Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Over 90% of people are infected with the human g-herpesvirus known as the Epstein-Barr virus (EBV). Cancers, such as gastric carcinoma, non-Hodgkin’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s lymphoma, and Burkitt lymphoma, are thought to be linked with EBV. It is noteworthy that the first virus discovered that encodes microRNAs (miRNAs) was EBV, and these miRNAs show expression at the different phases of EBV infection. There is growing evidence that EBV-encoded miRNAs influence the growth of EBV-associated tumors. These EBV miRNAs, ., BamHI-H rightward fragment 1-derived microRNAs (BHRF1miRNA) and BamHI-A rightward fragment-derived microRNAs (BART miRNAs), are crucial for the persistence of viral infection and the avoidance of host defenses. Currently, significant advancements have been made in analyzing the microRNAs that are found in the duration of EBV infection, studies identified molecular targets of miRNAs and studies enhanced our understanding regarding the pathophysiology of these molecules. An extensive look into the pro-carcinogenic impact of microRNAs associated with EBV will increase our understanding of the molecular mechanisms of EBV-associated tumors. In this paper, we have highlighted the functions of miRNAs in EBV infection as well as recent developments in miRNA-based therapeutic and diagnostic approaches that could be useful for EBV-related malignancies. Significantly, targeted therapies against EBV miRNAs are advancing rapidly, with emerging approaches such as miRNA sponges, anti-miRNA oligonucleotides, and CRISPR/Cas9 technologies. These innovations indicate the imminent onset of a new era in the treatment of EBV-associated tumors.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232327174241211075019
2025-01-08
2025-10-29
Loading full text...

Full text loading...

References

  1. KhanG. FitzmauriceC. NaghaviM. AhmedL.A. Global and regional incidence, mortality and disability-adjusted life-years for Epstein-Barr virus-attributable malignancies, 1990-2017.BMJ Open2020108e03750510.1136/bmjopen‑2020‑037505 32868361
    [Google Scholar]
  2. Shannon-LoweC. RickinsonA. The global landscape of EBV-associated tumors.Front. Oncol.2019971310.3389/fonc.2019.00713 31448229
    [Google Scholar]
  3. FarrellP.J. Epstein-Barr virus and cancer.Annu. Rev. Pathol.2019141295310.1146/annurev‑pathmechdis‑012418‑013023 30125149
    [Google Scholar]
  4. BecnelD. AbdelghaniR. NanboA. Pathogenic role of Epstein–Barr virus in lung cancers.Viruses202113587710.3390/v13050877 34064727
    [Google Scholar]
  5. HippocrateA. OussaiefL. JoabI. Possible role of EBV in breast cancer and other unusually EBV-associated cancers.Cancer Lett.2011305214414910.1016/j.canlet.2010.11.007 21172728
    [Google Scholar]
  6. SoldanS.S. LiebermanP.M. Epstein–Barr virus and multiple sclerosis.Nat. Rev. Microbiol.2023211516410.1038/s41579‑022‑00770‑5 35931816
    [Google Scholar]
  7. BrownS.M. BoseS. Banner-GoodspeedV. Approaches to addressing post–intensive care syndrome among intensive care unit survivors. A narrative review.Ann. Am. Thorac. Soc.201916894795610.1513/AnnalsATS.201812‑913FR 31162935
    [Google Scholar]
  8. ChawlaJ.P.S. IyerN. SoodanK.S. SharmaA. KhuranaS.K. PriyadarshniP. Role of miRNA in cancer diagnosis, prognosis, therapy and regulation of its expression by Epstein–Barr virus and human papillomaviruses: With special reference to oral cancer.Oral Oncol.201551873173710.1016/j.oraloncology.2015.05.008 26093389
    [Google Scholar]
  9. LiuC.Y. JiangX.X. ZhuY.H. WeiD.N. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: Role of brain-derived neurotrophic factor.Neuroscience201222321922410.1016/j.neuroscience.2012.08.010 22890078
    [Google Scholar]
  10. BartelD.P. Metazoan MicroRNAs.Cell20181731205110.1016/j.cell.2018.03.006 29570994
    [Google Scholar]
  11. KimK. BaekS.C. LeeY.Y. A quantitative map of human primary microRNA processing sites.Mol. Cell2021811634223439.e1110.1016/j.molcel.2021.07.002 34320405
    [Google Scholar]
  12. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  13. KorpalM. LeeE.S. HuG. KangY. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2.J. Biol. Chem.200828322149101491410.1074/jbc.C800074200 18411277
    [Google Scholar]
  14. TranN. McLeanT. ZhangX. MicroRNA expression profiles in head and neck cancer cell lines.Biochem. Biophys. Res. Commun.20073581121710.1016/j.bbrc.2007.03.201 17475218
    [Google Scholar]
  15. DragomirM.P. KnutsenE. CalinG.A. Classical and noncanonical functions of miRNAs in cancers.Trends Genet.202238437939410.1016/j.tig.2021.10.002 34728089
    [Google Scholar]
  16. Urbanek-TrzeciakM.O. Galka-MarciniakP. NawrockaP.M. Pan-cancer analysis of somatic mutations in miRNA genes.EBioMedicine20206110305110.1016/j.ebiom.2020.103051 33038763
    [Google Scholar]
  17. WinkleM. El-DalyS.M. FabbriM. CalinG.A. Noncoding RNA therapeutics — challenges and potential solutions.Nat. Rev. Drug Discov.202120862965110.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  18. LiX.J. RenZ.J. TangJ.H. MicroRNA-34a: A potential therapeutic target in human cancer.Cell Death Dis.201457e1327e710.1038/cddis.2014.270 25032850
