Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5232
  • E-ISSN: 1875-5631

Abstract

Colorectal cancer (CRC) has become a significant threat in recent decades, and its incidence is predicted to continue rising. Despite notable advancements in therapeutic strategies, managing CRC poses complex challenges, primarily due to the lack of clinically feasible therapeutic targets. Among the myriad molecules implicated in CRC, the signal transducer and activator of transcription 3 (STAT3) stands out as a promising target tightly regulated by various genes. This intracellular transcription factor, spanning 750-795 amino acids and weighing approximately 92 kDa, is crucial in key cellular activities such as growth, migration, invasion, inflammation, and angiogenesis. Aberrant activation of STAT3 signaling has been linked to various cancers, including CRC. Therefore, targeting this signaling pathway holds significance for potential CRC treatment strategies. STAT3, as a central intracellular transcription factor, is implicated in colorectal cancer development by activating aberrant signaling pathways. Numerous studies have demonstrated that the abnormal hyperactivation of STAT3 in CRC tissues enhances cell proliferation, suppresses apoptosis, promotes angiogenesis, and facilitates tumor invasion and metastasis. As a focal point in colorectal cancer research, STAT3 emerges as a promising candidate for detecting and treating CRC. This review aims to present recent data on STAT3, emphasizing the activation and functions of STAT3 inhibitors in CRC. Indeed, STAT3 inhibitors have been identified to have therapeutic potential in CRC, especially inhibitors targeting the DNA-binding domain (DBD). Indeed, STAT3 inhibitors have been identified to have a therapeutic potential in CRC, especially the inhibitors targeting the DNA binding domain (DBD). For example, imatinib acts by targeting cell surface receptors, and these inhibitors have shown potential for the control and treatment of tumor growth, angiogenesis, and metastasis. Imatinib, for example acts by targeting cell surface receptors, and these inhibitors have shown the future direction toward the control and treatment of tumor growth, angiogenesis, and metastasis.

Loading

Article metrics loading...

/content/journals/cgt/10.2174/0115665232336447241010094744
2025-08-01
2025-10-16
Loading full text...

Full text loading...

References

  1. BertramJ.S. The molecular biology of cancer.Mol. Aspects Med.200021616722310.1016/S0098‑2997(00)00007‑811173079
    [Google Scholar]
  2. KusumaningrumA.E. MakabaS. AliE. SinghM. FenjanM.N. RasulovaI. MisraN. Al- MusawiS.G. AlsalamyA. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance.Cell Biochem. Funct.2024421e390610.1002/cbf.390638269502
    [Google Scholar]
  3. KishoreC. KarunagaranD. Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer.Mol. Cell. Biochem.202247761817182810.1007/s11010‑022‑04412‑535332394
    [Google Scholar]
  4. HeM. HuanL. WangX. FanY. HuangJ. Nine dietary habits and risk of colorectal cancer: A Mendelian randomization study.BMC Med. Genomics20241712110.1186/s12920‑023‑01782‑738233852
    [Google Scholar]
  5. RawlaP. SunkaraT. BarsoukA. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors.Gastroenterol. Rev.2019148910310.5114/pg.2018.81072
    [Google Scholar]
  6. PaschkeS. JafarovS. StaibL. KreuserE.D. Maulbecker-ArmstrongC. RoitmanM. HolmT. HarrisC.C. LinkK.H. KornmannM. Are colon and rectal cancer two different tumor entities? A proposal to abandon the term colorectal cancer.Int. J. Mol. Sci.2018199257710.3390/ijms1909257730200215
    [Google Scholar]
  7. YadavG. SrinivasanG. JainA. Cervical cancer: Novel treatment strategies offer renewed optimism.Pathol. Res. Pract.202425415513610.1016/j.prp.2024.15513638271784
