentiviral vectors using bioreactors with perfusion systems are required to meet the growing demand in cell and gene therapy and to reduce production and therapy costs.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232332412241118063211
2025-01-13
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cgt/25/5/CGT-25-5-02.html?itemId=/content/journals/cgt/10.2174/0115665232332412241118063211&mimeType=html&fmt=ahah

References

  1. CollinsM. ThrasherA. Gene therapy: Progress and predictions.Proc. Biol. Sci.201528218212014300310.1098/rspb.2014.300326702034
    [Google Scholar]
  2. Gregory-EvansK. BasharA. TanM. Ex vivo gene therapy and vision.Curr. Gene Ther.201212210311510.2174/15665231280009960722424554
    [Google Scholar]
  3. VolodinaO. SmirnikhinaS. The future of gene therapy: A review of in vivo and ex vivo delivery methods for genome editing-based therapies.Mol. Biotechnol.202567242543710.1007/s12033‑024‑01070‑438363528
    [Google Scholar]
  4. MendellJ.R. Al-ZaidyS.A. Rodino-KlapacL.R. GoodspeedK. GrayS.J. KayC.N. BoyeS.L. BoyeS.E. GeorgeL.A. SalabarriaS. CortiM. ByrneB.J. TremblayJ.P. Current clinical applications of in vivo gene therapy with AAVsMol. Ther.2021292464488
    [Google Scholar]
  5. GowingG. SvendsenS. SvendsenC.N. Ex vivo gene therapy for the treatment of neurological disorders.Prog. Brain Res.20172309913210.1016/bs.pbr.2016.11.00328552237
    [Google Scholar]
  6. TaniK. Current status of ex vivo gene therapy for hematological disorders: A review of clinical trials in Japan around the world.Int. J. Hematol.20161041427210.1007/s12185‑016‑2030‑227289360
    [Google Scholar]
  7. LundstromK. Viral vectors in gene therapy: Where do we stand in 2023?Viruses202315369810.3390/v1503069836992407
    [Google Scholar]
  8. BulchaJ.T. WangY. MaH. TaiP.W.L. GaoG. Viral vector platforms within the gene therapy landscape.Signal Transduct. Target. Ther.2021615310.1038/s41392‑021‑00487‑633558455
    [Google Scholar]
  9. LiX. LeY. ZhangZ. NianX. LiuB. YangX. Viral vector-based gene therapy.Int. J. Mol. Sci.2023249773610.3390/ijms2409773637175441
    [Google Scholar]
  10. WilliamsD.A. LemischkaI.R. NathanD.G. MulliganR.C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse.Nature1984310597747648010.1038/310476a06087158
    [Google Scholar]
  11. BlaeseR.M. CulverK.W. MillerA.D. CarterC.S. FleisherT. ClericiM. ShearerG. ChangL. ChiangY. TolstoshevP. GreenblattJ.J. RosenbergS.A. KleinH. BergerM. MullenC.A. RamseyW.J. MuulL. MorganR.A. AndersonW.F. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years.Science1995270523547548010.1126/science.270.5235.4757570001
    [Google Scholar]
  12. BordignonC. NotarangeloL.D. NobiliN. FerrariG. CasoratiG. PaninaP. MazzolariE. MaggioniD. RossiC. ServidaP. UgazioA.G. MavilioF. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- Immunodeficient patients.Science1995270523547047510.1126/science.270.5235.4707570000
    [Google Scholar]
  13. KohnD.B. WeinbergK.I. NoltaJ.A. HeissL.N. LenarskyC. CrooksG.M. HanleyM.E. AnnettG. BrooksJ.S. El-KhoureiyA. LawrenceK. WellsS. MoenR.C. BastianJ. Williams-HermanD.E. ElderM. WaraD. BowenT. HershfieldM.S. MullenC.A. BlaeseR.M. ParkmanR. Engraftment of gene– modified umbilical cord blood cells in neonates with adenosine deaminase deficiency.Nat. Med.19951101017102310.1038/nm1095‑10177489356
    [Google Scholar]
  14. GordonE.M. HallF.L. Rexin-G, a targeted genetic medicine for cancer.Expert Opin. Biol. Ther.201010581983210.1517/14712598.2010.48166620384524
    [Google Scholar]
  15. SchimmerJ. BreazzanoS. Investor outlook: Rising from the Ashes; GSK’s European approval of Strimvelis for ADA-SCID.Hum. Gene Ther. Clin. Dev.2016272576110.1089/humc.2016.29010.ind27267267
    [Google Scholar]
  16. LuJ. JiangG. The journey of CAR-T therapy in hematological malignancies.Mol. Cancer202221119410.1186/s12943‑022‑01663‑036209106
    [Google Scholar]
  17. ModlichU. NavarroS. ZychlinskiD. MaetzigT. KnoessS. BrugmanM.H. SchambachA. CharrierS. GalyA. ThrasherA.J. BuerenJ. BaumC. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectorsMol. Ther.2009171119191928