    [Google Scholar]
  19. MarquesS.C. RanjbarB. LaursenM.B. High miR-34a expression improves response to doxorubicin in diffuse large B-cell lymphoma.Exp. Hematol.2016444238246.e210.1016/j.exphem.2015.12.007 26854484
    [Google Scholar]
  20. SoléC. ArnaizE. LawrieC.H. MicroRNAs as biomarkers of B-cell lymphoma.Biomark. Insights201813117727191880684010.1177/1177271918806840 30349178
    [Google Scholar]
  21. DueH. BrøndumR.F. YoungK.H. BøgstedM. DybkærK. MicroRNAs associated to single drug components of R-CHOP identifies diffuse large B-cell lymphoma patients with poor outcome and adds prognostic value to the international prognostic index.BMC Cancer202020123710.1186/s12885‑020‑6643‑8 32192453
    [Google Scholar]
  22. KuoG. WuC.Y. YangH.Y. MiR-17-92 cluster and immunity.J. Formos. Med. Assoc.201911812610.1016/j.jfma.2018.04.013 29857952
    [Google Scholar]
  23. RobainaM.C. FaccionR.S. MazzoccoliL. miR-17-92 cluster components analysis in Burkitt lymphoma: Overexpression of miR-17 is associated with poor prognosis.Ann. Hematol.201695688189110.1007/s00277‑016‑2653‑7 27044389
    [Google Scholar]
  24. LiuX. WangA. HeidbrederC.E. MicroRNA‐24 targeting RNA‐binding protein DND1 in tongue squamous cell carcinoma.FEBS Lett.2010584184115412010.1016/j.febslet.2010.08.040 20816961
    [Google Scholar]
  25. GanciF. SacconiA. Bossel Ben-MosheN. Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients.Ann. Oncol.201324123082308810.1093/annonc/mdt380 24107801
    [Google Scholar]
  26. GascoM. CrookT. The p53 network in head and neck cancer.Oral Oncol.200339322223110.1016/S1368‑8375(02)00163‑X 12618194
    [Google Scholar]
  27. NotarteK.I. SenanayakeS. MacaranasI. MicroRNA and other non-coding RNAs in Epstein–Barr virus-associated cancers.Cancers20211315390910.3390/cancers13153909 34359809
    [Google Scholar]
  28. DuddaJ.C. SalaunB. JiY. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer.Immunity201338474275310.1016/j.immuni.2012.12.006 23601686
    [Google Scholar]
  29. PfefferS. ZavolanM. GrässerF.A. Identification of virus-encoded microRNAs.Science2004304567173473610.1126/science.1096781 15118162
    [Google Scholar]
  30. SoltaniS. ZakeriA. TabibzadehA. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types.Mol. Biol. Rep.20214821801181710.1007/s11033‑021‑06152‑z 33523370
    [Google Scholar]
  31. WangM. GuB. ChenX. WangY. LiP. WangK. The function and therapeutic potential of epstein-barr virus-encoded microRNAs in cancer.Mol. Ther. Nucleic Acids20191765766810.1016/j.omtn.2019.07.002 31400608
    [Google Scholar]
  32. ZhangX. YeY. FuM. ZhengB. QiuQ. HuangZ. Implication of viral microRNAs in the genesis and diagnosis of Epstein Barr virus associated tumors. [Review]Oncol. Lett.20191843433344210.3892/ol.2019.10713 31516561
    [Google Scholar]
  33. JiangC. LiL. XiangY.Q. Epstein–Barr virus miRNA BART2-5p promotes metastasis of nasopharyngeal carcinoma by suppressing RND3.Cancer Res.202080101957196910.1158/0008‑5472.CAN‑19‑0334 32060148
    [Google Scholar]
  34. ZhaoM.H. LiuW. ZhangX. ZhangY. LuoB. Epstein‐Barr virus miR‐BART2‐5p and miR‐BART11‐5p regulate cell proliferation, apoptosis, and migration by targeting RB and p21 in gastric carcinoma.J. Med. Virol.2023951e2833810.1002/jmv.28338 36418188
    [Google Scholar]
  35. BarthS. PfuhlT. MamianiA. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5.Nucleic Acids Res.200736266667510.1093/nar/gkm1080 18073197
    [Google Scholar]
  36. BergalloM. GambarinoS. PinonM. EBV-encoded microRNAs profile evaluation in pediatric liver transplant recipients.J. Clin. Virol.201791364110.1016/j.jcv.2017.04.002 28414949
    [Google Scholar]
  37. NachmaniD. Stern-GinossarN. SaridR. MandelboimO. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells.Cell Host Microbe20095437638510.1016/j.chom.2009.03.003 19380116
    [Google Scholar]
  38. TagawaT. AlbaneseM. BouvetM. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing.J. Exp. Med.2016213102065208010.1084/jem.20160248 27621419
    [Google Scholar]
  39. MengQ. SunH. WuS. Epstein–Barr virus‐encoded MicroRNA‐BART18‐3p promotes colorectal cancer progression by targeting de novo lipogenesis.Adv. Sci. (Weinh.)2022935220211610.1002/advs.202202116 36307872
    [Google Scholar]
  40. FachkoD.N. ChenY. SkalskyR.L. Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3’UTR and regulates the lytic cycle.J. Virol.2022964e01495e2110.1128/jvi.01495‑21 34878852
    [Google Scholar]
  41. XiaT. O’HaraA. AraujoI. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3.Cancer Res.20086851436144210.1158/0008‑5472.CAN‑07‑5126 18316607
    [Google Scholar]
  42. AlbaneseM. TagawaT. BouvetM. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8 + T cells.Proc. Natl. Acad. Sci. USA201611342E6467E647510.1073/pnas.1605884113 27698133
    [Google Scholar]
  43. JungY.J. ChoiH. KimH. LeeS.K. MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1.J. Virol.201488169027903710.1128/JVI.00721‑14 24899173
