Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Gene therapy has traditionally been used to treat individuals with late-stage cancers or congenital abnormalities. Numerous prospects for therapeutic genetic modifications have emerged with the discovery that gene therapy applications are far more extensive, particularly in skin and exterior wounds. Cutaneous wound healing is a complex, multistep process involving multiple steps and mediators that operate in a network of activation and inhibition processes. This setting presents a unique obstacle for gene delivery. Many gene delivery strategies have been developed, including liposomal administration, high-pressure injection, viral transfection, and the application of bare DNA. Among several gene transfer techniques, categorical polymers, nanoparticles, and liposomal-based constructs show great promise for non-viral gene transfer in wounds. Clinical experiments have shown that efficient transportation of certain polypeptides to the intended wound location is a crucial factor in wound healing. Genetically engineered cells can be used to produce and control the delivery of specific growth factors, thereby addressing the drawbacks of mechanically administered recombinant growth factors. We have discussed how repair mechanisms are based on molecules and cells, as well as their breakdown, and provided an overview of the methods and research conducted on gene transmission in tissue regeneration.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232316799241008073042
2024-10-23
2025-10-16
Loading full text...

Full text loading...

References

  1. HernandezA. EversB.M. Functional genomics.Arch. Surg.1999134111209121510.1001/archsurg.134.11.1209 10555635
    [Google Scholar]
  2. BrighamP.A. McLoughlinE. Burn incidence and medical care use in the United States: estimates, trends, and data sources.J. Burn Care Rehabil.19961729510710.1097/00004630‑199603000‑00003 8675512
    [Google Scholar]
  3. SingerA.J. ClarkR.A.F. Cutaneous wound healing.N. Engl. J. Med.19993411073874610.1056/NEJM199909023411006 10471461
    [Google Scholar]
  4. WernerS. GroseR. Regulation of wound healing by growth factors and cytokines.Physiol. Rev.200383383587010.1152/physrev.2003.83.3.835 12843410
    [Google Scholar]
  5. PfeiferA. VermaI.M. Gene therapy: promises and problems.Annu. Rev. Genomics Hum. Genet.20012117721110.1146/annurev.genom.2.1.177 11701648
    [Google Scholar]
  6. GanL.M. Lagerström-FermérM. CarlssonL.G. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes.Nat. Commun.201910187110.1038/s41467‑019‑08852‑4 30787295
    [Google Scholar]
  7. WangC. MaL. GaoC. Design of gene-activated matrix for the repair of skin and cartilage.Polym. J.201446847648210.1038/pj.2014.50
    [Google Scholar]
  8. ChoiJ.S. KimH.S. YooH.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery.Drug Deliv. Transl. Res.20155213714510.1007/s13346‑013‑0148‑9 25787739
    [Google Scholar]
  9. BranskiL.K. GauglitzG.G. HerndonD.N. JeschkeM.G. A review of gene and stem cell therapy in cutaneous wound healing.Burns200935217118010.1016/j.burns.2008.03.009 18603379
    [Google Scholar]
  10. LeeP.Y. ChesnoyS. HuangL. Electroporatic delivery of TGF-β1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice.J. Invest. Dermatol.2004123479179810.1111/j.0022‑202X.2004.23309.x 15373787
    [Google Scholar]
  11. ShaabaniE. SharifiaghdamM. Faridi-MajidiR. De SmedtS.C. BraeckmansK. FraireJ.C. Gene therapy to enhance angiogenesis in chronic wounds.Mol. Ther. Nucleic Acids20222987189910.1016/j.omtn.2022.08.020 36159590
    [Google Scholar]
  12. MastB.A. SchultzG.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds.Wound Repair Regen.19964441142010.1046/j.1524‑475X.1996.40404.x 17309691
    [Google Scholar]