    [Google Scholar]
  18. NaldiniL. BlömerU. GallayP. OryD. MulliganR. GageF.H. VermaI.M. TronoD. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.Science1996272525926326710.1126/science.272.5259.2638602510
    [Google Scholar]
  19. Gutierrez-GuerreroA. CossetF.L. VerhoeyenE. Lentiviral vector Pseudotypes: Precious tools to improve gene modification of Hematopoietic cells for research and gene therapy.Viruses2020129101610.3390/v1209101632933033
    [Google Scholar]
  20. NaldiniL. BlömerU. GageF.H. TronoD. VermaI.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector.Proc. Natl. Acad. Sci. USA19969321113821138810.1073/pnas.93.21.113828876144
    [Google Scholar]
  21. SeguraE.E.R. AyoubP.G. HartK.L. KohnD.B. Gene therapy for β-Hemoglobinopathies: From discovery to clinical trials.Viruses202315371310.3390/v1503071336992422
    [Google Scholar]
  22. LabbéR.P. VessillierS. RafiqQ.A. Lentiviral vectors for T cell engineering: Clinical applications, bioprocessing and future perspectives.Viruses2021138152810.3390/v1308152834452392
    [Google Scholar]
  23. Viral vector manufacturing market.2024Available from: https://www.rootsanalysis.com/reports/viral-vector-manufacturing-market.html
  24. Cavazzana-CalvoM. PayenE. NegreO. WangG. HehirK. FusilF. DownJ. DenaroM. BradyT. WestermanK. CavallescoR. Gillet-LegrandB. CaccavelliL. SgarraR. Maouche-ChrétienL. BernaudinF. GirotR. DorazioR. MulderG.J. PolackA. BankA. SoulierJ. LargheroJ. KabbaraN. DalleB. GourmelB. SocieG. ChrétienS. CartierN. AubourgP. FischerA. CornettaK. GalacterosF. BeuzardY. GluckmanE. BushmanF. Hacein-Bey-AbinaS. LeboulchP. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.Nature2010467731331832210.1038/nature0932820844535
    [Google Scholar]
  25. AiutiA. BiascoL. ScaramuzzaS. FerruaF. CicaleseM.P. BaricordiC. DionisioF. CalabriaA. GiannelliS. CastielloM.C. BosticardoM. EvangelioC. AssanelliA. CasiraghiM. Di NunzioS. CallegaroL. BenatiC. RizzardiP. PellinD. Di SerioC. SchmidtM. Von KalleC. GardnerJ. MehtaN. NeduvaV. DowD.J. GalyA. MinieroR. FinocchiA. MetinA. BanerjeeP.P. OrangeJ.S. GalimbertiS. ValsecchiM.G. BiffiA. MontiniE. VillaA. CiceriF. RoncaroloM.G. NaldiniL. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.Science20133416148123315110.1126/science.123315123845947
    [Google Scholar]
  26. BiffiA. MontiniE. LorioliL. CesaniM. FumagalliF. PlatiT. BaldoliC. MartinoS. CalabriaA. CanaleS. BenedicentiF. VallantiG. BiascoL. LeoS. KabbaraN. ZanettiG. RizzoW.B. MehtaN.A.L. CicaleseM.P. CasiraghiM. BoelensJ.J. Del CarroU. DowD.J. SchmidtM. AssanelliA. NeduvaV. Di SerioC. StupkaE. GardnerJ. von KalleC. BordignonC. CiceriF. RovelliA. RoncaroloM.G. AiutiA. SessaM. NaldiniL. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.Science20133416148123315810.1126/science.123315823845948
    [Google Scholar]
  27. CartierN. Hacein-Bey-AbinaS. BartholomaeC.C. VeresG. SchmidtM. KutscheraI. VidaudM. AbelU. Dal-CortivoL. CaccavelliL. MahlaouiN. KiermerV. MittelstaedtD. BellesmeC. LahlouN. LefrèreF. BlancheS. AuditM. PayenE. LeboulchP. l’HommeB. BougnèresP. Von KalleC. FischerA. Cavazzana-CalvoM. AubourgP. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy.Science2009326595481882310.1126/science.117124219892975
    [Google Scholar]
  28. MertenO.W. HebbenM. BovolentaC. Production of lentiviral vectors.Mol. Ther. Methods Clin. Dev.201631601710.1038/mtm.2016.1727110581
    [Google Scholar]
  29. BerkowitzR. IlvesH. LinW.Y. EckertK. CowardA. TamakiS. VeresG. PlavecI. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus.J. Virol.20017573371338210.1128/JVI.75.7.3371‑3382.200111238863
    [Google Scholar]
  30. MetharomP. TakyarS. XiaH.H. EllemK.A.O. MacmillanJ. ShepherdR.W. WilcoxG.E. WeiM.Q. Novel bovine lentiviral vectors based on Jembrana disease virus.J. Gene Med.20002317618510.1002/(SICI)1521‑2254(200005/06)2:3<176::AID‑JGM106>3.0.CO;2‑Q10894263
    [Google Scholar]
  31. BerkowitzR.D. IlvesH. PlavecI. VeresG. Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity.Virology2001279111612910.1006/viro.2000.065911145895
    [Google Scholar]