    [Google Scholar]
  44. HuangW.T. LinC.W. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma.Am. J. Pathol.201418441185119710.1016/j.ajpath.2013.12.024 24655378
    [Google Scholar]
  45. LinT.C. LiuT.Y. HsuS.M. LinC.W. Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma.Am. J. Pathol.201318251865187510.1016/j.ajpath.2013.01.025 23608226
    [Google Scholar]
  46. KimH. ChoiH. LeeS.K. Epstein–Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD.Cancer Lett.2015356273374210.1016/j.canlet.2014.10.023 25449437
    [Google Scholar]
  47. WangJ. GeJ. WangY. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1.Nat. Commun.202213186610.1038/s41467‑022‑28479‑2 35165282
    [Google Scholar]
  48. SongY. LiQ. LiaoS. ZhongK. JinY. ZengT. Epstein-Barr virus-encoded miR-BART11 promotes tumor-associated macrophage-induced epithelial-mesenchymal transition via targeting FOXP1 in gastric cancer.Virology202054861610.1016/j.virol.2020.05.011 32530809
    [Google Scholar]
  49. WangH. LiuJ. ZhangY. SunL. ZhaoM. LuoB. Eukaryotic initiating factor eIF4E is targeted by EBV-encoded miR-BART11-3p and regulates cell cycle and apoptosis in EBV-associated gastric carcinoma.Virus Genes202157435836810.1007/s11262‑021‑01854‑9 34146250
    [Google Scholar]
  50. ZhouX. ZhengJ. TangY. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway.Biosci. Rep.2019399BSR2019041510.1042/BSR20190415 31471531
    [Google Scholar]
  51. IizasaH. WulffB.E. AllaN.R. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency.J. Biol. Chem.201028543333583337010.1074/jbc.M110.138362 20716523
    [Google Scholar]
  52. MaJ. NieK. RedmondD. EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis.Leukemia201630359460410.1038/leu.2015.285 26530011
    [Google Scholar]
  53. CristinoA.S. NourseJ. WestR.A. EBV microRNA-BHRF1-2-5p targets the 3′UTR of immune checkpoint ligands PD-L1 and PD-L2.Blood2019134252261227010.1182/blood.2019000889 31856276
    [Google Scholar]
  54. SkinnerC.M. IvanovN.S. BarrS.A. ChenY. SkalskyR.L. An Epstein-Barr virus microrna blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1.J. Virol.20179121e00530e1710.1128/JVI.00530‑17 28794034
    [Google Scholar]
  55. ZhangY. ZhangW. LiuW. LiuH. ZhangY. LuoB. Epstein–Barr virus miRNA-BART16 modulates cell proliferation by targeting LMP1.Virus Res.2018256384410.1016/j.virusres.2018.08.001 30077726
    [Google Scholar]
  56. HooykaasM.J.G. van GentM. SoppeJ.A. EBV microRNA BART16 suppresses Type I IFN signaling.J. Immunol.2017198104062407310.4049/jimmunol.1501605 28416598
    [Google Scholar]
  57. HuZ. ZhengX. ZengW. WangH. YangH. FanY. Dynamically expressed miR-BART16 functions as a suppressor of CAND1 in infectious mononucleosis caused by epstein-barr virus in children.Ann. Clin. Lab. Sci.2020503371377 32581028
    [Google Scholar]
  58. LungR.W.M. TongJ.H.M. SungY.M. Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22.Neoplasia200911111174IN1710.1593/neo.09888 19881953
    [Google Scholar]
  59. KandaT. MiyataM. KanoM. KondoS. YoshizakiT. IizasaH. Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor.J. Virol.20158952684269710.1128/JVI.03189‑14 25520514
    [Google Scholar]
  60. TangZ. ChenW. XuY. miR-4721, induced by EBV-miR-BART22, targets GSK3β to enhance the tumorigenic capacity of NPC through the WNT/β-catenin pathway.Mol. Ther. Nucleic Acids20202255757110.1016/j.omtn.2020.09.021 33230457
    [Google Scholar]
  61. DongM. GongL. ChenJ. EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway.Cell Oncol. (Dordr.)202043590191310.1007/s13402‑020‑00538‑0 32533512
    [Google Scholar]
  62. LiZ. ChenX. LiL. EBV encoded miR-BHRF1-1 potentiates viral lytic replication by downregulating host p53 in nasopharyngeal carcinoma.Int. J. Biochem. Cell Biol.201244227527910.1016/j.biocel.2011.11.007 22108199
    [Google Scholar]
  63. LiJ. CallegariS. MasucciM.G. The Epstein-Barr virus miR-BHRF1-1 targets RNF4 during productive infection to promote the accumulation of SUMO conjugates and the release of infectious virus.PLoS Pathog.2017134e100633810.1371/journal.ppat.1006338 28414785
    [Google Scholar]
  64. ChenY. FachkoD.N. IvanovN.S. SkalskyR.L. B cell receptor-responsive miR-141 enhances epstein-barr virus lytic cycle via FOXO3 inhibition.MSphere202162e00093e2110.1128/mSphere.00093‑21 33853871
    [Google Scholar]
  65. TsaiC.Y. LiuY.Y. LiuK.H. Comprehensive profiling of virus microRNAs of Epstein–Barr virus‐associated gastric carcinoma: highlighting the interactions of ebv‐Bart9 and host tumor cells.J. Gastroenterol. Hepatol.2017321829110.1111/jgh.13432 27144885
    [Google Scholar]
  66. ZhangY. ShiD. ZhangX. WuS. LiuW. LuoB. Downregulation of MUS81 expression inhibits cell migration and maintains EBV latent infection through miR‐BART9‐5p in EBV‐associated gastric cancer.J. Med. Virol.2023954e2872510.1002/jmv.28725 37185865
    [Google Scholar]