  13. SteedD.L. Modifying the wound healing response with exogenous growth factors.Clin. Plast. Surg.199825339740510.1016/S0094‑1298(20)32471‑8 9696900
    [Google Scholar]
  14. LeGrandE.K. Preclinical promise of becaplermin (rhPDGF-BB) in wound healing.Am. J. Surg.1998176Suppl. 248S54S10.1016/S0002‑9610(98)00177‑9 9777972
    [Google Scholar]
  15. RobsonM.C. MustoeT.A. HuntT.K. The future of recombinant growth factors in wound healing.Am. J. Surg.1998176Suppl. 280S82S10.1016/S0002‑9610(98)00186‑X 9777977
    [Google Scholar]
  16. LynchS.E. NixonJ.C. ColvinR.B. AntoniadesH.N. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors.Proc. Natl. Acad. Sci. USA198784217696770010.1073/pnas.84.21.7696 3499612
    [Google Scholar]
  17. Russell MiddaughC. EvansR.K. MontgomeryD.L. CasimiroD.R. Analysis of plasmid DNA from a pharmaceutical perspective.J. Pharm. Sci.199887213014610.1021/js970367a 9519144
    [Google Scholar]
  18. BoehlerR.M. KuoR. ShinS. Lentivirus delivery of IL‐10 to promote and sustain macrophage polarization towards an anti‐inflammatory phenotype.Biotechnol. Bioeng.201411161210122110.1002/bit.25175 24375008
    [Google Scholar]
  19. CuaD.J. HutchinsB. LaFaceD.M. StohlmanS.A. CoffmanR.L. Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis.J. Immunol.2001166160260810.4049/jimmunol.166.1.602 11123343
    [Google Scholar]
  20. GowerR.M. BoehlerR.M. AzarinS.M. RicciC.F. LeonardJ.N. SheaL.D. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression.Biomaterials20143562024203110.1016/j.biomaterials.2013.11.036 24309498
    [Google Scholar]
  21. HolladayC. PowerK. SeftonM. O’BrienT. GallagherW.M. PanditA. Functionalized scaffold-mediated interleukin 10 gene delivery significantly improves survival rates of stem cells in vivo.Mol. Ther.201119596997810.1038/mt.2010.311 21266957
    [Google Scholar]
  22. HolladayC.A. DuffyA.M. ChenX. SeftonM.V. O’BrienT.D. PanditA.S. Recovery of cardiac function mediated by MSC and interleukin-10 plasmid functionalised scaffold.Biomaterials20123351303131410.1016/j.biomaterials.2011.10.019 22078809
    [Google Scholar]
  23. JiX.C. DangY.Y. GaoH.Y. Local injection of Lenti–BDNF at the lesion site promotes M2 macrophage polarization and inhibits inflammatory response after spinal cord injury in mice.Cell. Mol. Neurobiol.201535688189010.1007/s10571‑015‑0182‑x 25840805
    [Google Scholar]
  24. GhivizzaniS.C. LechmanE.R. KangR. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects.Proc. Natl. Acad. Sci. USA19989584613461810.1073/pnas.95.8.4613 9539786
    [Google Scholar]
  25. SuZ. NiuW. LiuM.L. ZouY. ZhangC.L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord.Nat. Commun.201451333810.1038/ncomms4338 24569435
    [Google Scholar]
  26. WilsonH.M. ChettibiS. JobinC. WalbaumD. ReesA.J. KluthD.C. Inhibition of macrophage nuclear factor-kappaB leads to a dominant anti-inflammatory phenotype that attenuates glomerular inflammation in vivo.Am. J. Pathol.20051671273710.1016/S0002‑9440(10)62950‑1 15972949
    [Google Scholar]
  27. DesmetC.M. PréatV. GallezB. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing.Adv. Drug Deliv. Rev.201812926228410.1016/j.addr.2018.02.001 29448035
    [Google Scholar]
  28. JulianoR.L. The delivery of therapeutic oligonucleotides.Nucleic Acids Res.201644146518654810.1093/nar/gkw236 27084936
    [Google Scholar]
  29. DowdyS.F. Overcoming cellular barriers for RNA therapeutics.Nat. Biotechnol.201735322222910.1038/nbt.3802 28244992
    [Google Scholar]
  30. NóbregaC. MendonçaL. MatosC.A. A handbook of gene and cell therapy.ChamSpringer202010.1007/978‑3‑030‑41333‑0
    [Google Scholar]
  31. FerraroB. CruzY.L. CoppolaD. HellerR. Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing.Mol. Ther.200917465165710.1038/mt.2009.12 19240696
    [Google Scholar]