  32. MukherjeeS. LeeH.L.R. PacchiaA.L. RonY. DoughertyJ.P. A HIV-2-based self-inactivating vector for enhanced gene transduction.J. Biotechnol.2007127474575710.1016/j.jbiotec.2006.08.00416979253
    [Google Scholar]
  33. KlokeB.P. SchüleS. MühlebachM.D. WolfrumN. CichutekK. SchweizerM. Functional HIV-2- and SIVsmmPBj- derived lentiviral vectors generated by a novel polymerase chain reaction-based approach.J. Gene Med.201012544645210.1002/jgm.145420440755
    [Google Scholar]
  34. KimS.S. KothariN. YouX.J. RobinsonW.E.Jr SchnellT. UberlaK. FanH. Generation of replication-defective helper-free vectors based on simian immunodeficiency virus.Virology2001282115416710.1006/viro.2000.080811259198
    [Google Scholar]
  35. WhiteS.M. RendaM. NamN.Y. KlimatchevaE. ZhuY. FiskJ. HaltermanM. RimelB.J. FederoffH. PandyaS. RosenblattJ.D. PlanellesV. Lentivirus vectors using human and simian immunodeficiency virus elements.J. Virol.19997342832284010.1128/JVI.73.4.2832‑2840.199910074131
    [Google Scholar]
  36. StitzJ. MühlebachM.D. BlömerU. ScherrM. SelbertM. WehnerP. SteidlS. SchmittI. KönigR. SchweizerM. CichutekK. A novel lentivirus vector derived from apathogenic simian immunodeficiency virus.Virology2001291219119710.1006/viro.2001.118311878888
    [Google Scholar]
  37. MühlebachM.D. WolfrumN. SchüleS. TschulenaU. SanzenbacherR. FloryE. CichutekK. SchweizerM. Stable transduction of primary human monocytes by simian lentiviral vector PBj.Mol. Ther.20051261206121610.1016/j.ymthe.2005.06.48316150648
    [Google Scholar]
  38. PoeschlaE.M. Wong-StaalF. LooneyD.J. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors.Nat. Med.19984335435710.1038/nm0398‑3549500613
    [Google Scholar]
  39. WangG. SlepushkinV. ZabnerJ. KeshavjeeS. JohnstonJ.C. SauterS.L. JollyD.J. DubenskyT.W.Jr DavidsonB.L. McCrayP.B.Jr Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect.J. Clin. Invest.199910411R55R6210.1172/JCI839010587528
    [Google Scholar]
  40. MitrophanousK.A. YoonS. RohllJ.B. PatilD. WilkesF.J. KimV.N. KingsmanS.M. KingsmanA.J. MazarakisN.D. Stable gene transfer to the nervous system using a non-primate lentiviral vector.Gene Ther.19996111808181810.1038/sj.gt.330102310602376
    [Google Scholar]
  41. Mselli-LakhalL. FavierC. Da SilvaT.M.F. ChettabK. LegrasC. RonfortC. VerdierG. MornexJ.F. CheblouneY. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors.Arch. Virol.1998143468169510.1007/s0070500503239638141
    [Google Scholar]
  42. DullT. ZuffereyR. KellyM. MandelR.J. NguyenM. TronoD. NaldiniL. A third-generation lentivirus vector with a conditional packaging system.J. Virol.199872118463847110.1128/JVI.72.11.8463‑8471.19989765382
    [Google Scholar]
  43. ReiserJ. HarmisonG. Kluepfel-StahlS. BradyR.O. KarlssonS. SchubertM. Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles.Proc. Natl. Acad. Sci. USA19969326152661527110.1073/pnas.93.26.152668986799
    [Google Scholar]
  44. AkkinaR.K. WaltonR.M. ChenM.L. LiQ.X. PlanellesV. ChenI.S. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G.J. Virol.19967042581258510.1128/jvi.70.4.2581‑2585.19968642689
    [Google Scholar]
  45. BurnsJ.C. FriedmannT. DrieverW. BurrascanoM. YeeJ.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells.Proc. Natl. Acad. Sci. USA199390178033803710.1073/pnas.90.17.80338396259
    [Google Scholar]
  46. MiyoshiH. BlömerU. TakahashiM. GageF.H. VermaI.M. Development of a self-inactivating lentivirus vector.J. Virol.199872108150815710.1128/JVI.72.10.8150‑8157.19989733856
    [Google Scholar]
  47. ZuffereyR. DullT. MandelR.J. BukovskyA. QuirozD. NaldiniL. TronoD. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery.J. Virol.199872129873988010.1128/JVI.72.12.9873‑9880.19989811723
    [Google Scholar]
  48. IwakumaT. CuiY. ChangL.J. Self-inactivating lentiviral vectors with U3 and U5 modifications.Virology1999261112013210.1006/viro.1999.985010441560
    [Google Scholar]
  49. PauwelsK. GijsbersR. ToelenJ. SchambachA. Willard-GalloK. VerheustC. DebyserZ. HermanP. State-of-the-art lentiviral vectors for research use: Risk assessment and biosafety recommendations.Curr. Gene Ther.20099645947410.2174/15665230979003112020021330
