Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Despite tremendous advancements in knowledge, diagnosis, and availability of both traditional and innovative treatments, pancreatic cancer remains a dangerous disease with a high death rate and dismal prognosis. The traditional strategy in adjuvant and palliative settings is still cytotoxic chemotherapy predicated on the purine derivative gemcitabine; nevertheless, there is an increasing need for new medicines that target the primary molecular pathways and pathophysiological abnormalities implicated. There is now just a tiny amount of evidence of therapeutic benefit when the targeted drug erlotinib is added to the conventional gemcitabine treatment. In preclinical and clinical trials, novel medications targeting mTOR, NF-κB, and proteasome, including the enzyme histone deacetylase, are currently being studied alongside the well-established monoclonal antibody treatments and small-molecule protein tyrosine kinase inhibitors. These novel medications may change the negative natural progression of this illness in conjunction with gene therapy and immunotherapy, both of which are undergoing clinical study. In this regard, leveraging miRNA manipulation to combat cancer is appealing due to its promise to deliver personalized treatment tailored to an individual's distinct gene or miRNA expression profile. Preclinical studies involving animals have showcased the effectiveness of miRNA-based therapies, with several of these treatments now progressing into human clinical trials for various malignancies and other medical conditions. This review describes the important developments of targeted therapeutics that are associated with pancreatic cancer and the discoveries which can help in dealing with this fatal malignancy in a more significant manner.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232320846240910055032
2024-09-24
2025-10-16
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.2159031912902
    [Google Scholar]
  2. SohalD.P.S. KennedyE.B. CinarP. ConroyT. CopurM.S. CraneC.H. Garrido-LagunaI. LauM.W. JohnsonT. KrishnamurthiS. MoravekC. O’ReillyE.M. PhilipP.A. PantS. ShahM.A. SahaiV. UronisH.E. ZaidiN. LaheruD. Metastatic pancreatic cancer: ASCO guideline update.J. Clin. Oncol.202038273217323010.1200/JCO.20.0136432755482
    [Google Scholar]
  3. BalabanE.P. ManguP.B. YeeN.S. Locally advanced unresectable pancreatic cancer: American society of clinical oncology clinical practice guideline summary.J. Oncol. Pract.201713426526910.1200/JOP.2016.01737628399382
    [Google Scholar]
  4. KhoranaA.A. ManguP.B. BerlinJ. EngebretsonA. HongT.S. MaitraA. MohileS.G. MumberM. SchulickR. ShapiroM. UrbaS. ZehH.J. KatzM.H.G. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline update.J. Clin. Oncol.201735202324232810.1200/JCO.2017.72.494828398845
    [Google Scholar]
  5. KhoranaA.A. McKerninS.E. BerlinJ. HongT.S. MaitraA. MoravekC. MumberM. SchulickR. ZehH.J. KatzM.H.G. Potentially curable pancreatic adenocarcinoma: ASCO clinical practice guideline update.J. Clin. Oncol.201937232082208810.1200/JCO.19.0094631180816
    [Google Scholar]
  6. HallW.A. GoodmanK.A. Radiation therapy for pancreatic adenocarcinoma, a treatment option that must be considered in the management of a devastating malignancy.Radiat. Oncol.201914111410.1186/s13014‑019‑1277‑131242912