  32. LiuL. MartiG.P. WeiX. Age‐dependent impairment of HIF‐1α expression in diabetic mice: Correction with electroporation‐facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells.J. Cell. Physiol.2008217231932710.1002/jcp.21503 18506785
    [Google Scholar]
  33. XuM. LvJ. WangP. Vascular endothelial Cdc42 deficiency delays skin wound-healing processes by increasing IL-1β and TNF-α expression.Am. J. Transl. Res.2019111257268 30787984
    [Google Scholar]
  34. JeschkeM.G. RichterG. HöfstädterF. HerndonD.N. Perez-PoloJ-R. JauchK-W. Non-viral liposomal keratinocyte growth factor (KGF) cDNA gene transfer improves dermal and epidermal regeneration through stimulation of epithelial and mesenchymal factors.Gene Ther.20029161065107410.1038/sj.gt.3301732 12140734
    [Google Scholar]
  35. UludagH. UbedaA. AnsariA. At the intersection of biomaterials and gene therapy: progress in non-viral delivery of nucleic acids.Front. Bioeng. Biotechnol.2019713110.3389/fbioe.2019.00131 31214586
    [Google Scholar]
  36. BajanS. HutvagnerG. RNA-based therapeutics: from antisense oligonucleotides to miRNAs.Cells20209113710.3390/cells9010137 31936122
    [Google Scholar]
  37. DevalliereJ. ChangW.G. AndrejecskJ.W. Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation.FASEB J.201428290892210.1096/fj.13‑238527 24221087
    [Google Scholar]
  38. WangJ.M. TaoJ. ChenD.D. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus.Arterioscler. Thromb. Vasc. Biol.20143419910910.1161/ATVBAHA.113.302104 24177325
    [Google Scholar]
  39. NelsonCE KimAJ AdolphEJ Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo.Adv Mater2014264607614506.10.1002/adma.201303520 24338842
    [Google Scholar]
  40. RoyT. JamesB.D. AllenJ.B. Anti-VEGF-R2 aptamer and RGD peptide synergize in a bifunctional hydrogel for enhanced angiogenic potential.Macromol. Biosci.2021212200033710.1002/mabi.202000337 33191671
    [Google Scholar]
  41. ShimG. KimD. ParkG.T. JinH. SuhS.K. OhY.K. Therapeutic gene editing: delivery and regulatory perspectives.Acta Pharmacol. Sin.201738673875310.1038/aps.2017.2 28392568
    [Google Scholar]
  42. KcM. SteerC.J. A new era of gene editing for the treatment of human diseases.Swiss Med. Wkly.2019149w2002110.4414/smw.2019.20021 30685869
    [Google Scholar]
  43. BakR.O. Gomez-OspinaN. PorteusM.H. Gene editing on the center stage. Trends Genet. 2018;34:600–611., Porteus M.H. A new class of medicines through DNA editing.N Engl J Med2019380947959
    [Google Scholar]
  44. MooreC.B.T. ChristieK.A. MarshallJ. NesbitM.A. Personalised genome editing – The future for corneal dystrophies.Prog. Retin. Eye Res.20186514716510.1016/j.preteyeres.2018.01.004 29378321
    [Google Scholar]
  45. AdliM. The CRISPR tool kit for genome editing and beyond.Nat. Commun.2018911911191310.1038/s41467‑018‑04252‑2 29765029
    [Google Scholar]
  46. SrifaW. KosaricN. AmorinA. Cas9-AAV6-engineered human mesenchymal stromal cells improved cutaneous wound healing in diabetic mice.Nat. Commun.2020111247010.1038/s41467‑020‑16065‑3 32424320
    [Google Scholar]
  47. BarkerJ.C. BarkerA.D. BillsJ. Genome editing of mouse fibroblasts by homologous recombination for sustained secretion of PDGF-B and augmentation of wound healing.Plast. Reconstr. Surg.20141343389e401e10.1097/PRS.0000000000000427 25158716
    [Google Scholar]
  48. HennD. ZhaoD. BonhamC.A. QS3: CRISPR/Cas9 editing of autologous dendritic cells to enhance angiogenesis and wound healing.Plast. Reconstr. Surg. Glob. Open202197S710.1097/01.GOX.0000769960.21263.cc
    [Google Scholar]
  49. LarcherF. DellambraE. RicoL. Long-term engraftment of single genetically modified human epidermal holoclones enables safety pre-assessment of cutaneous gene therapy.Mol. Ther.20071591670167610.1038/sj.mt.6300238 17579576
    [Google Scholar]
  50. MathorM.B. FerrariG. DellambraE. Clonal analysis of stably transduced human epidermal stem cells in culture.Proc. Natl. Acad. Sci. USA19969319103711037610.1073/pnas.93.19.10371 8816807