    [Google Scholar]
  8. DouaiherJ. RavipatiA. GramsB. ChowdhuryS. AlatiseO. AreC. Colorectal cancer—global burden, trends, and geographical variations.J. Surg. Oncol.2017115561963010.1002/jso.2457828194798
    [Google Scholar]
  9. GargalionisA.N. PapavassiliouK.A. PapavassiliouA.G. Targeting STAT3 signaling pathway in colorectal cancer.Biomedicines202198101610.3390/biomedicines908101634440220
    [Google Scholar]
  10. PanduranganA.K. EsaN.M. Signal transducer and activator of transcription 3 - a promising target in colitis-associated cancer.Asian Pac. J. Cancer Prev.201415255156010.7314/APJCP.2014.15.2.55124568457
    [Google Scholar]
  11. ZhaoZ. LuL. LiW. TAGLN2 promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of colorectal cancer cells by activating STAT3 signaling through ANXA2.Oncol. Lett.202122473710.3892/ol.2021.1299834466149
    [Google Scholar]
  12. JiaZ. AnJ. LiuZ. ZhangF. Non-coding RNAs in colorectal cancer: Their functions and mechanisms.Front. Oncol.20221278307910.3389/fonc.2022.78307935186731
    [Google Scholar]
  13. MaoZ. ZhaoH. QinY. WeiJ. SunJ. ZhangW. KangY. Post-transcriptional dysregulation of microRNA and alternative polyadenylation in colorectal cancer.Front. Genet.2020116410.3389/fgene.2020.0006432153636
    [Google Scholar]
  14. JothimaniG. SriramuluS. ChabriaY. SunX.F. BanerjeeA. PathakS. A review on theragnostic applications of microRNAs and long non-coding RNAs in colorectal cancer.Curr. Top. Med. Chem.201918302614262910.2174/156802661966618122116534430582478
    [Google Scholar]
  15. ChandramohanK. BalanD.J. DeviK.P. NabaviS.F. ReshadatS. KhayatkashaniM. MahmoodifarS. FilosaR. AmirkhaliliN. PishvaeiS. Sargazi-AvalO. NabaviS.M. Short interfering RNA in colorectal cancer: Is it wise to shoot the messenger?Eur. J. Pharmacol.202394917569910.1016/j.ejphar.2023.17569937011722
    [Google Scholar]
  16. SgrignaniJ. GarofaloM. MatkovicM. MerullaJ. CatapanoC.V. CavalliA. Structural biology of STAT3 and its implications for anticancer therapies development.Int. J. Mol. Sci.2018196159110.3390/ijms1906159129843450
    [Google Scholar]
  17. SpitznerM. EbnerR. WolffH. GhadimiB. WienandsJ. GradeM. STAT3: A novel molecular mediator of resistance to chemoradiotherapy.Cancers2014641986201110.3390/cancers604198625268165
    [Google Scholar]
  18. BeloY. MielkoZ. NudelmanH. AfekA. Ben-DavidO. ShaharA. ZarivachR. GordanR. ArbelyE. Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine.Biochim. Biophys. Acta, Gen. Subj.2019186391343135010.1016/j.bbagen.2019.05.01931170499
    [Google Scholar]
  19. ManoharanS. SahaS. MurugesanK. SanthakumarA. PerumalE. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update.Life Sci.202433712235110.1016/j.lfs.2023.12235138103726
    [Google Scholar]
  20. MarinoF. OrecchiaV. RegisG. MusteanuM. TassoneB. JonC. ForniM. CalauttiE. ChiarleR. EferlR. PoliV. STAT3β controls inflammatory responses and early tumor onset in skin and colon experimental cancer models.Am. J. Cancer Res.20144548449425232490
    [Google Scholar]
  21. HaradaD. TakigawaN. KiuraK. The role of STAT3 in non-small cell lung cancer.Cancers20146270872210.3390/cancers602070824675568
    [Google Scholar]
  22. DudkaA.A. SweetS.M.M. HeathJ.K. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification.Cancer Res.20107083391340110.1158/0008‑5472.CAN‑09‑303320388777
    [Google Scholar]
  23. LohC.Y. AryaA. NaemaA.F. WongW.F. SethiG. LooiC.Y. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication.Front. Oncol.201994810.3389/fonc.2019.0004830847297
    [Google Scholar]
  24. RokavecM. ÖnerM.G. LiH. JackstadtR. JiangL. LodyginD. KallerM. HorstD. ZieglerP.K. SchwitallaS. Slotta-HuspeninaJ. BaderF.G. GretenF.R. HermekingH. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis.J. Clin. Invest.201412441853186710.1172/JCI7353124642471