    [Google Scholar]
  50. SchambachA. ZychlinskiD. EhrnstroemB. BaumC. Biosafety features of lentiviral vectors.Hum. Gene Ther.201324213214210.1089/hum.2012.22923311447
    [Google Scholar]
  51. FerreiraM.V. CabralE.T. CoroadinhaA.S. Progress and perspectives in the development of lentiviral vector producer cells.Biotechnol. J.2021161200001710.1002/biot.20200001732686901
    [Google Scholar]
  52. TihanyiB. NyitrayL. Recent advances in CHO cell line development for recombinant protein production.Drug Discov. Today. Technol.202038253410.1016/j.ddtec.2021.02.00334895638
    [Google Scholar]
  53. TanE. ChinC.S.H. LimZ.F.S. NgS.K. HEK293 cell line as a platform to produce recombinant proteins and viral vectors.Front. Bioeng. Biotechnol.2021979699110.3389/fbioe.2021.79699134966729
    [Google Scholar]
  54. MertenO.W. CharrierS. LaroudieN. FauchilleS. DuguéC. JennyC. AuditM. Zanta-BoussifM.A. ChautardH. RadrizzaniM. VallantiG. NaldiniL. Noguiez-HellinP. GalyA. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application.Hum. Gene Ther.201122334335610.1089/hum.2010.06021043787
    [Google Scholar]
  55. Gama-NortonL. BotezatuL. HerrmannS. SchweizerM. AlvesP.M. HauserH. WirthD. Lentivirus production is influenced by SV40 large T-antigen and chromosomal integration of the vector in HEK293 cells.Hum. Gene Ther.201122101269127910.1089/hum.2010.14321554103
    [Google Scholar]
  56. FerreiraC.B. SumnerR.P. Rodriguez-PlataM.T. RasaiyaahJ. MilneR.S. ThrasherA.J. QasimW. TowersG.J. Lentiviral vector production titer is not limited in HEK293T by induced intracellular innate immunity.Mol. Ther. Methods Clin. Dev.20201720921910.1016/j.omtm.2019.11.02131970199
    [Google Scholar]
  57. AusubelL.J. HallC. SharmaA. ShakeleyR. LopezP. QuezadaV. CoutureS. LadermanK. McMahonR. HuangP. HsuD. CoutureL. Production of CGMP-grade lentiviral vectors.Bioprocess Int.2012102324322707919
    [Google Scholar]
  58. KutnerR.H. PuthliS. MarinoM.P. ReiserJ. Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography.BMC Biotechnol.2009911010.1186/1472‑6750‑9‑1019220915
    [Google Scholar]
  59. BellintaniF. PiacenzaL. Sciarretta BiroloR. MartelliA. AddamoR.R. VallantiG. FracchiaS. SalomoniM. AiutiA. BiffiA. GalyA. MertenO-W. BenatiC. ZiliottoR. BordignonC. NaldiniL. RadrizzaniM. Large scale process for the production and purification of Lentiviral vectors for clinical applications.Mol. Ther.2009171S276
    [Google Scholar]
  60. YacoubN. RomanowskaM. HaritonovaN. FoersterJ. Optimized production and concentration of lentiviral vectors containing large inserts.J. Gene Med.20079757958410.1002/jgm.105217533614
    [Google Scholar]
  61. Rout-PittN. McCarronA. McIntyreC. ParsonsD. DonnelleyM. Large-scale production of lentiviral vectors using multilayer cell factories.J. Biol. Methods201852110.14440/jbm.2018.23631453241
    [Google Scholar]
  62. SastryL. XuY. CooperR. PollokK. CornettaK. Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment.Hum. Gene Ther.200415222122610.1089/10430340477268002914975194
    [Google Scholar]
  63. ShawA. BischofD. JastiA. ErnstbergerA. HawkinsT. CornettaK. Using Pulmozyme DNase treatment in lentiviral vector production.Hum. Gene Ther. Methods2012231657110.1089/hgtb.2011.20422428981
    [Google Scholar]
  64. TuvessonO. UheC. RozkovA. LüllauE. Development of a generic transient transfection process at 100 L scale.Cytotechnology200856212313610.1007/s10616‑008‑9135‑219002850
    [Google Scholar]
  65. AnsorgeS. LanthierS. TransfiguracionJ. DurocherY. HenryO. KamenA. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures.J. Gene Med.2009111086887610.1002/jgm.137019618482
    [Google Scholar]
  66. RaymondC. TomR. PerretS. MoussouamiP. L’AbbéD. St-LaurentG. DurocherY. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications.Methods2011551445110.1016/j.ymeth.2011.04.00221539918
    [Google Scholar]
  67. BaulerM. RobertsJ.K. WuC.C. FanB. FerraraF. YipB.H. DiaoS. KimY.I. MooreJ. ZhouS. WielgoszM.M. RyuB. ThromR.E. Production of lentiviral vectors using suspension cells grown in serum-free media.Mol. Ther. Methods Clin. Dev.202017586810.1016/j.omtm.2019.11.01131890741