  67. ZhouL. BuY. LiangY. ZhangF. ZhangH. LiS. Epstein-barr virus (EBV)-BamHI-A rightward transcript (BART)-6 and cellular MicroRNA-142 synergistically compromise immune defense of host cells in EBV-positive burkitt lymphoma.Med. Sci. Monit.2016224114412010.12659/MSM.897306 27796281
    [Google Scholar]
  68. AmbrosioM.R. NavariM. Di LisioL. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma.Infect. Agent. Cancer2014911210.1186/1750‑9378‑9‑12 24731550
    [Google Scholar]
  69. WangD. ZengZ. ZhangS. Epstein‐Barr virus‐encoded miR‐BART6‐3p inhibits cancer cell proliferation through the LOC553103‐STMN1 axis.FASEB J.20203468012802710.1096/fj.202000039RR 32306460
    [Google Scholar]
  70. ChanJ.Y.W. GaoW. HoW.K. WeiW.I. WongT.S. Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma.Anticancer Res.201232832013210 22843893
    [Google Scholar]
  71. CaiL. LiJ. ZhangX. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma.Oncotarget20156107838785010.18632/oncotarget.3046 25691053
    [Google Scholar]
  72. CaiL. LongY. ChongT. EBV-miR-BART7-3p imposes stemness in nasopharyngeal carcinoma cells by suppressing SMAD7.Front. Genet.20191093910.3389/fgene.2019.00939 31681406
    [Google Scholar]
  73. GaoW. LiZ.H. ChenS. Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivity of nasopharyngeal carcinoma.Oncotarget2017812202972030810.18632/oncotarget.15526 28423621
    [Google Scholar]
  74. ZhengX. WangJ. WeiL. Epstein-barr virus MicroRNA miR-BART5-3p inhibits p53 expression.J. Virol.20189223e01022e1810.1128/JVI.01022‑18 30209170
    [Google Scholar]
  75. CaiL. YeY. JiangQ. Epstein–Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.Nat. Commun.201561735310.1038/ncomms8353 26135619
    [Google Scholar]
  76. LyuX. WangJ. GuoX. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma.PLoS Pathog.20181412e100748410.1371/journal.ppat.1007484 30557400
    [Google Scholar]
  77. LiuJ. ZhangY. LiuW. MiR-BART1-5p targets core 2β-1,6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer.Virology2020541637410.1016/j.virol.2019.12.004 32056716
    [Google Scholar]
  78. YanQ. ZengZ. GongZ. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC.Oncotarget2015639417664178210.18632/oncotarget.6155 26497204
    [Google Scholar]
  79. ZengZ. HuangH. HuangL. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas.Sci. China Life Sci.201457331532610.1007/s11427‑013‑4577‑y 24532457
    [Google Scholar]
  80. MinK. LeeS.K. EBV miR-BART10-3p promotes cell proliferation and migration by targeting DKK1.Int. J. Biol. Sci.201915365766710.7150/ijbs.30099 30745852
    [Google Scholar]
  81. LuoWJ HeSW ZouWQ Epstein-Barr virus microRNA BART10-3p promotes dedifferentiation and proliferation of nasopharyngeal carcinoma by targeting ALK710.1177/15353702211037261
    [Google Scholar]
  82. ChoiH. LeeS.K. TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU.Arch. Virol.2017162236937710.1007/s00705‑016‑3109‑z 27757686
    [Google Scholar]
  83. HsuC.Y. YiY.H. ChangK.P. ChangY.S. ChenS.J. ChenH.C. The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma.PLoS Pathog.2014102e100397410.1371/journal.ppat.1003974 24586173
    [Google Scholar]
  84. HaneklausM. GerlicM. Kurowska-StolarskaM. Cutting Edge: miR-223 and EBV miR-BART15 Regulate the NLRP3 Inflammasome and IL-1β Production.J. Immunol.201218983795379910.4049/jimmunol.1200312 22984081
    [Google Scholar]
  85. LiD.K. ChenX.R. WangL.N. Epstein-Barr virus induces lymphangiogenesis and lympth node metastasis via upregulation of VEGF-C in nasopharyngeal carcinoma.Mol. Cancer Res.202220116117510.1158/1541‑7786.MCR‑21‑0164 34654722
    [Google Scholar]
  86. MinK. KimJ.Y. LeeS.K. Epstein-Barr virus miR-BART1-3p suppresses apoptosis and promotes migration of gastric carcinoma cells by targeting DAB2.Int. J. Biol. Sci.202016469470710.7150/ijbs.36595 32025216
    [Google Scholar]
  87. ParkM.C. KimH. ChoiH. ChangM.S. LeeS.K. Epstein-Barr virus miR-BART1-3p regulates the miR-17-92 cluster by targeting E2F3.Int. J. Mol. Sci.202122201093610.3390/ijms222010936 34681596
    [Google Scholar]
  88. LinM. HuS. ZhangT. Effects of co-culture EBV-miR-BART1-3p on proliferation and invasion of gastric cancer cells based on exosomes.Cancers20231510284110.3390/cancers15102841 37345178
    [Google Scholar]
  89. YangI.V. WadeC.M. KangH.M. Identification of novel genes that mediate innate immunity using inbred mice.Genetics200918341535154410.1534/genetics.109.107540 19805818
    [Google Scholar]
  90. DölkenL. MaltererG. ErhardF. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human γ-herpesviruses by RISC immunoprecipitation assay.Cell Host Microbe20107432433410.1016/j.chom.2010.03.008 20413099
    [Google Scholar]
  91. WangJ. ZhengX. QinZ. Epstein–Barr virus miR-BART3-3p promotes tumorigenesis by regulating the senescence pathway in gastric cancer.J. Biol. Chem.2019294134854486610.1074/jbc.RA118.006853 30674552
    [Google Scholar]
  92. YoonJ.H. MinK. LeeS.K. Epstein-Barr virus miR-BART17-5p promotes migration and anchorage-independent growth by targeting kruppel-like factor 2 in gastric cancer.Microorganisms20208225810.3390/microorganisms8020258 32075248
    [Google Scholar]