    [Google Scholar]
  25. BuettnerR. MoraL.B. JoveR. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention.Clin. Cancer Res.20028494595411948098
    [Google Scholar]
  26. KamranM.Z. PatilP. GudeR.P. Role of STAT3 in cancer metastasis and translational advances.Biomed. Res. Int.2013201342182110.1155/2013/421821
    [Google Scholar]
  27. WegrzynJ. PotlaR. ChwaeY.J. SepuriN.B.V. ZhangQ. KoeckT. DereckaM. SzczepanekK. SzelagM. GornickaA. MohA. MoghaddasS. ChenQ. BobbiliS. CichyJ. DulakJ. BakerD.P. WolfmanA. StuehrD. HassanM.O. FuX.Y. AvadhaniN. DrakeJ.I. FawcettP. LesnefskyE.J. LarnerA.C. Function of mitochondrial Stat3 in cellular respiration.Science2009323591579379710.1126/science.116455119131594
    [Google Scholar]
  28. HiranoT. IshiharaK. HibiM. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors.Oncogene200019212548255610.1038/sj.onc.120355110851053
    [Google Scholar]
  29. LindemannC. HackmannO. DelicS. SchmidtN. ReifenbergerG. RiemenschneiderM.J. SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation.Acta Neuropathol.2011122224125110.1007/s00401‑011‑0832‑021590492
    [Google Scholar]
  30. BrantleyE.C. NaborsL.B. GillespieG.Y. ChoiY.H. PalmerC.A. HarrisonK. RoartyK. BenvenisteE.N. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: Implications for STAT-3 activation and gene expression.Clin. Cancer Res.200814154694470410.1158/1078‑0432.CCR‑08‑061818676737
    [Google Scholar]
  31. KusabaT. NakayamaT. YamazumiK. YakataY. YoshizakiA. InoueK. NagayasuT. SekineI. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer.Oncol. Rep.20061561445145110.3892/or.15.6.144516685378
    [Google Scholar]
  32. ZhangJ. Genome-wide uncovering of STAT3-mediated miRNA expression profiles in colorectal cancer cell lines.Biomed. Res. Int.2014201412345610.1155/2014/187105
    [Google Scholar]
  33. JiK. ZhangM. ChuQ. GanY. RenH. ZhangL. WangL. LiX. WangW. The role of p-STAT3 as a prognostic and clinicopathological marker in colorectal cancer: A systematic review and meta-analysis.PLoS One2016118e016012510.1371/journal.pone.016012527504822
    [Google Scholar]
  34. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.829405201
    [Google Scholar]
  35. FagardR. MetelevV. SouissiI. Baran-MarszakF. STAT3 inhibitors for cancer therapy.JAK-STAT201321e2288210.4161/jkst.2288224058788
    [Google Scholar]
  36. BuchertM. BurnsC.J. ErnstM. Targeting JAK kinase in solid tumors: Emerging opportunities and challenges.Oncogene201635893995110.1038/onc.2015.15025982279
    [Google Scholar]
  37. WangY. ShenY. WangS. ShenQ. ZhouX. The role of STAT3 in leading the crosstalk between human cancers and the immune system.Cancer Lett.201841511712810.1016/j.canlet.2017.12.00329222039
    [Google Scholar]
  38. GeletuM. ArulanandamR. ChevalierS. SaezB. LarueL. FeracciH. RaptisL. Classical cadherins control survival through the gp130/Stat3 axis.Biochim. Biophys. Acta Mol. Cell Res.2013183381947195910.1016/j.bbamcr.2013.03.01423541910
    [Google Scholar]
  39. HuangG. YanH. YeS. TongC. YingQ.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates.Stem Cells20143251149116010.1002/stem.160924302476
    [Google Scholar]
  40. YuH. LeeH. HerrmannA. BuettnerR. JoveR. Revisiting STAT3 signalling in cancer: New and unexpected biological functions.Nat. Rev. Cancer2014141173674610.1038/nrc381825342631
    [Google Scholar]
  41. DasguptaM. DermawanJ.K.T. WillardB. StarkG.R. STAT3-driven transcription depends upon the dimethylation of K49 by EZH2.Proc. Natl. Acad. Sci. USA2015112133985399010.1073/pnas.150315211225767098
    [Google Scholar]