    [Google Scholar]
  51. HachiyaA. SriwiriyanontP. PatelA. Gene transfer in human skin with different pseudotyped HIV-based vectors.Gene Ther.200714864865610.1038/sj.gt.3302915 17268532
    [Google Scholar]
  52. Di NunzioF. MaruggiG. FerrariS. Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors.Mol. Ther.200816121977198510.1038/mt.2008.204 18813277
    [Google Scholar]
  53. Sugiyama-NakagiriY. AkiyamaM. ShimizuH. Hair follicle stem cell-targeted gene transfer and reconstitution system.Gene Ther.200613873273710.1038/sj.gt.3302709 16397506
    [Google Scholar]
  54. PereiraC.T. HerndonD.N. Perez-PoloJ.R. BurkeA.S. JeschkeM.G. Scar trek: follicular frontiers in skin replacement therapy.Genet. Mol. Res.200761243249
    [Google Scholar]
  55. ClaudiusC. RashmiG. Hema Mohan Genetically engineered stem cells for therapeutic gene delivery.Curr. Gene Ther.20077424926010.2174/156652307781369119 17969558
    [Google Scholar]
  56. ZhangH. LeeM.Y. HoggM.G. DordickJ.S. SharfsteinS.T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles.ACS Nano2010484733474310.1021/nn9018812 20731451
    [Google Scholar]
  57. HohlfeldJ. de Buys RoessinghA. Hirt-BurriN. Tissue engineered fetal skin constructs for paediatric burns.Lancet2005366948884084210.1016/S0140‑6736(05)67107‑3 16139659
    [Google Scholar]
  58. BraddockM. CampbellC.J. ZuderD. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy.Int. J. Dermatol.1999381180881710.1046/j.1365‑4362.1999.00832.x 10583612
    [Google Scholar]
  59. SvensjoT. YaoF. PomahacB. ErikssonE. Gene therapy application of growth factors. McKayI.A. BrownK.D. Growth Factors and Receptors: A Practical Approach.New YorkOxford University Press199822710.1093/oso/9780199636471.003.0010
    [Google Scholar]
  60. GardlíkR. PálffyR. HodosyJ. LukácsJ. TurnaJ. CelecP. Vectors and delivery systems in gene therapy.Med. Sci. Monit.2005114RA110RA121 15795707
    [Google Scholar]
  61. PetrieN.C. YaoF. ErikssonE. Gene therapy in wound healing.Surg. Clin. North Am.2003833597616vii.10.1016/S0039‑6109(02)00194‑912822728
    [Google Scholar]
  62. LundstromK. Latest development in viral vectors for gene therapy.Trends Biotechnol.200321311712210.1016/S0167‑7799(02)00042‑2 12628368
    [Google Scholar]
  63. DandoJ.S. RoncaroloM.G. BordignonC. AiutiA. A novel human packaging cell line with hematopoietic supportive capacity increases gene transfer into early hematopoietic progenitors.Hum. Gene Ther.200112161979198810.1089/104303401753204553 11686939
    [Google Scholar]
  64. GuD. NguyenT. GonzalezA.M. Adenovirus encoding human platelet-derived growth factor-B delivered in collagen exhibits safety, biodistribution, and immunogenicity profiles favorable for clinical use.Mol. Ther.20049569971110.1016/j.ymthe.2004.02.018 15120331
    [Google Scholar]
  65. LuB. FederoffH.J. WangY. GoldsmithL.A. ScottG. Topical application of viral vectors for epidermal gene transfer.J. Invest. Dermatol.1997108580380810.1111/1523‑1747.ep12292254 9129236
    [Google Scholar]
  66. LiechtyK.W. NesbitM. HerlynM. RaduA. Scott AdzickN. CrombleholmeT.M. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing.J. Invest. Dermatol.1999113337538310.1046/j.1523‑1747.1999.00705.x 10469337
    [Google Scholar]
  67. RitterT. LehmannM. VolkH. Improvements in gene therapy: averting the immune response to adenoviral vectors.BioDrugs200216131010.2165/00063030‑200216010‑00001 11908997
    [Google Scholar]
  68. FlotteT.R. BrantlyM.L. SpencerL.T. Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults.Hum. Gene Ther.20041519312810.1089/10430340460732490 14965381
    [Google Scholar]
  69. DeodatoB. ArsicN. ZentilinL. Recombinant AAV vector encoding human VEGF165 enhances wound healing.Gene Ther.200291277778510.1038/sj.gt.3301697 12040459