    [Google Scholar]
  7. de GonzalezA.B. SweetlandS. SpencerE. A meta-analysis of obesity and the risk of pancreatic cancer.Br. J. Cancer200389351952310.1038/sj.bjc.660114012888824
    [Google Scholar]
  8. IncioJ. LiuH. SubojP. ChinS.M. ChenI.X. PinterM. NgM.R. NiaH.T. GrahovacJ. KaoS. BabykuttyS. HuangY. JungK. RahbariN.N. HanX. ChauhanV.P. MartinJ.D. KahnJ. HuangP. DesphandeV. MichaelsonJ. MichelakosT.P. FerroneC.R. SoaresR. BoucherY. FukumuraD. JainR.K. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy.Cancer Discov.20166885286910.1158/2159‑8290.CD‑15‑117727246539
    [Google Scholar]
  9. ElenaJ.W. SteplowskiE. YuK. HartgeP. TobiasG.S. BrotzmanM.J. ChanockS.J. Stolzenberg-SolomonR.Z. ArslanA.A. Bueno-de-MesquitaH.B. HelzlsouerK. JacobsE.J. LaCroixA. PetersenG. ZhengW. AlbanesD. AllenN.E. AmundadottirL. BaoY. BoeingH. Boutron-RuaultM.C. BuringJ.E. GazianoJ.M. GiovannucciE.L. DuellE.J. HallmansG. HowardB.V. HunterD.J. HutchinsonA. JacobsK.B. KooperbergC. KraftP. MendelsohnJ.B. MichaudD.S. PalliD. PhillipsL.S. OvervadK. PatelA.V. SansburyL. ShuX.O. SimonM.S. SlimaniN. TrichopoulosD. VisvanathanK. VirtamoJ. WolpinB.M. Zeleniuch-JacquotteA. FuchsC.S. HooverR.N. GrossM. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium.Cancer Causes Control2013241132510.1007/s10552‑012‑0078‑823112111
    [Google Scholar]
  10. RyanD.P. HongT.S. BardeesyN. Pancreatic adenocarcinoma.N. Engl. J. Med.2014371111039104910.1056/NEJMra140419825207767
    [Google Scholar]
  11. KleeffJ. KorcM. ApteM. La VecchiaC. JohnsonC.D. BiankinA.V. NealeR.E. TemperoM. TuvesonD.A. HrubanR.H. NeoptolemosJ.P. Pancreatic cancer.Nat. Rev. Dis. Primers2016211602210.1038/nrdp.2016.2227158978
    [Google Scholar]
  12. CarrR.M. Fernandez-ZapicoM.E. Toward personalized TGFβ inhibition for pancreatic cancer.EMBO Mol. Med.20191111e1141410.15252/emmm.20191141431639254
    [Google Scholar]
  13. BiankinA.V. MaitraA. Subtyping pancreatic cancer.Cancer Cell201528441141310.1016/j.ccell.2015.09.02026461089
    [Google Scholar]
  14. BartelD.P. MicroRNAs.Cell2004116228129710.1016/S0092‑8674(04)00045‑514744438
    [Google Scholar]
  15. GrendaA. BudzyńskiM. FilipA.A. Biogenesis of microRNA molecules and their importance in the development and course of selected hematological disorders.Postepy Hig. Med. Dosw.20136717418510.5604/17322693.103836123475494
    [Google Scholar]
  16. NtalaC. DebernardiS. FeakinsR.M. Crnogorac-JurcevicT. Demographic, clinical, and pathological features of early onset pancreatic cancer patients.BMC Gastroenterol.201818113910.1186/s12876‑018‑0866‑z30208959
    [Google Scholar]
  17. JoyceJ.A. FearonD.T. T cell exclusion, immune privilege, and the tumor microenvironment.Science20153486230748010.1126/science.aaa620425838376
    [Google Scholar]
  18. PanZ. TianY. NiuG. CaoC. Role of microRNAs in remodeling the tumor microenvironment (Review).Int. J. Oncol.202056240741610.3390/ijms2204221031894326
    [Google Scholar]
  19. ChengC.J. BahalR. BabarI.A. PincusZ. BarreraF. LiuC. SvoronosA. BraddockD.T. GlazerP.M. EngelmanD.M. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment.Nature201551810711010.1038/nature13905
    [Google Scholar]