  42. ZhouZ. WangM. LiJ. XiaoM. ChinY.E. ChengJ. YehE.T.H. YangJ. YiJ. SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer.Oncogene201635455826583810.1038/onc.2016.12427181202
    [Google Scholar]
  43. NadimintyN. LouW. LeeS.O. LinX. TrumpD.L. GaoA.C. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation.Proc. Natl. Acad. Sci. USA2006103197264726910.1073/pnas.050980810316651533
    [Google Scholar]
  44. WangR. CherukuriP. LuoJ. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein- mediated acetylation.J. Biol. Chem.200528012115281153410.1074/jbc.M41393020015649887
    [Google Scholar]
  45. SuF. RenF. RongY. WangY. GengY. WangY. FengM. JuY. LiY. ZhaoZ.J. MengK. ChangZ. Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer.Breast Cancer Res.2012142R3810.1186/bcr313422394684
    [Google Scholar]
  46. KumarV. ChengP. CondamineT. MonyS. LanguinoL.R. McCaffreyJ.C. HocksteinN. GuarinoM. MastersG. PenmanE. DenstmanF. XuX. AltieriD.C. DuH. YanC. GabrilovichD.I. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation.Immunity201644230331510.1016/j.immuni.2016.01.01426885857
    [Google Scholar]
  47. KimD.J. TremblayM.L. DiGiovanniJ. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation.PLoS One201054e1029010.1371/journal.pone.001029020421975
    [Google Scholar]
  48. ZgheibC. ZoueinF.A. ChidiacR. KurdiM. BoozG.W. Calyculin A reveals serine/threonine phosphatase protein phosphatase 1 as a regulatory nodal point in canonical signal transducer and activator of transcription 3 signaling of human microvascular endothelial cells.J. Interferon Cytokine Res.2012322879410.1089/jir.2011.005922142222
    [Google Scholar]
  49. LuD. LiuL. JiX. GaoY. ChenX. LiuY. LiuY. ZhaoX. LiY. LiY. JinY. ZhangY. McNuttM.A. YinY. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation.Nat. Immunol.201516121263127310.1038/ni.327826479789
    [Google Scholar]
  50. CheonM.G. KimW. ChoiM. KimJ.E. AK-1, a specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells.Cancer Lett.2015356263764510.1016/j.canlet.2014.10.01225312940
    [Google Scholar]
  51. HuF. SunX. LiG. WuQ. ChenY. YangX. LuoX. HuJ. WangG. Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway.Cell Death Dis.2018101910.1038/s41419‑018‑1260‑z30584257
    [Google Scholar]
  52. ZouS. TongQ. LiuB. HuangW. TianY. FuX. Targeting STAT3 in cancer immunotherapy.Mol. Cancer202019114510.1186/s12943‑020‑01258‑732972405
    [Google Scholar]
  53. HuangY. WangJ. CaoF. JiangH. LiA. LiJ. QiuL. ShenH. ChangW. ZhouC. PanY. LuY. SHP2 associates with nuclear localization of STAT3: Significance in progression and prognosis of colorectal cancer.Sci. Rep.2017711759710.1038/s41598‑017‑17604‑729242509
    [Google Scholar]
  54. PolimenoL. FrancavillaA. PiscitelliD. FioreM.G. PolimenoR. TopiS. HaxhirexhaK. BalliniA. DanieleA. SantacroceL. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease.Eur. Rev. Med. Pharmacol. Sci.20202420104961051133155205
    [Google Scholar]
  55. PapierskaK. Krajka-KuźniakV. The role of STAT3 in the colorectal cancer therapy.J Med Sci2020893e427e42710.20883/medical.e427
    [Google Scholar]
  56. WangY. LuZ. WangN. ZhangM. ZengX. ZhaoW. MicroRNA-1299 is a negative regulator of STAT3 in colon cancer.Oncol. Rep.20173763227323410.3892/or.2017.560528498395
    [Google Scholar]
  57. LassmannS. SchusterI. WalchA. GöbelH. JüttingU. MakowiecF. HoptU. WernerM. STAT3 mRNA and protein expression in colorectal cancer: Effects on STAT3-inducible targets linked to cell survival and proliferation.J. Clin. Pathol.200760217317910.1136/jcp.2005.03511317264243
    [Google Scholar]
  58. LiJ. LiuY.Y. YangX.F. ShenD.F. SunH.Z. HuangK.Q. ZhengH.C. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells.Oncol. Lett.20181655575558210.3892/ol.2018.936830344711
    [Google Scholar]