    [Google Scholar]
  68. ValkamaA.J. LeinonenH.M. LipponenE.M. TurkkiV. MalinenJ. HeikuraT. Ylä-HerttualaS. LeschH.P. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor.Gene Ther.2018251394610.1038/gt.2017.9129345252
    [Google Scholar]
  69. LeinonenH.M. LepolaS. LipponenE.M. HeikuraT. KoponenT. ParkerN. Ylä-HerttualaS. LeschH.P. Benchmarking of scale-X bioreactor system in Lentiviral and Adenoviral vector production.Hum. Gene Ther.2020315-637638410.1089/hum.2019.24732075423
    [Google Scholar]
  70. TirapelleM.C. OliveiraL.A.L. SilvestreR.N. MizukamiA. CovasD.T. Picanço-CastroV. SwiechK. Transition from serum-supplemented monolayer to serum-free suspension lentiviral vector production for generation of chimeric antigen receptor T cells.Cytotherapy202224885086010.1016/j.jcyt.2022.03.01435643755
    [Google Scholar]
  71. SeguraM.M. GarnierA. DurocherY. CoelhoH. KamenA. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification.Biotechnol. Bioeng.200798478979910.1002/bit.2146717461423
    [Google Scholar]
  72. Henry O, Kamen A, Perrier M. Monitoring the physiological state of mammalian cell perfusion processes by on-line estimation of intracellular fluxes. IFAC Proceedings Volumes. 2006; 39: 47–52.
  73. CôtéJ. GarnierA. MassieB. KamenA. Serum-free production of recombinant proteins and adenoviral vectors by 293SF-3F6 cells.Biotechnol. Bioeng.199859556757510.1002/(SICI)1097‑0290(19980905)59:5<567::AID‑BIT6>3.0.CO;2‑810099373
    [Google Scholar]
  74. SoneokaY. CannonP.M. RamsdaleE.E. GriffithsJ.C. RomanoG. KingsmanS.M. KingsmanA.J. A transient three-plasmid expression system for the production of high titer retroviral vectors.Nucleic Acids Res.199523462863310.1093/nar/23.4.6287899083
    [Google Scholar]
  75. KawkaK. WiltonA.N. MadadkarP. MedinaM.F.C. LichtyB.D. GhoshR. LatulippeD.R. Integrated development of enzymatic DNA digestion and membrane chromatography processes for the purification of therapeutic adenoviruses.Separ. Purif. Tech.202125411750310.1016/j.seppur.2020.117503
    [Google Scholar]
  76. DautzenbergI.J.C. RabelinkM.J.W.E. HoebenR.C. The stability of envelope-pseudotyped lentiviral vectors.Gene Ther.2021281-28910410.1038/s41434‑020‑00193‑y32973351
    [Google Scholar]
  77. HigashikawaF. ChangL.J. Kinetic analyses of stability of simple and complex retroviral vectors.Virology2001280112413110.1006/viro.2000.074311162826
    [Google Scholar]
  78. RichardsonJ.H. ChildL.A. LeverA.M. Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5′ leader region.J. Virol.19936773997400510.1128/jvi.67.7.3997‑4005.19938510213
    [Google Scholar]
  79. RizviT.A. PanganibanA.T. Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles.J. Virol.19936752681268810.1128/jvi.67.5.2681‑2688.19938474168
    [Google Scholar]
  80. CarrollR. LinJ.T. DacquelE.J. MoscaJ.D. BurkeD.S. St LouisD.C. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines.J. Virol.19946896047605110.1128/jvi.68.9.6047‑6051.19948057479
    [Google Scholar]
  81. YuH. RabsonA.B. KaulM. RonY. DoughertyJ.P. Inducible human immunodeficiency virus type 1 packaging cell lines.J. Virol.19967074530453710.1128/jvi.70.7.4530‑4537.19968676479
    [Google Scholar]
  82. KaulM. YuH. RonY. DoughertyJ.P. Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences.Virology1998249116717410.1006/viro.1998.93279740788
    [Google Scholar]
  83. KafriT. van PraagH. OuyangL. GageF.H. VermaI.M. A packaging cell line for lentivirus vectors.J. Virol.199973157658410.1128/JVI.73.1.576‑584.19999847362
    [Google Scholar]
  84. PlanellesV. BachelerieF. JowettJ.B. HaislipA. XieY. BanooniP. MasudaT. ChenI.S. Fate of the human immunodeficiency virus type 1 provirus in infected cells: A role for vpr.J. Virol.19956995883588910.1128/jvi.69.9.5883‑5889.19957637036
    [Google Scholar]
  85. RogelM.E. WuL.I. EmermanM. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection.J. Virol.199569288288810.1128/jvi.69.2.882‑888.19957815556
    [Google Scholar]
  86. KaplanA.H. SwanstromR. The HIV-1 gag precursor is processed via two pathways: Implications for cytotoxicity.Biomed. Biochim. Acta1991504-66476531801737