    [Google Scholar]
  70. GaleanoM. DeodatoB. AltavillaD. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury.Crit. Care Med.2003311017102510.1097/01.CCM.0000059435.88283.C2 12682466
    [Google Scholar]
  71. ChenS. KapturczakM. LoilerS.A. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors.Hum. Gene Ther.200516223524710.1089/hum.2005.16.235 15761263
    [Google Scholar]
  72. Braun-FalcoM. EisenriedA. BüningH. RingJ. Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase.Arch. Dermatol. Res.20052961152853510.1007/s00403‑005‑0547‑y 15776248
    [Google Scholar]
  73. YaoF. ErikssonE. Gene therapy in wound repair and regeneration.Wound Repair Regen.20008644345110.1046/j.1524‑475x.2000.00443.x 11208171
    [Google Scholar]
  74. QuinonezR. SuttonR.E. Lentiviral vectors for gene delivery into cells.DNA Cell Biol.2002211293795110.1089/104454902762053873 12573051
    [Google Scholar]
  75. MorganJ.R. BarrandonY. GreenH. MulliganR.C. Expression of an exogenous growth hormone gene by transplantable human epidermal cells.Science198723748211476147910.1126/science.3629250 3629250
    [Google Scholar]
  76. Al-SaadiS.A. ClementsG.B. Subak-SharpeJ.H. Viral genes modify herpes simplex virus latency both in mouse footpad and sensory ganglia.J. Gen. Virol.19836451175117910.1099/0022‑1317‑64‑5‑1175 6302212
    [Google Scholar]
  77. KarimzadehF. Soltani FardE. NadiA. MalekzadehR. ElahianF. MirzaeiS.A. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review.J. Mater. Chem. B Mater. Biol. Med.202412256033606210.1039/D4TB00966E 38887828
    [Google Scholar]
  78. HoffC.M. ShockleyT.R. Peritoneal dialysis in the 21st century: the potential of gene therapy.J. Am. Soc. Nephrol.200213Suppl. 1S117S12410.1681/ASN.V13suppl_1s117 11792771
    [Google Scholar]
  79. VogelJ.C. Nonviral skin gene therapy.Hum. Gene Ther.200011162253225910.1089/104303400750035780 11084683
    [Google Scholar]
  80. HenggeU.R. ChanE.F. FosterR.A. WalkerP.S. VogelJ.C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA.Nat. Genet.199510216116610.1038/ng0695‑161 7545056
    [Google Scholar]
  81. SlamaJ. DavidsonJ.M. ErikssonE. Gene therapy of wounds. FalangaV. Cutaneous Wound Healing.LondonTaylor & Francis2001123140
    [Google Scholar]
  82. LiuS. ZhaoH. JiangT. The angiogenic repertoire of stem cell extracellular vesicles: Demystifying the molecular underpinnings for wound healing applications.Stem Cell Rev. Rep.20241810.1007/s12015‑024‑10762‑y 39001965
    [Google Scholar]
  83. LiL. HoffmanR.M. The feasibility of targeted selective gene therapy of the hair follicle.Nat. Med.19951770570610.1038/nm0795‑705 7585157
    [Google Scholar]
  84. EmingS.A. WhitsittJ.S. HeL. KriegT. MorganJ.R. DavidsonJ.M. Particle-mediated gene transfer of PDGF isoforms promotes wound repair.J. Invest. Dermatol.1999112329730210.1046/j.1523‑1747.1999.00522.x 10084305
    [Google Scholar]
  85. NanneyL.B. PaulsenS. DavidsonM.K. CardwellN.L. WhitsittJ.S. DavidsonJ.M. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo.Wound Repair Regen.20008211712710.1046/j.1524‑475x.2000.00117.x 10810038
    [Google Scholar]
  86. DileoJ. MillerT.E. ChesnoyS. HuangL. Gene transfer to subdermal tissues via a new gene gun design.Hum. Gene Ther.2003141798710.1089/10430340360464732 12573061
    [Google Scholar]
  87. YadavJ.P. SinghA.K. GrishinaM. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies.Inflammopharmacology202432114922810.1007/s10787‑023‑01407‑6 38212535
    [Google Scholar]
  88. BakerL.L. ChambersR. DeMuthS.K. VillarF. Effects of electrical stimulation on wound healing in patients with diabetic ulcers.Diabetes Care199720340541210.2337/diacare.20.3.405 9051395
    [Google Scholar]
  89. GardnerS.E. FrantzR.A. SchmidtF.L. Effect of electrical stimulation on chronic wound healing: a meta‐analysis.Wound Repair Regen.19997649550310.1046/j.1524‑475X.1999.00495.x 10633009