  59. ShuY. SunX. YeG. XuM. WuZ. WuC. LiS. TianJ. HanH. ZhangJ. DHOK exerts anti-cancer effect through autophagy inhibition in colorectal cancer.Front. Cell Dev. Biol.2021976002210.3389/fcell.2021.76002234977014
    [Google Scholar]
  60. FuY. LiF. SunX. ZhuC. FanB. ZhongK. KIF4 enforces the progression of colorectal cancer by inhibiting the autophagy via activating the Hedgehog signaling pathway.Arch. Biochem. Biophys.202273110942310.1016/j.abb.2022.10942336183846
    [Google Scholar]
  61. WangL.N. ZhangZ.T. WangL. WeiH.X. ZhangT. ZhangL.M. LinH. ZhangH. WangS.Q. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways.Cell Death Dis.202213547210.1038/s41419‑022‑04890‑x35589677
    [Google Scholar]
  62. ChenH. GuoQ. ChuY. LiC. ZhangY. LiuP. ZhaoZ. WangY. LuoY. ZhouZ. ZhangT. SongH. LiX. LiC. SuB. YouH. SunT. JiangC. Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer.Biomaterials202228712159910.1016/j.biomaterials.2022.12159935777332
    [Google Scholar]
  63. ZhangB. GaoS. BaoZ. PanC. TianQ. TangQ. MicroRNA-656-3p inhibits colorectal cancer cell migration, invasion, and chemo-resistance by targeting sphingosine-1-phosphate phosphatase 1.Bioengineered20221323810382610.1080/21655979.2022.203142035081855
    [Google Scholar]
  64. XuY. ZhangY. HaoW. ZhaoW. YangG. JingC. Hypoxia-induced circular RNA hsa_circ_0006508 promotes the Warburg effect in colorectal cancer cells.Balkan Med. J.2023401212710.4274/balkanmedj.galenos.2022.2022‑7‑8036397308
    [Google Scholar]
  65. LiC. GaoX. ZhaoY. ChenX. High expression of circ_0001821 promoted colorectal cancer progression through miR-600/ISOC1 axis.Biochem. Genet.202361141042710.1007/s10528‑022‑10262‑z35943670
    [Google Scholar]
  66. JingC. LiY. GaoZ. WangR. Antitumor activity of Koningic acid in thyroid cancer by inhibiting cellular glycolysis.Endocrine202275116917710.1007/s12020‑021‑02822‑x34264510
    [Google Scholar]
  67. ShenY. ZhaoP. DongK. WangJ. LiH. LiM. LiR. ChenS. ShenY. LiuZ. XieM. ShenP. ZhangJ. Tadalafil increases the antitumor activity of 5-FU through inhibiting PRMT5-mediated glycolysis and cell proliferation in colorectal cancer.Cancer Metab.20221012210.1186/s40170‑022‑00299‑436474242
    [Google Scholar]
  68. ZhaoB. WangY. ZhaoX. NiJ. ZhuX. FuY. YangF. SIRT1 enhances oxaliplatin resistance in colorectal cancer through microRNA-20b-3p/DEPDC1 axis.Cell Biol. Int.202246122107211710.1002/cbin.1190536200529
    [Google Scholar]
  69. LiuY. TangW. RenL. LiuT. YangM. WeiY. ChenY. JiM. ChenG. ChangW. XuJ. Activation of miR-500a-3p/CDK6 axis suppresses aerobic glycolysis and colorectal cancer progression.J. Transl. Med.202220110610.1186/s12967‑022‑03308‑835241106
    [Google Scholar]
  70. YangP. LiZ. FuR. WuH. LiZ. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling.Cell. Signal.20142691853186210.1016/j.cellsig.2014.03.02024686087
    [Google Scholar]
  71. WangA. DengS. ChenX. YuC. DuQ. WuY. ChenG. HuL. HuC. LiY. miR-29a-5p/STAT3 positive feedback loop regulates TETs in colitis-associated colorectal cancer.Inflamm. Bowel Dis.202026452453310.1093/ibd/izz28131750910
    [Google Scholar]
  72. HeichlerC. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis.Gut201968582383631685519
    [Google Scholar]
  73. FangX. HongY. DaiL. QianY. ZhuC. WuB. LiS. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.Mol. Carcinog.201756112434244510.1002/mc.2269128618089
    [Google Scholar]
  74. HanC. SunB. ZhaoX. ZhangY. GuQ. LiuF. ZhaoN. WuL. Phosphorylation of STAT3 promotes vasculogenic mimicry by inducing epithelial-to-mesenchymal transition in colorectal cancer.Technol. Cancer Res. Treat.20171661209121910.1177/153303461774231229333928
    [Google Scholar]