  20. ShuelS.L. Targeted cancer therapies.Can. Fam. Physician202268751551810.46747/cfp.680751535831091
    [Google Scholar]
  21. GuoK. CaoY.Y. QianL.C. Dihydroartemisinin induces ferroptosis in pancreatic cancer cells by the regulation of survival prediction-related genes.Tradit. Med. Res.20238677210.53388/TMR20230618001
    [Google Scholar]
  22. HuY. YangL. LaiY. Recent findings regarding the synergistic effects of emodin and its analogs with other bioactive compounds: Insights into new mechanisms.Biomed. Pharmacoth.202316211458510.1016/j.biopha.2023.114585
    [Google Scholar]
  23. RenS. SongL. TianY. ZhuL. GuoK. ZhangH. WangZ. Emodin-conjugated PEGylation of Fe3O4 nanoparticles for FI/MRI dual-modal imaging and therapy in pancreatic cancer.Int. J. Nanomedicine2021167463747810.2147/IJN.S33558834785894
    [Google Scholar]
  24. NeoptolemosJ.P. StockenD.D. FriessH. BassiC. DunnJ.A. HickeyH. BegerH. Fernandez-CruzL. DervenisC. LacaineF. FalconiM. PederzoliP. PapA. SpoonerD. KerrD.J. BüchlerM.W. European Study Group for Pancreatic Cancer A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer.N. Engl. J. Med.2004350121200121010.1056/NEJMoa03229515028824
    [Google Scholar]
  25. YamaokaT. OhbaM. OhmoriT. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms.Int. J. Mol. Sci.20171811242010.3390/ijms1811242029140271
    [Google Scholar]
  26. SharmaB. SinghV.J. ChawlaP.A. Epidermal growth factor receptor inhibitors as potential anticancer agents: An update of recent progress.Bioorg. Chem.202111610539310.1016/j.bioorg.2021.10539334628226
    [Google Scholar]
  27. GuardiolaS. VareseM. Sánchez-NavarroM. GiraltE. A third shot at EGFR: New opportunities in cancer therapy.Trends Pharmacol. Sci.2019401294195510.1016/j.tips.2019.10.00431706618
    [Google Scholar]
  28. ChenA. PARP inhibitors: its role in treatment of cancer.Chin. J. Cancer201130746347110.5732/cjc.011.1011121718592
    [Google Scholar]
  29. RoyR. ChunJ. PowellS.N. BRCA1 and BRCA2: different roles in a common pathway of genome protection.Nat. Rev. Cancer2012121687810.1038/nrc318122193408
    [Google Scholar]
  30. ZarembaT. CurtinN.J. PARP inhibitor development for systemic cancer targeting.Anticancer. Agents Med. Chem.20077551552310.2174/18715200778166871517896912
    [Google Scholar]
  31. GolanT. HammelP. ReniM. Van CutsemE. MacarullaT. HallM.J. ParkJ.O. HochhauserD. ArnoldD. OhD.Y. Reinacher-SchickA. TortoraG. AlgülH. O’ReillyE.M. McGuinnessD. CuiK.Y. SchliengerK. LockerG.Y. KindlerH.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.N. Engl. J. Med.2019381431732710.1056/NEJMoa190338731157963
    [Google Scholar]
  32. LiuJ.F. SilverD.P. Poly ADP-ribose polymerase inhibitors: science and current clinical development.Curr. Opin. Oncol.201022656757210.1097/CCO.0b013e32833edbf820739886
    [Google Scholar]
  33. PoggioF. BruzzoneM. CeppiM. ConteB. MartelS. MaurerC. TagliamentoM. VigliettiG. Del MastroL. de AzambujaE. LambertiniM. Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: A systematic review and meta-analysis.ESMO Open201834e00036110.1136/esmoopen‑2018‑00036129942664
    [Google Scholar]
  34. LaymanRM. ArunB. PARP inhibitors in triple-negative breast cancer including those with BRCA mutations.Cancer J.2021271677510.1097/PPO.0000000000000499