  93. YoonC.J. ChangM.S. KimD.H. Epstein–Barr virus-encoded miR-BART5-5p upregulates PD-L1 through PIAS3/pSTAT3 modulation, worsening clinical outcomes of PD-L1-positive gastric carcinomas.Gastric Cancer202023578079510.1007/s10120‑020‑01059‑3 32206940
    [Google Scholar]
  94. WangW.T. GuoJ.R. WangL. EBV-Mir-BART5-5p targets p53 independent pathway in cytoplasm: Potential role in EBV lymphomagenesis.Genes Dis.20231041154115610.1016/j.gendis.2022.07.003 37397514
    [Google Scholar]
  95. ChoyE.Y.W. SiuK.L. KokK.H. An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival.J. Exp. Med.2008205112551256010.1084/jem.20072581 18838543
    [Google Scholar]
  96. TorresK. LanderosN. WichmannI. Abstract 1400: An additive effect of ebv-miR-BART5-5p and hsa-miR18a-5p in the downregulation of CDH1 transcript in Epstein-Barr virus associated gastric cancer.Cancer Res.20208016Suppl.1400010.1158/1538‑7445.AM2020‑1400
    [Google Scholar]
  97. GalloA. JangS.I. OngH.L. Targeting the Ca2+ sensor STIM1 by exosomal transfer of Ebv-miR-BART13-3p is associated with Sjögren’s syndrome.EBioMedicine20161021622610.1016/j.ebiom.2016.06.041 27381477
    [Google Scholar]
  98. HuangJ. QinY. YangC. Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling.Aging (Albany NY)202012134035810.18632/aging.102618 31907338
    [Google Scholar]
  99. WangJ. JiangQ. FaletiO.D. Exosomal delivery of antagomirs targeting viral and cellular microRNAs synergistically inhibits cancer angiogenesis.Mol. Ther. Nucleic Acids20202215316510.1016/j.omtn.2020.08.017 32927364
    [Google Scholar]
  100. ShiD. ZhangY. MaoT. LiuD. LiuW. LuoB. MiR-BART2-3p targets Unc-51-like kinase 1 and inhibits cell autophagy and migration in Epstein-Barr virus-associated gastric cancer.Virus Res.202130519856710.1016/j.virusres.2021.198567 34555439
    [Google Scholar]
  101. QiuJ. Thorley-LawsonD.A. EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells.Proc. Natl. Acad. Sci. USA201411130111571116210.1073/pnas.1406136111 25012295
    [Google Scholar]
  102. Shinozaki-UshikuA. KunitaA. IsogaiM. Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis.J. Virol.201589105581559110.1128/JVI.03639‑14 25740983
    [Google Scholar]
  103. ZhaoM.H. LiuW. ZhangY. LiuJ. SongH. LuoB. Epstein–Barr virus miR-BART4-3p regulates cell proliferation, apoptosis, and migration by targeting AXL in gastric carcinoma.Virus Genes2022581233410.1007/s11262‑021‑01882‑5 35083633
    [Google Scholar]
  104. LiJ. ZhangY. LiuJ. ShiQ. LiuW. LuoB. EBV-miR-BART12 inhibits cell migration and proliferation by targeting Snail expression in EBV-associated gastric cancer.Arch. Virol.202116651313132310.1007/s00705‑021‑05001‑5 33646408
    [Google Scholar]
  105. WuY. WangD. WeiF. EBV‐miR‐BART12 accelerates migration and invasion in EBV‐associated cancer cells by targeting tubulin polymerization‐promoting protein 1.FASEB J.20203412162051622310.1096/fj.202001508R 33094864
    [Google Scholar]
  106. SakamotoK. SekizukaT. UeharaT. Next‐generation sequencing of miRNAs in clinical samples of Epstein–Barr virus‐associated B‐cell lymphomas.Cancer Med.20176360561810.1002/cam4.1006 28181423
    [Google Scholar]
  107. SetoE. MoosmannA. GrömmingerS. WalzN. GrundhoffA. HammerschmidtW. Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells.PLoS Pathog.201068e100106310.1371/journal.ppat.1001063 20808852
    [Google Scholar]
  108. VerhoevenR.J.A. TongS. ZhangG. NF-κB signaling regulates expression of Epstein-Barr virus BART microRNAs and long noncoding RNAs in nasopharyngeal carcinoma.J. Virol.201690146475648810.1128/JVI.00613‑16 27147748
    [Google Scholar]
  109. LoA.K.F. ToK.F. LoK.W. Modulation of LMP1 protein expression by EBV-encoded microRNAs.Proc. Natl. Acad. Sci. USA200710441161641616910.1073/pnas.0702896104 17911266
    [Google Scholar]
  110. BouvetM. VoigtS. TagawaT. Multiple viral micrornas regulate interferon release and signaling early during infection with epstein-barr virus.MBio2021122e03440e2010.1128/mBio.03440‑20 33785626
    [Google Scholar]
  111. KangD. SkalskyR.L. CullenB.R. EBV BART microRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival.PLoS Pathog.2015116e100497910.1371/journal.ppat.1004979 26070070
    [Google Scholar]
  112. SkalskyR.L. KangD. LinnstaedtS.D. CullenB.R. Evolutionary conservation of primate lymphocryptovirus microRNA targets.J. Virol.20148831617163510.1128/JVI.02071‑13 24257599
    [Google Scholar]
  113. AwasthiP. DwivediM. KumarD. HasanS. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers.Life Sci.202331312126110.1016/j.lfs.2022.121261 36493876
    [Google Scholar]
  114. ChenY. FachkoD. IvanovN.S. SkinnerC.M. SkalskyR.L. Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation.PLoS Pathog.2019151e100753510.1371/journal.ppat.1007535 30615681
    [Google Scholar]
  115. ChangL.K. LeeY.H. ChengT.S. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1.J. Biol. Chem.200427937388033881210.1074/jbc.M405470200 15229220
    [Google Scholar]
  116. HagemeierS.R. DickersonS.J. MengQ. YuX. MertzJ.E. KenneyS.C. Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase.J. Virol.20108494383439410.1128/JVI.02369‑09 20181712