  75. AhmadR. KumarB. ChenZ. ChenX. MüllerD. LeleS.M. WashingtonM.K. BatraS.K. DhawanP. SinghA.B. Loss of claudin-3 expression induces IL6/gp130/Stat3 signaling to promote colon cancer malignancy by hyperactivating Wnt/β-catenin signaling.Oncogene201736476592660410.1038/onc.2017.25928783170
    [Google Scholar]
  76. ChengC.C. LiaoP.N. HoA.S. LimK.H. ChangJ. SuY.W. ChenC.G.S. ChiangY.W. YangB.L. LinH.C. ChangY.C. ChangC.C. ChangY.F. STAT3 exacerbates survival of cancer stem-like tumorspheres in EGFR-positive colorectal cancers: RNAseq analysis and therapeutic screening.J. Biomed. Sci.20182516010.1186/s12929‑018‑0456‑y30068339
    [Google Scholar]
  77. GomesM.D. LeckerS.H. JagoeR.T. NavonA. GoldbergA.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy.Proc. Natl. Acad. Sci. USA20019825144401444510.1073/pnas.25154119811717410
    [Google Scholar]
  78. GuadagninE. MázalaD. ChenY.W. STAT3 in skeletal muscle function and disorders.Int. J. Mol. Sci.2018198226510.3390/ijms1908226530072615
    [Google Scholar]
  79. SilvaK.A.S. DongJ. DongY. DongY. SchorN. TweardyD.J. ZhangL. MitchW.E. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia.J. Biol. Chem.201529017111771118710.1074/jbc.M115.64151425787076
    [Google Scholar]
  80. TakanoY. KoderaK. TsukiharaS. TakahashiS. YasunobuK. KannoH. IshiyamaS. SaitoR. HanyuN. EtoK. Association of a newly developed Cancer Cachexia Score with survival in Stage I–III colorectal cancer.Langenbecks Arch. Surg.2023408114510.1007/s00423‑023‑02883‑837043018
    [Google Scholar]
  81. GurunathanS. QasimM. ParkC. YooH. KimJ.H. HongK. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116.Int. J. Mol. Sci.2018198226910.3390/ijms1908226930072642
    [Google Scholar]
  82. HuotJ.R. NovingerL.J. PinF. BonettoA. HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia.Dis. Model. Mech.2020131dmm04316610.1242/dmm.04316631915140
    [Google Scholar]
  83. ShangA.Q. WuJ. BiF. ZhangY.J. XuL.R. LiL.L. ChenF.F. WangW.W. ZhuJ.J. LiuY.Y. Relationship between HER2 and JAK/STAT-SOCS3 signaling pathway and clinicopathological features and prognosis of ovarian cancer.Cancer Biol. Ther.201718531432210.1080/15384047.2017.131034328448787
    [Google Scholar]
  84. DongX. WangJ. TangB. HaoY.X. LiP.Y. LiS.Y. YuP.W. The role and gene expression profile of SOCS3 in colorectal carcinoma.Oncotarget2018922159841599610.18632/oncotarget.2347729662621
    [Google Scholar]
  85. SantosF.P.S. KantarjianH.M. JainN. ManshouriT. ThomasD.A. Garcia-ManeroG. KennedyD. EstrovZ. CortesJ. VerstovsekS. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis.Blood201011561131113610.1182/blood‑2009‑10‑24636320008298
    [Google Scholar]
  86. DuW. HongJ. WangY.C. ZhangY.J. WangP. SuW.Y. LinY.W. LuR. ZouW.P. XiongH. FangJ.Y. Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway.J. Cell. Mol. Med.20121681878188810.1111/j.1582‑4934.2011.01483.x22050790
    [Google Scholar]
  87. GaoS. HuJ. WuX. LiangZ. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway.Biomed. Pharmacother.201810861862410.1016/j.biopha.2018.09.06730243096
    [Google Scholar]
  88. LinL. LiuA. PengZ. LinH.J. LiP.K. LiC. LinJ. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells.Cancer Res.201171237226723710.1158/0008‑5472.CAN‑10‑466021900397
    [Google Scholar]
  89. MorrowC.J. GhattasM. SmithC. BönischH. BryceR.A. HickinsonD.M. GreenT.P. DiveC. Src family kinase inhibitor Saracatinib (AZD0530) impairs oxaliplatin uptake in colorectal cancer cells and blocks organic cation transporters.Cancer Res.201070145931594110.1158/0008‑5472.CAN‑10‑069420551056
    [Google Scholar]
  90. TurksonJ. RyanD. KimJ.S. ZhangY. ChenZ. HauraE. LaudanoA. SebtiS. HamiltonA.D. JoveR. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation.J. Biol. Chem.200127648454434545510.1074/jbc.M10752720011579100