    [Google Scholar]
  35. BryantH.E. SchultzN. ThomasH.D. ParkerK.M. FlowerD. LopezE. KyleS. MeuthM. CurtinN.J. HelledayT. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.Nature2005434703591391710.1038/nature0344315829966
    [Google Scholar]
  36. DevicoM.N. KroeningG. DayyaniF. ZellJ. LeeF.C. ChoM. ValerinJ. BRCA-mutated pancreatic cancer: From discovery to novel treatment paradigms.Cancers (Basel)20221410245310.3390/cancers1410245335626055
    [Google Scholar]
  37. ChiJ. ChungS.Y. PrasadS. SaifM.W. The role of olaparib in metastatic pancreatic cancer.Cancer Med J.202143899110.3389/fphar.2021.63281834151318
    [Google Scholar]
  38. MirzaM.R. PignataS. LedermannJ.A. Latest clinical evidence and further development of PARP inhibitors in ovarian cancer.Ann. Oncol.20182961366137610.1093/annonc/mdy17429750420
    [Google Scholar]
  39. Calimano-RamirezL.F. DaoudT. GopireddyD.R. MoraniA.C. WatersR. GumusK. KlekersA.R. BhosaleP.R. VirarkarM.K. Pancreatic acinar cell carcinoma: A comprehensive review.World J. Gastroenterol.202228405827584410.3748/wjg.v28.i40.582736353206
    [Google Scholar]
  40. WisnoskiN.C. TownsendC.M.Jr NealonW.H. FreemanJ.L. RiallT.S. 672 patients with acinar cell carcinoma of the pancreas: A population-based comparison to pancreatic adenocarcinoma.Surgery2008144214114810.1016/j.surg.2008.03.00618656619
    [Google Scholar]
  41. SchmidtC.M. MatosJ.M. BentremD.J. TalamontiM.S. LillemoeK.D. BilimoriaK.Y. Acinar cell carcinoma of the pancreas in the United States: Prognostic factors and comparison to ductal adenocarcinoma.J. Gastrointest. Surg.200812122078208610.1007/s11605‑008‑0705‑618836784
    [Google Scholar]
  42. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  43. RanghieroA. FrascarelliC. CursanoG. PesciaC. IvanovaM. VacircaD. RappaA. TaorminaS.V. BarberisM. FuscoN. RoccoE.G. VenetisK. Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing.Cytopathology202334651952910.1111/cyt.13295
    [Google Scholar]
  44. JuhyunO. Multiplexed single-cell analysis of FNA allows accurate diagnosis of salivary gland tumors.Cancer Cytopathol.2022130858159410.1002/cncy.22594
    [Google Scholar]
  45. CoccoE. ScaltritiM. DrilonA. NTRK fusion-positive cancers and TRK inhibitor therapy.Nat. Rev. Clin. Oncol.2018151273174710.1038/s41571‑018‑0113‑030333516
    [Google Scholar]
  46. GuptaM. SherrowC. KroneM.E. BlaisE.M. PishvaianM.J. PetricoinE.F. MatrisianL.M. DeArbeloaP. GregoryG. BrownA. ZalewskiO. PrinzingG. RocheC. KanehiraK. MukherjeeS. IyerR. FountzilasC. Targeting the NTRK fusion gene in pancreatic acinar cell carcinoma: A case report and review of the literature.J. Natl. Compr. Canc. Netw.2021191101510.6004/jnccn.2020.764133406492
    [Google Scholar]
  47. DunnD.B. Larotrectinib and entrectinib: TRK inhibitors for the treatment of pediatric and adult patients with NTRK gene fusion.J. Adv. Pract. Oncol.202011441842310.6004/jadpro.2020.11.4.933604102
    [Google Scholar]
  48. HafeezU. ParakhS. GanH.K. ScottA.M. Antibody-drug conjugates for cancer therapy.Molecules20202520476410.3390/molecules2520476433081383
    [Google Scholar]