    [Google Scholar]
  117. ManzaL.L. CodreanuS.G. StamerS.L. Global shifts in protein sumoylation in response to electrophile and oxidative stress.Chem. Res. Toxicol.200417121706171510.1021/tx049767l 15606148
    [Google Scholar]
  118. GolebiowskiF. MaticI. TathamM.H. System-wide changes to SUMO modifications in response to heat shock.Sci. Signal.2009272ra2410.1126/scisignal.2000282 19471022
    [Google Scholar]
  119. EverettR.D. BoutellC. HaleB.G. Interplay between viruses and host sumoylation pathways.Nat. Rev. Microbiol.201311640041110.1038/nrmicro3015 23624814
    [Google Scholar]
  120. PraefckeG.J.K. HofmannK. DohmenR.J. SUMO playing tag with ubiquitin.Trends Biochem. Sci.2012371233110.1016/j.tibs.2011.09.002 22018829
    [Google Scholar]
  121. HaroldC. CoxD. RileyK.J. Epstein-Barr viral microRNAs target caspase 3.Virol. J.201613114510.1186/s12985‑016‑0602‑7 27565721
    [Google Scholar]
  122. MarquitzA.R. MathurA. NamC.S. Raab-TraubN. The Epstein–Barr Virus BART microRNAs target the pro-apoptotic protein Bim.Virology2011412239240010.1016/j.virol.2011.01.028 21333317
    [Google Scholar]
  123. LuY. QinZ. WangJ. Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway.J. Innate Immun.20179657458610.1159/000479749 28877527
    [Google Scholar]
  124. WanX.X. YiH. QuJ.Q. HeQ.Y. XiaoZ.Q. Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues.Oncol. Rep.20153452585260110.3892/or.2015.4237 26330189
    [Google Scholar]
  125. CaiL-M. LyuX-M. LuoW-R. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN.Oncogene201534172156216610.1038/onc.2014.341 25347742
    [Google Scholar]
  126. BoiM. ZuccaE. InghiramiG. BertoniF. PRDM1/BLIMP1: A tumor suppressor gene in B and T cell lymphomas.Leuk. Lymphoma201556512231228
    [Google Scholar]
  127. MandelbaumJ. BhagatG. TangH. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma.Cancer Cell201018656857910.1016/j.ccr.2010.10.030 21156281
    [Google Scholar]
  128. RileyK.J. RabinowitzG.S. YarioT.A. LunaJ.M. DarnellR.B. SteitzJ.A. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency.EMBO J.20123192207222110.1038/emboj.2012.63 22473208
    [Google Scholar]
  129. JangraS. YuenK.S. BotelhoM.G. JinD.Y. Epstein–Barr virus and innate immunity: Friends or foes?Microorganisms20197618310.3390/microorganisms7060183 31238570
    [Google Scholar]
  130. WangM. YuF. WuW. WangY. DingH. QianL. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses.Int. J. Biol. Sci.201814556557610.7150/ijbs.24562 29805308
    [Google Scholar]
  131. OwenK.L. BrockwellN.K. ParkerB.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression.Cancers20191112200210.3390/cancers11122002 31842362
    [Google Scholar]
  132. UemuraY. IsobeY. UchidaA. Expression of activating natural killer‐cell receptors is a hallmark of the innate‐like T‐cell neoplasm in peripheral T‐cell lymphomas.Cancer Sci.201810941254126210.1111/cas.13512 29363227
    [Google Scholar]
  133. PetersM. JacobsS. EhlersM. The function of the soluble interleukin 6 (IL-6) receptor in vivo: Sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6.J. Exp. Med.199618341399140610.1084/jem.183.4.1399 8666898
    [Google Scholar]
  134. KishimotoT. INTERLEUKIN-6: From basic science to medicine—40 years in immunology.https://DoiOrg/101146/AnnurevImmunol2302170411580620042312110.1146/ANNUREV.IMMUNOL.23.021704.115806
  135. ZhangY.M. YuY. ZhaoH.P. EBV-BART-6-3p and cellular microRNA-197 compromise the immune defense of host cells in EBV-positive Burkitt lymphoma.Mol. Med. Rep.20171541877188310.3892/mmr.2017.6173 28259992
    [Google Scholar]
  136. LazarevicV. GlimcherL.H. LordG.M. T-bet: A bridge between innate and adaptive immunity.Nat. Rev. Immunol.2013131177778910.1038/nri3536 24113868
    [Google Scholar]
  137. LazarevicV. SzaboS. GlimcherL.H. T-bet Runs INTERFERence.Immunity201746696897010.1016/j.immuni.2017.05.010 28636963
    [Google Scholar]
  138. HattonO.L. Harris-ArnoldA. SchaffertS. KramsS.M. MartinezO.M. The interplay between Epstein–Barr virus and B lymphocytes: Implications for infection, immunity, and disease.Immunol. Res.2014582-326827610.1007/s12026‑014‑8496‑1 24619311
    [Google Scholar]
  139. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb1596 17486113
    [Google Scholar]
  140. DwivediM. GhoshD. SahaA. Biochemistry of exosomes and their theranostic potential in human diseases.Life Sci.202331512136910.1016/j.lfs.2023.121369 36639052
    [Google Scholar]
  141. PegtelD.M. CosmopoulosK. Thorley-LawsonD.A. Functional delivery of viral miRNAs via exosomes.Proc. Natl. Acad. Sci. USA2010107146328633310.1073/pnas.0914843107 20304794
    [Google Scholar]
  142. GalloA. VellaS. MieleM. Global profiling of viral and cellular non-coding RNAs in Epstein–Barr virus-induced lymphoblastoid cell lines and released exosome cargos.Cancer Lett.201738833434310.1016/j.canlet.2016.12.003 27956246
    [Google Scholar]
  143. SenA. EnriquezJ. RaoM. Host microRNAs are decreased in pediatric solid-organ transplant recipients during EBV+ post-transplant lymphoproliferative disorder.Front. Immunol.20221399455210.3389/fimmu.2022.994552 36304469