    [Google Scholar]
  87. GossenM. BujardH. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.Proc. Natl. Acad. Sci. USA199289125547555110.1073/pnas.89.12.55471319065
    [Google Scholar]
  88. GossenM. FreundliebS. BenderG. MüllerG. HillenW. BujardH. Transcriptional activation by tetracyclines in mammalian cells.Science199526852181766176910.1126/science.77926037792603
    [Google Scholar]
  89. XuK. MaH. McCownT.J. VermaI.M. KafriT. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors.Mol. Ther.2001319710410.1006/mthe.2000.023811162316
    [Google Scholar]
  90. FarsonD. WittR. McGuinnessR. DullT. KellyM. SongJ. RadekeR. BukovskyA. ConsiglioA. NaldiniL. A new-generation stable inducible packaging cell line for lentiviral vectors.Hum. Gene Ther.200112898199710.1089/10430340175019593511387062
    [Google Scholar]
  91. KlagesN. ZuffereyR. TronoD. A stable system for the high-titer production of multiply attenuated lentiviral vectors.Mol. Ther.20002217017610.1006/mthe.2000.010310947945
    [Google Scholar]
  92. PacchiaA.L. AdelsonM.E. KaulM. RonY. DoughertyJ.P. An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins.Virology20012821778610.1006/viro.2000.078711259192
    [Google Scholar]
  93. SparacioS. PfeifferT. SchaalH. BoschV. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors.Mol. Ther.20013460261210.1006/mthe.2001.029611319923
    [Google Scholar]
  94. IkedaY. TakeuchiY. MartinF. CossetF.L. MitrophanousK. CollinsM. Continuous high-titer HIV-1 vector production.Nat. Biotechnol.200321556957210.1038/nbt81512679787
    [Google Scholar]
  95. BellA.J.Jr FegenD. WardM. BankA. RD114 envelope proteins provide an effective and versatile approach to pseudotype lentiviral vectors.Exp. Biol. Med. (Maywood)2010235101269127610.1258/ebm.2010.01005320876083
    [Google Scholar]
  96. StitzJ. BuchholzC.J. EngelstädterM. UckertW. BloemerU. SchmittI. CichutekK. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1.Virology20002731162010.1006/viro.2000.039410891403
    [Google Scholar]
  97. StrangB.L. IkedaY. CossetF-L. CollinsM.K.L. TakeuchiY. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells.Gene Ther.200411759159810.1038/sj.gt.330218914724689
    [Google Scholar]
  98. NiY. SunS. OparaochaI. HumeauL. DavisB. CohenR. BinderG. ChangY.N. SlepushkinV. DropulicB. Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector.J. Gene Med.20057681883410.1002/jgm.72615693055
    [Google Scholar]
  99. CockrellA.S. MaH. FuK. McCownT.J. KafriT. A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors.Mol. Ther.200614227628410.1016/j.ymthe.2005.12.01516516556
    [Google Scholar]
  100. ThromR.E. OumaA.A. ZhouS. ChandrasekaranA. LockeyT. GreeneM. De RavinS.S. MoayeriM. MalechH.L. SorrentinoB.P. GrayJ.T. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection.Blood2009113215104511010.1182/blood‑2008‑11‑19104919286997
    [Google Scholar]
  101. PowersA.D. DruryJ.E. HoehamerC.F. LockeyT.D. MeagherM.M. Lentiviral vector production from a stable packaging cell line using a packed Bed Bioreactor.Mol. Ther. Methods Clin. Dev.20201911310.1016/j.omtm.2020.08.01032995355
    [Google Scholar]
  102. StornaiuoloA. PiovaniB.M. BossiS. ZucchelliE. CornaS. SalvatoriF. MavilioF. BordignonC. RizzardiG.P. BovolentaC. RD2-MolPack-Chim3, a packaging cell line for stable production of lentiviral vectors for anti-HIV gene therapy.Hum. Gene Ther. Methods201324422824010.1089/hgtb.2012.19023767932
    [Google Scholar]
  103. SandrinV. BosonB. SalmonP. GayW. NègreD. Le GrandR. TronoD. CossetF.L. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates.Blood2002100382383210.1182/blood‑2001‑11‑004212130492
    [Google Scholar]
  104. MarinV. StornaiuoloA. PiovanC. CornaS. BossiS. PemaM. GiulianiE. ScavulloC. ZucchelliE. BordignonC. RizzardiG.P. BovolentaC. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope.Mol. Ther. Methods Clin. Dev.201631603310.1038/mtm.2016.3327222840
    [Google Scholar]