  49. DrilonA. LaetschT.W. KummarS. DuBoisS.G. LassenU.N. DemetriG.D. NathensonM. DoebeleR.C. FaragoA.F. PappoA.S. TurpinB. DowlatiA. BroseM.S. MascarenhasL. FedermanN. BerlinJ. El-DeiryW.S. BaikC. DeekenJ. BoniV. NagasubramanianR. TaylorM. RudzinskiE.R. Meric-BernstamF. SohalD.P.S. MaP.C. RaezL.E. HechtmanJ.F. BenayedR. LadanyiM. TuchB.B. EbataK. CruickshankS. KuN.C. CoxM.C. HawkinsD.S. HongD.S. HymanD.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children.N. Engl. J. Med.2018378873173910.1056/NEJMoa171444829466156
    [Google Scholar]
  50. DoebeleR.C. DrilonA. Paz-AresL. SienaS. ShawA.T. FaragoA.F. BlakelyC.M. SetoT. ChoB.C. TosiD. BesseB. ChawlaS.P. BazhenovaL. KraussJ.C. ChaeY.K. BarveM. Garrido-LagunaI. LiuS.V. ConklingP. JohnT. FakihM. SigalD. LoongH.H. BuchschacherG.L.Jr GarridoP. NievaJ. SteuerC. OverbeckT.R. BowlesD.W. FoxE. RiehlT. Chow-ManevalE. SimmonsB. CuiN. JohnsonA. EngS. WilsonT.R. DemetriG.D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials.Lancet Oncol.202021227128210.1016/S1470‑2045(19)30691‑631838007
    [Google Scholar]
  51. KapplerM. KöhlerT. KampfC. DiestelkötterP. WürlP. SchmitzM. BartelF. LautenschlägerC. RieberE.P. SchmidtH. BacheM. TaubertH. MeyeA. Increased survivin transcript levels: an independent negative predictor of survival in soft tissue sarcoma patients.Int. J. Cancer200195636036310.1002/1097‑0215(20011120)95:6<360:aid‑ijc1063>3.0.co;2‑111668517
    [Google Scholar]
  52. AlbadariN. LiW. Survivin small molecules inhibitors: Recent advances and challenges.Molecules2023283137610.3390/molecules2803137636771042
    [Google Scholar]
  53. NakamuraN. YamauchiT. HiramotoM. YuriM. NaitoM. TakeuchiM. YamanakaK. KitaA. NakaharaT. KinoyamaI. MatsuhisaA. KanekoN. KoutokuH. SasamataM. YokotaH. KawabataS. FuruichiK. Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin.Mol Cell Proteomics.2012117M111.01324310.1074/mcp.M111.013243
    [Google Scholar]
  54. RauchA. HennigD. SchäferC. WirthM. MarxC. HeinzelT. SchneiderG. KrämerO.H. Survivin and YM155: How faithful is the liaison?Biochim. Biophys. Acta Rev. Cancer20141845220222010.1016/j.bbcan.2014.01.00324440709
    [Google Scholar]
  55. SongL. RenS. YueY. TianY. WangZ. A gold nanocage probe targeting survivin for the diagnosis of pancreatic cancer.Pharmaceutics2023155154710.3390/pharmaceutics1505154737242788
    [Google Scholar]
  56. GreenhalfW. ThomasA. Combination therapy for the treatment of pancreatic cancer.Anticancer. Agents Med. Chem.201111541842610.2174/18715201179567739121521155
    [Google Scholar]
  57. LiH. QiW. WangY. MengL. Covalent inhibitor targets KRasG12C: A new paradigm for drugging the undruggable and challenges ahead.Genes & Dis.202310240341410.1016/j.gendis.2021.08.011
    [Google Scholar]
  58. BasudharD. BharadwajG. SomasundaramV. ChengR.Y.S. RidnourL.A. FujitaM. LockettS.J. AndersonS.K. McVicarD.W. WinkD.A. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective.Br. J. Pharmacol.2019176215517610.1111/bph.1448830152521
    [Google Scholar]
  59. GrantT.J. HuaK. SinghA. Molecular pathogenesis of pancreatic cancer.Prog. Mol. Biol. Transl. Sci.201614424127510.1016/bs.pmbts.2016.09.00827865459
    [Google Scholar]
  60. CowanR.W. MaitraA. Genetic progression of pancreatic cancer.Cancer J.2014201808410.1097/PPO.000000000000001124445769
    [Google Scholar]