    [Google Scholar]
  144. MelincoviciC.S. BoşcaA.B. ŞuşmanS. Vascular endothelial growth factor (VEGF) - Key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.2018592455467 30173249
    [Google Scholar]
  145. YoonC. KimJ. ParkG. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes.Tumour Biol.201637131332110.1007/s13277‑015‑3769‑4 26211004
    [Google Scholar]
  146. CatalánA.M. NakamotoT.E. MelvinJ. The salivary gland fluid secretion mechanism.J. Med. Invest.200956Suppl.19219610.2152/jmi.56.192 20224180
    [Google Scholar]
  147. RamayantiO. VerkuijlenS.A.W.M. NoviantiP. Vesicle‐bound EBV‐BART13‐3p miRNA in circulation distinguishes nasopharyngeal from other head and neck cancer and asymptomatic EBV‐infections.Int. J. Cancer2019144102555256610.1002/ijc.31967 30411781
    [Google Scholar]
  148. MeckesD.G.Jr ShairK.H.Y. MarquitzA.R. KungC.P. EdwardsR.H. Raab-TraubN. Human tumor virus utilizes exosomes for intercellular communication.Proc. Natl. Acad. Sci. USA201010747203702037510.1073/pnas.1014194107 21059916
    [Google Scholar]
  149. GourzonesC. GelinA. BombikI. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells.Virol. J.20107127110.1186/1743‑422X‑7‑271 20950422
    [Google Scholar]
  150. AiJ. TanG. LiW. LiuH. LiT. ZhangG. Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis.Cell Biol. Toxicol.202212010.1007/S10565‑022‑09738‑W/METRICS 35844005
    [Google Scholar]
  151. ZuoL. YueW. DuS. An update: Epstein-Barr virus and immune evasion via microRNA regulation.Virol. Sin.201732317518710.1007/s12250‑017‑3996‑5 28669004
    [Google Scholar]
  152. ShinozakiA. SakataniT. UshikuT. Downregulation of microRNA-200 in EBV-associated gastric carcinoma.Cancer Res.201070114719472710.1158/0008‑5472.CAN‑09‑4620 20484038
    [Google Scholar]
  153. KrausR.J. PerrigoueJ.G. MertzJ.E. ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus.J. Virol.200377119920710.1128/JVI.77.1.199‑207.2003 12477825
    [Google Scholar]
  154. GreeneW. KuhneK. YeF. Molecular biology of KSHV in relation to AIDS-associated oncogenesis.Cancer Treat Res20071336912710.1007/978‑0‑387‑46816‑7_3 17672038
    [Google Scholar]
  155. Ellis-ConnellA.L. IemprideeT. XuI. MertzJ.E. Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication.J. Virol.20108419103291034310.1128/JVI.00923‑10 20668090
    [Google Scholar]
  156. MehtaA. BaltimoreD. MicroRNAs as regulatory elements in immune system logic.Nat. Rev. Immunol.201616527929410.1038/nri.2016.40 27121651
    [Google Scholar]
  157. JiangS. ZhangH.W. LuM.H. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene.Cancer Res.20107083119312710.1158/0008‑5472.CAN‑09‑4250 20354188
    [Google Scholar]
  158. Delgado-OrtegaM. MarcD. DupontJ. TrappS. BerriM. MeurensF. SOCS proteins in infectious diseases of mammals.Vet. Immunol. Immunopathol.20131511-211910.1016/j.vetimm.2012.11.008 23219158
    [Google Scholar]
  159. LuF. WeidmerA. LiuC.G. VoliniaS. CroceC.M. LiebermanP.M. Epstein-Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence.J. Virol.20088221104361044310.1128/JVI.00752‑08 18753206
    [Google Scholar]
  160. ChoS. LeeH.M. YuI.S. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b.Nat. Commun.201891275710.1038/s41467‑018‑05196‑3 30013024
    [Google Scholar]
  161. MansouriS. PanQ. BlencoweB.J. ClaycombJ.M. FrappierL. Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer.J. Virol.20148819111661117710.1128/JVI.01785‑14 25031339
    [Google Scholar]
  162. ThakurA. KumarM. Integration of human and viral miRNAs in Epstein-Barr virus-associated tumors and implications for drug repurposing.OMICS20232739310810.1089/omi.2023.0005
    [Google Scholar]
  163. LyuX. FangW. CaiL. TGFβR2 is a major target of miR-93 in nasopharyngeal carcinoma aggressiveness.Mol. Cancer20141315110.1186/1476‑4598‑13‑51 24606633
    [Google Scholar]
  164. HasanS. An overview of promising biomarkers in cancer screening and detection.Curr. Cancer Drug Targets2020201183185210.2174/1568009620666200824102418 32838718
    [Google Scholar]
  165. WuL. LiC. PanL. Nasopharyngeal carcinoma: A review of current updates.Exp. Ther. Med.20181543687369210.3892/etm.2018.5878 29556258
    [Google Scholar]
  166. LindsayJ. OthmanJ. HeldmanM.R. SlavinM.A. Epstein–Barr virus posttransplant lymphoproliferative disorder: Update on management and outcomes.Curr. Opin. Infect. Dis.202134663564510.1097/QCO.0000000000000787 34751183
    [Google Scholar]
  167. CaoY. XieL. ShiF. Targeting the signaling in Epstein–Barr virus-associated diseases: Mechanism, regulation, and clinical study.Signal Transduct. Target. Ther.2021611510.1038/s41392‑020‑00376‑4 33436584
    [Google Scholar]
  168. KoleśnikM. MalmM. DropB. DworzańskiJ. Polz-DacewiczM. MiRNA-21–5p as a biomarker in EBV-associated oropharyngeal cancer.Ann. Agric. Environ. Med.2023301778210.26444/aaem/156852 36999859
    [Google Scholar]