    [Google Scholar]
  90. MartiG. FergusonM. WangJ. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model.Gene Ther.200411241780178510.1038/sj.gt.3302383 15470477
    [Google Scholar]
  91. NoguchiA. FurunoT. KawauraC. NakanishiM. Membrane fusion plays an important role in gene transfection mediated by cationic liposomes.FEBS Lett.19984331-216917310.1016/S0014‑5793(98)00837‑0 9738955
    [Google Scholar]
  92. MillerC.R. BondurantB. McLeanS.D. McGovernK.A. O’BrienD.F. Liposome-cell interactions in vitro: Effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes.Biochemistry19983737128751288310.1021/bi980096y 9737866
    [Google Scholar]
  93. Ravi KumarM. HellermannG. LockeyR.F. MohapatraS.S. Nanoparticle-mediated gene delivery: state of the art.Expert Opin. Biol. Ther.2004481213122410.1517/14712598.4.8.1213 15268657
    [Google Scholar]
  94. RaiR. AlwaniS. BadeaI. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications.Polymers (Basel)201911474510.3390/polym11040745 31027272
    [Google Scholar]
  95. JeschkeM.G. BarrowR.E. HawkinsH.K. TaoZ. Perez-PoloJ.R. HerndonD.N. Biodistribution and feasibility of non-viral IGF-I gene transfers in thermally injured skin.Lab. Invest.200080215115810.1038/labinvest.3780019 10701685
    [Google Scholar]
  96. KrishnanL. ChakrabartyP. GovarthananK. RaoS. SantraT.S. Bioglass and nano bioglass: A next-generation biomaterial for therapeutic and regenerative medicine applications.Int. J. Biol. Macromol.2024277Pt 213307310.1016/j.ijbiomac.2024.133073 38880457
    [Google Scholar]
  97. ErikssonE. Gene transfer in wound healing.Adv. Skin Wound Care200013Suppl. 22022 11074999
    [Google Scholar]
  98. AlexanderM.Y. AkhurstR.J. Liposome-mediated gene transfer and expression via the skin.Hum. Mol. Genet.19954122279228510.1093/hmg/4.12.2279 8634699
    [Google Scholar]
  99. JeschkeM.G. SchubertT. KleinD. Exogenous liposomal IGF-I cDNA gene transfer leads to endogenous cellular and physiological responses in an acute wound.Am. J. Physiol. Regul. Integr. Comp. Physiol.20042865R958R96610.1152/ajpregu.00541.2003 15068969
    [Google Scholar]
  100. EmingS.A. MedalieD.A. TompkinsR.G. YarmushM.L. MorganJ.R. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft.Hum. Gene Ther.19989452953910.1089/hum.1998.9.4‑529 9525314
    [Google Scholar]
  101. SuppD.M. BellS.M. MorganJ.R. BoyceS.T. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet‐derived growth factor‐A.Wound Repair Regen.200081263510.1046/j.1524‑475x.2000.00026.x 10760212
    [Google Scholar]
  102. HouG. AlissaM. AlsuwatM.A. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science.Curr. Probl. Cardiol.202449810262710.1016/j.cpcardiol.2024.102627 38723793
    [Google Scholar]
  103. BreuingK. ErikssonE. LiuP. MillerD.R. Healing of partial thickness porcine skin wounds in a liquid environment.J. Surg. Res.1992521505810.1016/0022‑4804(92)90278‑8 1548868
    [Google Scholar]
  104. ChandlerL.A. MaC. GonzalezA.M. Matrix‐enabled gene transfer for cutaneous wound repair.Wound Repair Regen.20008647347910.1046/j.1524‑475x.2000.00473.x 11208174
    [Google Scholar]
  105. TyroneJ.W. MogfordJ.E. ChandlerL.A. Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model.J. Surg. Res.200093223023610.1006/jsre.2000.5912 11027465
    [Google Scholar]
  106. DoukasJ. ChandlerL.A. GonzalezA.M. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.Hum. Gene Ther.200112778379810.1089/104303401750148720 11339895
    [Google Scholar]
  107. SheaL.D. SmileyE. BonadioJ. MooneyD.J. DNA delivery from polymer matrices for tissue engineering.Nat. Biotechnol.199917655155410.1038/9853 10385318
    [Google Scholar]
  108. OnoI. TateshitaT. InoueM. Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction.J. Biomed. Mater. Res.199948562163010.1002/(SICI)1097‑4636(1999)48:5<621:AID‑JBM5>3.0.CO;2‑1 10490675