  61. WittwerN.L. BrownM.P. LiapisV. StaudacherA.H. Antibody drug conjugates: hitting the mark in pancreatic cancer?J. Exp. Clin. Cancer Res.202342128010.1186/s13046‑023‑02868‑x37880707
    [Google Scholar]
  62. DeLeveL.D. Gemtuzumab ozogamicin. Liver sinusoidal endothelial cells and liver injury. Drug-induced liver disease.3rd ed KaplowitzN. DeLeveL.D. AmsterdamElsevier201114214310.1038/sj.bmt.1703242
    [Google Scholar]
  63. AlmhannaK. WrightD. MercadeT.M. Van LaethemJ.L. GracianA.C. Guillen-PonceC. FarisJ. LopezC.M. HubnerR.A. BendellJ. BolsA. FeliuJ. StarlingN. EnzingerP. MahalinghamD. MessersmithW. YangH. FasanmadeA. DanaeeH. KalebicT. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C.Invest. New Drugs201735563464110.1007/s10637‑017‑0473‑928527133
    [Google Scholar]
  64. LiuK. LiM. LiY. LiY. ChenZ. TangY. YangM. DengG. LiuH. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers.Mol. Cancer20242316210.1186/s12943‑024‑01963‑738519953
    [Google Scholar]
  65. TsuchikamaK. AnZ. Antibody-drug conjugates: recent advances in conjugation and linker chemistries.Protein Cell201891334610.1007/s13238‑016‑0323‑027743348
    [Google Scholar]
  66. JinS. SunY. LiangX. GuX. NingJ. XuY. ChenS. PanL. Emerging new therapeutic antibody derivatives for cancer treatment.Signal Transduct. Target. Ther.2022713910.1038/s41392‑021‑00868‑x35132063
    [Google Scholar]
  67. DanN. SetuaS. KashyapV. KhanS. JaggiM. YallapuM. ChauhanS. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications.Pharmaceuticals (Basel)20181123210.3390/ph1102003229642542
    [Google Scholar]
  68. TsujiiS. SeradaS. FujimotoM. UemuraS. NamikawaT. NomuraT. MurakamiI. HanazakiK. NakaT. Glypican-1 is a novel target for stroma and tumor cell dual-targeting antibody–drug conjugates in pancreatic cancer.Mol. Cancer Ther.202120122495250510.1158/1535‑7163.MCT‑21‑033534583978
    [Google Scholar]
  69. SzotC. SahaS. ZhangX.M. ZhuZ. HiltonM.B. MorrisK. SeamanS. DunleaveyJ.M. HsuK.S. YuG.J. MorrisH. SwingD.A. HainesD.C. WangY. HwangJ. FengY. WelschD. DeCrescenzoG. ChaudharyA. ZudaireE. DimitrovD.S. St CroixB. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release.J. Clin. Invest.201812872927294310.1172/JCI12048129863500
    [Google Scholar]
  70. FuZ. LiS. HanS. ShiC. ZhangY. Antibody drug conjugate: the “biological missile” for targeted cancer therapy.Signal Transduct. Target. Ther.2022719310.1038/s41392‑022‑00947‑735318309
    [Google Scholar]
  71. IorioM.V. CroceC.M. MicroRNAs in cancer: Small molecules with a huge impact.J. Clin. Oncol.200927345848585610.1200/JCO.2009.24.031719884536
    [Google Scholar]
  72. HaM. KimV.N. Regulation of microRNA biogenesis.Nat. Rev. Mol. Cell Biol.201415850952410.1038/nrm383825027649
    [Google Scholar]
  73. CroceC.M. Causes and consequences of microRNA dysregulation in cancer.Nat. Rev. Genet.2009101070471410.1038/nrg263419763153
    [Google Scholar]
  74. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc199717060945
    [Google Scholar]
  75. LingH. FabbriM. CalinG.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development.Nat. Rev. Drug Discov.2013121184786510.1038/nrd414024172333
    [Google Scholar]
  76. GarzonR. MarcucciG. CroceC.M. Targeting microRNAs in cancer: rationale, strategies and challenges.Nat. Rev. Drug Discov.201091077578910.1038/nrd317920885409