  169. WeiL. ShiC. ZhangY. Expression of miR 34a and Ki67 in nasopharyngeal carcinoma and the relationship with clinicopathological features and prognosis.Oncol. Lett.20191921273128010.3892/ol.2019.11217 31966057
    [Google Scholar]
  170. ShawP. SenthilnathanR. KrishnanS. A clinical update on the prognostic effect of microRNA biomarkers for survival outcome in nasopharyngeal carcinoma: A systematic review and meta-analysis.Cancers20211317436910.3390/cancers13174369 34503179
    [Google Scholar]
  171. ZouX. ZhuD. ZhangH. MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis.Gene202072714424310.1016/j.gene.2019.144243 31743768
    [Google Scholar]
  172. XuX. LuJ. WangF. Dynamic changes in plasma microRNAs have potential predictive values in monitoring recurrence and metastasis of nasopharyngeal carcinoma.BioMed Res. Int.2018201811010.1155/2018/7329195 29581984
    [Google Scholar]
  173. ZhengX.H. CuiC. RuanH.L. Plasma microRNA profiles of nasopharyngeal carcinoma patients reveal miR-548q and miR-483-5p as potential biomarkers.Chin. J. Cancer201433733033810.5732/cjc.013.10246 24874644
    [Google Scholar]
  174. AbusalahM.A.H. IrekeolaA.A. ShuebR.H. JarrarM. YeanC.Y. Prognostic Epstein-Barr Virus (EBV) miRNA biomarkers for survival outcome in EBV-associated epithelial malignancies: Systematic review and meta-analysis.PLoS One2022174e026689310.1371/journal.pone.0266893 35436288
    [Google Scholar]
  175. JiangC. ChenJ. XieS. Evaluation of circulating EBV microRNA BART2‐5p in facilitating early detection and screening of nasopharyngeal carcinoma.Int. J. Cancer2018143123209321710.1002/ijc.31642 29971780
    [Google Scholar]
  176. ZhengX.H. LuL.X. CuiC. ChenM.Y. LiX.Z. JiaW.H. Epstein-Barr virus mir-bart1-5p detection via nasopharyngeal brush sampling is effective for diagnosing nasopharyngeal carcinoma.Oncotarget2016744972498010.18632/oncotarget.6649 26701721
    [Google Scholar]
  177. GaoW. WongT.S. LvK.X. ZhangM.J. TsangR.K.Y. ChanJ.Y.W. Detection of Epstein–Barr virus (EBV)‐encoded microRNAs in plasma of patients with nasopharyngeal carcinoma.Head Neck201941378079210.1002/hed.25544 30548946
    [Google Scholar]
  178. LinC. LinK. ZhangB. Plasma Epstein-Barr virus microRNA BART8-3p as a diagnostic and prognostic biomarker in nasopharyngeal carcinoma.Oncologist2022274e340e34910.1093/oncolo/oyac024 35380720
    [Google Scholar]
  179. KangB.W. ChoiY. KwonO.K. High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer.Oncotarget201789149881499410.18632/oncotarget.14744 28122341
    [Google Scholar]
  180. El-GoharyA.M. OrfaoJ.A. GadO.A.E.F. El-ZamaranyE.A. ZahraM.K. BHRF1-1 microRNA of Epstein Barr virus in chronic B-lymphocytic leukemia patients.J. Adv. Med. Med. Res.2022342413915010.9734/jammr/2022/v34i244913
    [Google Scholar]
  181. Wei-tingW. YunY. YangZ. Yi-ningL. Yu-linW. Yi-yiL. EBV-microRNAs as potential biomarkers in EBV-related fever: A narrative review.Curr. Mol. Med.202423121310.2174/1566524023666221118122005
    [Google Scholar]
  182. ChoyE.Y-W. KokK-H. TsaoS.W. JinD-Y. Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs.Gene Ther.200815319120210.1038/sj.gt.3303055 17972920
    [Google Scholar]
  183. OttosenS. ParsleyT.B. YangL. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122.Antimicrob. Agents Chemother.201559159960810.1128/AAC.04220‑14 25385103
    [Google Scholar]
  184. BaderA.G. miR-34 – A microRNA replacement therapy is headed to the clinic.Front. Genet.2012312010.3389/fgene.2012.00120 22783274
    [Google Scholar]
  185. SchmidtM.F. MiRNA targeting drugs: The next blockbusters?Methods Mol. Biol.2017151732210.1007/978‑1‑4939‑6563‑2_1 27924471
    [Google Scholar]
  186. ChanJ.Y.W. WongS.T.S. WeiW.I. The role of Epstein‐Barr virus–encoded microRNA BART7 status of resection margins in the prediction of local recurrence after salvage nasopharyngectomy for recurrent nasopharyngeal carcinoma.Cancer2015121142358236610.1002/cncr.29380 25955785
    [Google Scholar]
  187. SettenR.L. RossiJ.J. HanS. The current state and future directions of RNAi-based therapeutics.Nat. Rev. Drug Discov.201918642144610.1038/s41573‑019‑0017‑4 30846871
    [Google Scholar]
  188. SkalskyR.L. MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications.Curr. Opin. Virol.20225610127210.1016/j.coviro.2022.101272 36242893
    [Google Scholar]
  189. HuangT. YinL. WuJ. MicroRNA-19b-3p regulates nasopharyngeal carcinoma radiosensitivity by targeting TNFAIP3/NF-κB axis.J. Exp. Clin. Cancer Res.201635118810.1186/s13046‑016‑0465‑1 27919278
    [Google Scholar]
  190. YuenK.S. ChanC.P. WongN.H.M. CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells.J. Gen. Virol.201596362663610.1099/jgv.0.000012 25502645
    [Google Scholar]
  191. MünzC. Immune escape by non-coding RNAs of the Epstein Barr virus.Front. Microbiol.20211265738710.3389/fmicb.2021.657387 34234755
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232327174241211075019
Loading
/content/journals/cgt/10.2174/0115665232327174241211075019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; CRISPR/Cas9; EBV; EBV-associated tumors; MicroRNA; PTLD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test