    [Google Scholar]
  109. PengY. ChenM. WangJ. Tuning zinc content in wollastonite bioceramic endowing outstanding angiogenic and antibacterial functions beneficial for orbital reconstruction.Bioact. Mater.20243655156410.1016/j.bioactmat.2024.02.027 39072286
    [Google Scholar]
  110. BevanS. MartinR. McKayI.A. The production and applications of genetically modified skin cells.Biotechnol. Genet. Eng. Rev.199916123125610.1080/02648725.1999.10647977 10819081
    [Google Scholar]
  111. SullivanT.P. EaglsteinW.H. DavisS.C. MertzP. The pig as a model for human wound healing.Wound Repair Regen.200192667610.1046/j.1524‑475x.2001.00066.x 11350644
    [Google Scholar]
  112. MargolisD.J. CrombleholmeT. HerlynM. Clinical Protocol: Phase I trial to evaluate the safety of H5.020CMV.PDGF‐B for the treatment of a diabetic insensate foot ulcer.Wound Repair Regen.20008648049310.1046/j.1524‑475x.2000.00480.x 11208175
    [Google Scholar]
  113. MorganR.A. AndersonW.F. Human gene therapy.Annu. Rev. Biochem.199362119121710.1146/annurev.bi.62.070193.001203 8352589
    [Google Scholar]
  114. RosenthalF.M. CaoL. TanczosE. Paracrine stimulation of keratinocytes in vitro and continuous delivery of epidermal growth factor to wounds in vivo by genetically modified fibroblasts transfected with a novel chimeric construct.In Vivo1997113201208 9239512
    [Google Scholar]
  115. SatchanskaG. DavidovaS. PetrovP.D. Natural and synthetic polymers for biomedical and environmental applications.Polymers (Basel)2024168115910.3390/polym16081159 38675078
    [Google Scholar]
  116. JeschkeM.G. SchubertT. KrickhahnM. Interaction of exogenous liposomal insulin‐like growth factor‐I cDNA gene transfer with growth factors on collagen expression in acute wounds.Wound Repair Regen.200513326927710.1111/j.1067‑1927.2005.130309.x 15953046
    [Google Scholar]
  117. DwivediM. DwivediJ. ShenS. DwivediP. GuangliL. XiarongX. Emerging Application of Nanocelluloses for Microneedle Devices. BarhoumA. Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications.ChamSpringer International Publishing202233535910.1007/978‑3‑030‑89621‑8_33
    [Google Scholar]
  118. TaubP.J. MarmurJ.D. ZhangW.X. Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps.Plast. Reconstr. Surg.199810262033203910.1097/00006534‑199811000‑00034 9811001
    [Google Scholar]
  119. MesriE.A. FederoffH.J. BrownleeM. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice.Circ. Res.199576216116710.1161/01.RES.76.2.161 7530606
    [Google Scholar]
  120. YamasakiK. EdingtonH.D. McCloskyC. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer.J. Clin. Invest.1998101596797110.1172/JCI2067 9486966
    [Google Scholar]
  121. KunugizaY. TomitaN. TaniyamaY. Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet.Gene Ther.200613151143115210.1038/sj.gt.3302767 16572191
    [Google Scholar]
  122. LiuP.Y. LiuK. WangX.T. Efficacy of combination gene therapy with multiple growth factor cDNAs to enhance skin flap survival in a rat model.DNA Cell Biol.2005241175175710.1089/dna.2005.24.751 16274295
    [Google Scholar]
  123. EmingS.A. LeeJ. SnowR.G. TompkinsR.G. YarmushM.L. MorganJ.R. Genetically modified human epidermis overexpressing PDGF-A directs the development of a cellular and vascular connective tissue stroma when transplanted to athymic mice-implications for the use of genetically modified keratinocytes to modulate dermal regeneration.J. Invest. Dermatol.1995105675676310.1111/1523‑1747.ep12325550 7490468
    [Google Scholar]
  124. MachensH.G. MorganJ.R. BerthiaumeF. StefanovichP. ReimerR. BergerA.C. Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap.Langenbecks Arch. Surg.1998383534535010.1007/s004230050146 9860229
    [Google Scholar]