    [Google Scholar]
  91. TurksonJ. KimJ.S. ZhangS. YuanJ. HuangM. GlennM. HauraE. SebtiS. HamiltonA.D. JoveR. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity.Mol. Cancer Ther.20043326126910.1158/1535‑7163.261.3.315026546
    [Google Scholar]
  92. LiY. RogoffH.A. KeatesS. GaoY. MurikipudiS. MikuleK. LeggettD. LiW. PardeeA.B. LiC.J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness.Proc. Natl. Acad. Sci. USA201511261839184410.1073/pnas.142417111225605917
    [Google Scholar]
  93. SouissiI. LadamP. CognetJ.A.H. Le CoquilS. Varin-BlankN. Baran-MarszakF. MetelevV. FagardR. A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line.Mol. Cancer20121111210.1186/1476‑4598‑11‑1222423663
    [Google Scholar]
  94. JahangiriA. DadmaneshM. GhorbanK. STAT3 inhibition reduced PD-L1 expression and enhanced antitumor immune responses.J. Cell. Physiol.2020235129457946310.1002/jcp.2975032401358
    [Google Scholar]
  95. MarcianiD.J. Elucidating the mechanisms of action of saponin-derived adjuvants.Trends Pharmacol. Sci.201839657358510.1016/j.tips.2018.03.00529655658
    [Google Scholar]
  96. LiaoC. LiM. LiX. LiN. ZhaoX. WangX. SongY. QuanJ. ChengC. LiuJ. BodeA.M. CaoY. LuoX. Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865215854010.1016/j.bbalip.2019.15854031678511
    [Google Scholar]
  97. FangK. ZhanY. ZhuR. WangY. WuC. SunM. QiuY. YuanZ. LiangX. YinP. XuK. Bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway.J. Transl. Med.202119138310.1186/s12967‑021‑03058‑z34496870
    [Google Scholar]
  98. LinL. DeangelisS. FoustE. FuchsJ. LiC. LiP.K. SchwartzE.B. LesinskiG.B. BensonD. LüJ. HoytD. LinJ. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells.Mol. Cancer20109121710.1186/1476‑4598‑9‑21720712901
    [Google Scholar]
  99. KimE.S. HongS.Y. LeeH.K. KimS.W. AnM.J. KimT.I. LeeK.R. KimW.H. CheonJ.H. Guggulsterone inhibits angiogenesis by blocking STAT3 and VEGF expression in colon cancer cells.Oncol. Rep.20082061321132719020709
    [Google Scholar]
  100. JiangF. LiuM. WangH. ShiG. ChenB. ChenT. YuanX. ZhuP. ZhouJ. WangQ. ChenY. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-κB/IL6-STAT3 signaling pathway.Biomed. Pharmacother.202012510998210.1016/j.biopha.2020.10998232119646
    [Google Scholar]
  101. PapierskaK. Krajka-KuźniakV. PaluszczakJ. KleszczR. SkalskiM. Studzińska-SrokaE. Baer-DubowskaW. Lichen-derived depsides and depsidones modulate the Nrf2, NF-κB and STAT3 signaling pathways in colorectal cancer cells.Molecules20212616478710.3390/molecules2616478734443375
    [Google Scholar]
  102. JinY. ChenZ. DongJ. WangB. FanS. YangX. CuiM. SREBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer.FEBS Open Bio20211151343135210.1002/2211‑5463.1313733665967
    [Google Scholar]
  103. LiuL.Q. NieS.P. ShenM.Y. HuJ.L. YuQ. GongD. XieM.Y. Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway.J. Agric. Food Chem.201866174384439310.1021/acs.jafc.8b0071029656647
    [Google Scholar]
  104. YaoD. BaoZ. QianX. YangY. MaoZ. ETV4 transcriptionally activates HES1 and promotes Stat3 phosphorylation to promote malignant behaviors of colon adenocarcinoma.Cell Biol. Int.202145102129213910.1002/cbin.1166934270850
    [Google Scholar]
  105. JinG. YangY. LiuK. ZhaoJ. ChenX. LiuH. BaiR. LiX. JiangY. ZhangX. LuJ. DongZ. Combination curcumin and (−)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway.Oncogenesis2017610e384e38410.1038/oncsis.2017.8428967875
    [Google Scholar]
  106. ZhongL. Feng-liao-chang-wei-kang combined with 5-fluorouracil synergistically suppresses colitis-associated colorectal cancer via the IL-6/STAT3 signalling pathway.Evidence-Based Complementary Altern. Med.202020201395954
    [Google Scholar]