    [Google Scholar]
  77. KongY.W. Ferland-McColloughD. JacksonT.J. BushellM. microRNAs in cancer management.Lancet Oncol.2012136e249e25810.1016/S1470‑2045(12)70073‑622652233
    [Google Scholar]
  78. SiegelR. NaishadhamD. JemalA. Cancer statistics, 2012.CA Cancer J. Clin.2012621102910.3322/caac.2013822237781
    [Google Scholar]
  79. BeckerA.E. HernandezY.G. FruchtH. LucasA.L. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection.World J. Gastroenterol.20142032111821119810.3748/wjg.v20.i32.1118225170203
    [Google Scholar]
  80. ZhangY. LiM. WangH. FisherW.E. LinP.H. YaoQ. ChenC. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis.World J. Surg.200933469870910.1007/s00268‑008‑9833‑019030927
    [Google Scholar]
  81. MaM.Z. KongX. WengM.Z. ChengK. GongW. QuanZ.W. PengC.H. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: meta-analysis, experimental validation and clinical significance.J. Exp. Clin. Cancer Res.20133217110.1186/1756‑9966‑32‑7124289824
    [Google Scholar]
  82. PassadouroM. FanecaH. Managing pancreatic adenocarcinoma: A special focus in MicroRNA gene therapy.Int J Mol Sci201617571810.3390/ijms17050718
    [Google Scholar]
  83. WeilerJ. HunzikerJ. HallJ. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease?Gene Ther.200613649650210.1038/sj.gt.330265416195701
    [Google Scholar]
  84. KrützfeldtJ. RajewskyN. BraichR. RajeevK.G. TuschlT. ManoharanM. StoffelM. Silencing of microRNAs in vivo with ‘antagomirs’.Nature2005438706868568910.1038/nature0430316258535
    [Google Scholar]
  85. SwayzeE.E. SiwkowskiA.M. WancewiczE.V. MigawaM.T. WyrzykiewiczT.K. HungG. MoniaB.P. BennettC.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals.Nucleic Acids Res.200735268770010.1093/nar/gkl107117182632
    [Google Scholar]
  86. LennoxK.A. BehlkeM.A. Chemical modification and design of anti-miRNA oligonucleotides.Gene Ther.201118121111112010.1038/gt.2011.10021753793
    [Google Scholar]
  87. PecotC.V. CalinG.A. ColemanR.L. Lopez-BeresteinG. SoodA.K. RNA interference in the clinic: Challenges and future directions.Nat. Rev. Cancer2011111596710.1038/nrc296621160526
    [Google Scholar]
  88. OzpolatB. SoodA.K. Lopez-BeresteinG. Nanomedicine based approaches for the delivery of siRNA in cancer.J. Intern. Med.20102671445310.1111/j.1365‑2796.2009.02191.x20059643
    [Google Scholar]
  89. OzpolatB. SoodA.K. Lopez-BeresteinG. Liposomal siRNA nanocarriers for cancer therapy.Adv. Drug Deliv. Rev.20146611011610.1016/j.addr.2013.12.00824384374
    [Google Scholar]
  90. ShahbaziR. OzpolatB. UlubayramK. Oligonucleotide-based theranostic nanoparticles in cancer therapy.Nanomedicine (Lond.)201611101287130810.2217/nnm‑2016‑003527102380
    [Google Scholar]
  91. WuY. CrawfordM. MaoY. LeeR.J. DavisI.C. EltonT.S. LeeL.J. Nana-SinkamS.P. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer.Mol. Ther. Nucleic Acids201324e8410.1038/mtna.2013.1423591808
    [Google Scholar]
  92. OhnoS. TakanashiM. SudoK. UedaS. IshikawaA. MatsuyamaN. FujitaK. MizutaniT. OhgiT. OchiyaT. GotohN. KurodaM. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells.Mol Ther.201321118519110.1038/mt.2012.180
    [Google Scholar]
  93. GurbuzN. OzpolatB. MicroRNA-based targeted therapeutics in pancreatic cancer.Anticancer Res.201239252953210.21873/anticanres.13144