  125. BreitbartA.S. MasonJ.M. UrmacherC. Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblasts transduced retrovirally with the PDGF-B gene.Ann. Plast. Surg.199943663263910.1097/00000637‑199912000‑00009 10597824
    [Google Scholar]
  126. KeswaniS.G. KatzA.B. LimF.Y. Adenoviral mediated gene transfer of PDGF‐B enhances wound healing in type I and type II diabetic wounds.Wound Repair Regen.200412549750410.1111/j.1067‑1927.2004.12501.x 15453831
    [Google Scholar]
  127. ChoiB.M. KwakH.J. JunC.D. Control of scarring in adult wounds using antisense transforming growth factor‐β1 oligodeoxynucleotides.Immunol. Cell Biol.199674214415010.1038/icb.1996.19 8724001
    [Google Scholar]
  128. BennS.I. WhitsittJ.S. BroadleyK.N. Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin.J. Clin. Invest.199698122894290210.1172/JCI119118 8981938
    [Google Scholar]
  129. HaX. LiY. LaoM. YuanB. WuC.T. Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer.Chin. Med. J. (Engl.)2003116710291033 12890377
    [Google Scholar]
  130. DingQ. LiuX. LiuX. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy.Int. J. Biol. Macromol.2024263Pt 113022610.1016/j.ijbiomac.2024.130226 38368971
    [Google Scholar]
  131. The recombinant DNA advisory committeeAvailable from: http://www.asmusa.org/pasrc/rac.htm (Accessed on: Oct 5, 2001)
  132. The American Society of gene therapyAvailable from: http://research.bidmc.harvard.edu/policies/Genestandards.asp
  133. IsnerJ.M. WalshK. SymesJ. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease.Circulation199591112687269210.1161/01.CIR.91.11.2687 7538919
    [Google Scholar]
  134. WonY.W. LeeM. KimH.A. BullD.A. KimS.W. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion.J. Control. Release2012160352553110.1016/j.jconrel.2012.03.010 22450332
    [Google Scholar]
  135. MorishitaR. AokiM. HashiyaN. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease.Hypertension200444220320910.1161/01.HYP.0000136394.08900.ed 15238569
    [Google Scholar]
  136. ASGCT statement on germline gene editing practices2018Available from: https://www.asgct.org/publications/news/novem ber-2018/asgct-statement-on-germline-gene-editing-practices
  137. RainsburyJ.M. Biotechnology on the RAC--FDA/NIH regulation of human gene therapy.Food Drug Law J.2000554575600 12025851
    [Google Scholar]
  138. GossenM. BujardH. Efficacy of tetracycline-controlled gene expression is influenced by cell type: commentary.Biotechniques1995192213216 8527141
    [Google Scholar]
  139. GossenM. BujardH. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.Proc. Natl. Acad. Sci. USA199289125547555110.1073/pnas.89.12.5547 1319065
    [Google Scholar]
  140. YaoF. ErikssonE. A novel tetracycline-inducible viral replication switch.Hum. Gene Ther.199910341942710.1089/10430349950018869 10048394
    [Google Scholar]
  141. CutroneoK.R. ChiuJ.F. Comparison and evaluation of gene therapy and epigenetic approaches for wound healing.Wound Repair Regen.20008649450210.1046/j.1524‑475x.2000.00494.x 11208176
    [Google Scholar]
  142. LindbladW.J. Gene therapy in wound healing — 2000: a promising future.Wound Repair Regen.20008644144210.1046/j.1524‑475x.2000.00441.x 11208170
    [Google Scholar]
  143. JiangB.H. RueE. WangG.L. RoeR. SemenzaG.L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1.J. Biol. Chem.199627130177711777810.1074/jbc.271.30.17771 8663540
    [Google Scholar]
  144. LiuW. ChinG.S. HsuM. Blocking transforming growth factor b1 signalling down-regulates TGFβ1 autocrine production and collagen gene expression in keloid fibroblasts.Surg. Forum200051593
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232316799241008073042
Loading
/content/journals/cgt/10.2174/0115665232316799241008073042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; Gene therapy; gene transfer; tissue regeneration; transgene; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test