  105. SanberK.S. KnightS.B. StephenS.L. BaileyR. EscorsD. MinshullJ. SantilliG. ThrasherA.J. CollinsM.K. TakeuchiY. Construction of stable packaging cell lines for clinical lentiviral vector production.Sci. Rep.201551902110.1038/srep0902125762005
    [Google Scholar]
  106. RuscicJ. PerryC. MukhopadhyayT. TakeuchiY. BracewellD.G. Lentiviral vector purification using nanofiber ion-exchange chromatography.Mol. Ther. Methods Clin. Dev.201915526210.1016/j.omtm.2019.08.00731649955
    [Google Scholar]
  107. PerryC. MujahidN. TakeuchiY. RayatA.C.M.E. Insights into product and process related challenges of lentiviral vector bioprocessing.Biotechnol. Bioeng.202412182466248137526313
    [Google Scholar]
  108. StibbsD.J. SilvaC.P. TakeuchiY. RafiqQ.A. JacksonN.B. RayatA.C.M.E. Continuous manufacturing of lentiviral vectors using a stable producer cell line in a fixed-bed bioreactor.Mol. Ther. Methods Clin. Dev.202432110120910.1016/j.omtm.2024.10120938435128
    [Google Scholar]
  109. TijaniM. MunisA.M. PerryC. SanberK. FerraressoM. MukhopadhyayT. ThemisM. NisoliI. MattiuzzoG. CollinsM.K. TakeuchiY. Lentivector producer cell lines with stably expressed vesiculovirus envelopes.Mol. Ther. Methods Clin. Dev.20181030331210.1016/j.omtm.2018.07.01330182034
    [Google Scholar]
  110. TomásH.A. RodriguesA.F. CarrondoM.J.T. CoroadinhaA.S. LentiPro26: Novel stable cell lines for constitutive lentiviral vector production.Sci. Rep.201881527110.1038/s41598‑018‑23593‑y29588490
    [Google Scholar]
  111. KonvalinkaJ. LitterstM.A. WelkerR. KottlerH. RippmannF. HeuserA.M. KräusslichH.G. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.J. Virol.199569117180718610.1128/jvi.69.11.7180‑7186.19957474139
    [Google Scholar]
  112. BroussauS. JabbourN. LachapelleG. DurocherY. TomR. TransfiguracionJ. GilbertR. MassieB. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension cultureMol. Ther.2008163500507
    [Google Scholar]
  113. ManceurA.P. KimH. MisicV. AndreevN. Dorion-ThibaudeauJ. LanthierS. BernierA. TremblayS. GélinasA.M. BroussauS. GilbertR. AnsorgeS. Scalable lentiviral vector production using stable HEK293SF producer cell lines.Hum. Gene Ther. Methods201728633033910.1089/hgtb.2017.08628826344
    [Google Scholar]
  114. TranM.Y. KamenA.A. Production of lentiviral vectors using a HEK-293 producer cell line and advanced perfusion processing.Front. Bioeng. Biotechnol.20221088771610.3389/fbioe.2022.88771635774066
    [Google Scholar]
  115. KlimpelM. TerraoM. ChingN. ClimentiV. NollT. PirzasV. LauxH. Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines.Biotechnol. Bioeng.202312092622263810.1002/bit.2841337148430
    [Google Scholar]
  116. BroussauS. LytvynV. SimoneauM. GuilbaultC. LeclercM. Nazemi-MoghaddamN. CoulombeN. ElahiS.M. McCombS. GilbertR. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning.Mol. Ther. Methods Clin. Dev.202329405710.1016/j.omtm.2023.02.01336936448
    [Google Scholar]
  117. ChenY.H. PallantC. SampsonC.J. BoitiA. JohnsonS. BrazauskasP. HardwickeP. MarongiuM. MarinovaV.M. CarmoM. SweeneyN.P. RichardA. ShillingsA. ArchibaldP. PuschmannE. MouzonB. GroseD. Mendez-TavioM. ChenM.X. WarrS.R.C. SenussiT. CarterP.S. BakerS. JungC. BrugmanM.H. HoweS.J. VinkC.A. Rapid lentiviral vector producer cell line generation using a single DNA construct.Mol. Ther. Methods Clin. Dev.202019475710.1016/j.omtm.2020.08.01132995359
    [Google Scholar]
  118. HumbertO. GischD.W. WohlfahrtM.E. AdamsA.B. GreenbergP.D. SchmittT.M. TrobridgeG.D. KiemH.-P. Development of third-generation cocal envelope producer cell lines for robust Lentiviral gene transfer into Hematopoietic stem cells and T-cellsMol. Ther.201624712371246
    [Google Scholar]
  119. TrobridgeG.D. WuR.A. HansenM. IronsideC. WattsK.L. OlsenP. BeardB.C. KiemH.-P. Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cellsMol. Ther.2010184725733
    [Google Scholar]
  120. TroyanovskyB. BitkoV. FoutyB. SolodushkoV. Simple viral/minimal piggyBac hybrid vectors for stable production of self-inactivating gamma-retroviruses.BMC Res. Notes20158137910.1186/s13104‑015‑1354‑y26306622
    [Google Scholar]