    [Google Scholar]
  94. JoplingC.L. YiM. LancasterA.M. LemonS.M. SarnowP. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.Science200530957401577158110.1126/science.111332916141076
    [Google Scholar]
  95. PramanikD. CampbellN.R. KarikariC. ChivukulaR. KentO.A. MendellJ.T. MaitraA. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice.Mol. Cancer Ther.20111081470148010.1158/1535‑7163.MCT‑11‑015221622730
    [Google Scholar]
  96. HuQ.L. JiangQ.Y. JinX. ShenJ. WangK. LiY.B. XuF.J. TangG.P. LiZ.H. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model.Biomaterials20133492265227610.1016/j.biomaterials.2012.12.01623298779
    [Google Scholar]
  97. SinghA. AroraS. SwaminathanS.K. KirtaneA. SrivastavaS. BhardwajA. SinghS. PanyamJ. Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy.Int. J. Nanomed201492933294210.2147/IJN.S6194924971005
    [Google Scholar]
  98. BorchardtH. KogelA. KalwaH. WeirauchU. AignerA. Therapeutic miR-506-3p replacement in pancreatic carcinoma leads to multiple effects including autophagy, apoptosis, senescence, and mitochondrial alterations in vitro and in vivo.Biomedicines2022107169210.3390/biomedicines1007169235884996
    [Google Scholar]
  99. OzpolatB. MicroRNA-based targeted therapeutics in pancreatic cancer.Anticancer Res.201939252953210.21873/anticanres.1314430711926
    [Google Scholar]
  100. MokE.T.Y. ChittyJ.L. CoxT.R. miRNAs in pancreatic cancer progression and metastasis.Clin. Exp. Metastasis202441316318610.1007/s10585‑023‑10256‑038240887
    [Google Scholar]
  101. PillaiR.S. BhattacharyyaS.N. ArtusC.G. ZollerT. CougotN. BasyukE. BertrandE. FilipowiczW. Inhibition of translational initiation by Let-7 MicroRNA in human cells.Science200530957401573157610.1126/science.111507916081698
    [Google Scholar]
  102. MaX. WangM. YingT. WuY. Reforming solid tumor treatment: the emerging potential of smaller format antibody-drug conjugate.Antib. Ther.20247211412210.1093/abt/tbae00538566971
    [Google Scholar]
  103. AbourehabM.A.S. AlqahtaniA.M. YoussifB.G.M. GoudaA.M. Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism.Molecules20212621667710.3390/molecules2621667734771085
    [Google Scholar]
  104. KruegerK.E. SrivastavaS. Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics.Mol. Cell. Proteomics20065101799181010.1074/mcp.R600009‑MCP20016844681
    [Google Scholar]
  105. IqbalM.J. JavedZ. SadiaH. MehmoodS. AkbarA. ZahidB. NadeemT. RoshanS. VaroniE.M. IritiM. GürerE.S. Sharifi-RadJ. CalinaD. Targeted therapy using nanocomposite delivery systems in cancer treatment: highlighting miR34a regulation for clinical applications.Cancer Cell Int.20232318410.1186/s12935‑023‑02929‑337149609
    [Google Scholar]
  106. SeyhanA.A. Trials and tribulations of microRNA therapeutics.Int. J. Mol. Sci.2024253146910.3390/ijms2503146938338746
    [Google Scholar]
  107. MadadjimR. AnT. CuiJ. MicroRNAs in pancreatic cancer: Advances in biomarker discovery and therapeutic implications.Int. J. Mol. Sci.2024257391410.3390/ijms2507391438612727
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232320846240910055032
Loading
/content/journals/cgt/10.2174/0115665232320846240910055032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test