  121. BergK. SchäferV.N. BartnickiN. EggenschwilerR. CantzT. StitzJ. Rapid establishment of stable retroviral packaging cells and recombinant susceptible target cell lines employing novel transposon vectors derived from Sleeping Beauty.Virology2019531404710.1016/j.virol.2019.02.01430852270
    [Google Scholar]
  122. van HeuvelY. BergK. HirchT. WinnK. ModlichU. StitzJ. Establishment of a novel stable human suspension packaging cell line producing ecotropic retroviral MLV(PVC-211) vectors efficiently transducing murine hematopoietic stem and progenitor cells.J. Virol. Methods202129711424310.1016/j.jviromet.2021.11424334314749
    [Google Scholar]
  123. van HeuvelY. SchatzS. HeinM. DograT. KazenmaierD. TschornN. GenzelY. StitzJ. Novel suspension retroviral packaging cells generated by transposition using transposase encoding mRNA advance vector yields and enable production in bioreactors.Front. Bioeng. Biotechnol.202311107652410.3389/fbioe.2023.107652437082212
    [Google Scholar]
  124. MoreiraA.S. CavacoD.G. FariaT.Q. AlvesP.M. CarrondoM.J.T. PeixotoC. Advances in Lentivirus purification.Biotechnol. J.2021161200001910.1002/biot.20200001933089626
    [Google Scholar]
  125. RodriguesT. CarrondoM.J.T. AlvesP.M. CruzP.E. Purification of retroviral vectors for clinical application: Biological implications and technological challenges.J. Biotechnol.2007127352054110.1016/j.jbiotec.2006.07.02816950534
    [Google Scholar]
  126. ValkamaA.J. OruetxebarriaI. LipponenE.M. LeinonenH.M. KäyhtyP. HynynenH. TurkkiV. MalinenJ. MiinalainenT. HeikuraT. ParkerN.R. Ylä-HerttualaS. LeschH.P. Development of large-scale downstream processing for lentiviral vectors.Mol. Ther. Methods Clin. Dev.20201771773010.1016/j.omtm.2020.03.02532346549
    [Google Scholar]
  127. GautamS. ChiramelA.I. PachR. Bioprocess and analytics development for virus-based advanced therapeutics and medicinal products (ATMPs)Springer2023
    [Google Scholar]
  128. BandeiraV. PeixotoC. RodriguesA.F. CruzP.E. AlvesP.M. CoroadinhaA.S. CarrondoM.J.T. Downstream processing of lentiviral vectors: Releasing bottlenecks.Hum. Gene Ther. Methods201223425526310.1089/hgtb.2012.05922934827
    [Google Scholar]
  129. MoreiraA.S. FariaT.Q. OliveiraJ.G. KavaraA. SchofieldM. SandersonT. CollinsM. GantierR. AlvesP.M. CarrondoM.J.T. PeixotoC. Enhancing the purification of Lentiviral vectors for clinical applications.Separ. Purif. Tech.202127411859810.1016/j.seppur.2021.118598
    [Google Scholar]
  130. TransfiguracionJ. JaaloukD.E. GhaniK. GalipeauJ. KamenA. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications.Hum. Gene Ther.200314121139115310.1089/10430340332216798412908966
    [Google Scholar]
  131. SeguraM.M. MangionM. GailletB. GarnierA. New developments in lentiviral vector design, production and purification.Expert Opin. Biol. Ther.2013137987101110.1517/14712598.2013.77924923590247
    [Google Scholar]
  132. KrambergerP. UrbasL. ŠtrancarA. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages.Hum. Vaccin. Immunother.20151141010102110.1080/21645515.2015.100981725751122
    [Google Scholar]
  133. TinchS. SzczurK. SwaneyW. ReevesL. WittingS.R. A Scalable lentiviral vector production and purification method using mustang Q chromatography and tangential flow filtration.Methods Mol. Biol.2019193713515310.1007/978‑1‑4939‑9065‑8_830706394
    [Google Scholar]
  134. TruranR. BuckleyR. RadcliffeP. MiskinJ. MitrophanousK. Virus purificationPatent US 2017/0073702 A1,2017
  135. Girard-GagnepainA. AmiracheF. CostaC. LévyC. FrechaC. FusilF. NègreD. LavilletteD. CossetF.L. VerhoeyenE. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs.Blood201412481221123110.1182/blood‑2014‑02‑55816324951430
    [Google Scholar]
  136. LevyC. FusilF. AmiracheF. CostaC. Girard-GagnepainA. NegreD. BernadinO. GarauletG. RodriguezA. NairN. VandendriesscheT. ChuahM. CossetF-L. VerhoeyenE. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc‐/‐ mice.J. Thromb. Haemost.201614122478249210.1111/jth.1352027685947
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232332412241118063211
Loading
/content/journals/cgt/10.2174/0115665232332412241118063211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test