  107. LiM. YueG.G.L. SongL.H. HuangM.B. LeeJ.K.M. TsuiS.K.W. FungK.P. TanN.H. LauC.B.S. Natural small molecule bigelovin suppresses orthotopic colorectal tumor growth and inhibits colorectal cancer metastasis via IL6/STAT3 pathway.Biochem. Pharmacol.201815019120110.1016/j.bcp.2018.02.01729454618
    [Google Scholar]
  108. ZhangB. XuY. LiuS. LvH. HuY. WangY. LiZ. WangJ. JiX. MaH. WangX. WangS. Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway.Nutrients2020128236710.3390/nu1208236732784751
    [Google Scholar]
  109. ChungS.S. DuttaP. ChardN. WuY. ChenQ.H. ChenG. VadgamaJ. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells.Oncotarget201910444516453110.18632/oncotarget.2700031360301
    [Google Scholar]
  110. XiaY. ChenJ. LiuG. HuangW. WeiX. WeiZ. HeY. STIP1 knockdown suppresses colorectal cancer cell proliferation, migration and invasion by inhibiting STAT3 pathway.Chem. Biol. Interact.202134110944610.1016/j.cbi.2021.10944633766539
    [Google Scholar]
  111. HouL. ZhongT. ChengP. LongB. ShiL. MengX. YaoH. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer.Front. Bioeng. Biotechnol.20221093866210.3389/fbioe.2022.93866236246349
    [Google Scholar]
  112. LiL. LinJ. SunG. WeiL. ShenA. ZhangM. PengJ. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.Mol. Med. Rep.20161365276528210.3892/mmr.2016.517127108756
    [Google Scholar]
  113. Al-AsmariA.K. RiyasdeenA. IslamM. Scorpion venom causes upregulation of p53 and downregulation of Bcl-xL and BID protein expression by modulating signaling proteins Erk1/2 and STAT3, and DNA damage in breast and colorectal cancer cell lines.Integr. Cancer Ther.201817227128110.1177/153473541770494928438053
    [Google Scholar]
  114. MengL.Q. WangY. LuoY.H. PiaoX.J. LiuC. WangY. ZhangY. WangJ.R. WangH. XuW.T. LiuY. WuY.Q. SunH.N. HanY.H. JinM.H. ShenG.N. FangN.Z. JinC.H. Quinalizarin induces apoptosis through reactive oxygen species (ROS)-mediated mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways in colorectal cancer cells.Med. Sci. Monit.2018243710371910.12659/MSM.90716329860266
    [Google Scholar]
  115. SuT. BaiJ.X. ChenY.J. WangX.N. FuX.Q. LiT. GuoH. ZhuP.L. WangY. YuZ.L. An ethanolic extract of Ampelopsis Radix exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling in vitro.Front. Pharmacol.2017822710.3389/fphar.2017.0022728503147
    [Google Scholar]
  116. ZhaoJ. FengZ. MengS. ZhouX. MaX. ZhaoZ. Isolation and anticancer effect of brucine in human colon adenocarcinoma cells HT-29.Pharmacogn. Mag.2021177436737210.4103/pm.pm_95_20
    [Google Scholar]
  117. JiX.L. HeM. Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma.Aging201911155848586310.18632/aging.10219331422383
    [Google Scholar]
  118. IsmailN.I. OthmanI. AbasF. H LajisN. NaiduR. Mechanism of apoptosis induced by curcumin in colorectal cancer.Int. J. Mol. Sci.20192010245410.3390/ijms2010245431108984
    [Google Scholar]
  119. SunD. ShenW. ZhangF. FanH. XuC. LiL. TanJ. MiaoY. ZhangH. YangY. ChengH. α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells.Biomed. Pharmacother.201810110711410.1016/j.biopha.2018.02.06229477470
    [Google Scholar]
  120. JohnstonP.A. GrandisJ.R. STAT3 signaling: Anticancer strategies and challenges.Mol. Interv.2011111182610.1124/mi.11.1.421441118
    [Google Scholar]
  121. SonD.J. ZhengJ. JungY.Y. HwangC.J. LeeH.P. WooJ.R. BaekS.Y. HamY.W. KangM.W. ShongM. KweonG.R. SongM.J. JungJ.K. HanS.B. KimB.Y. YoonD.Y. ChoiB.Y. HongJ.T. MMPP attenuates non-small cell lung cancer growth by inhibiting the STAT3 DNA-binding activity via direct binding to the STAT3 DNA-binding domain.Theranostics20177184632464210.7150/thno.1863029158850
    [Google Scholar]
  122. TurksonJ. ZhangS. PalmerJ. KayH. StankoJ. MoraL.B. SebtiS. YuH. JoveR. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.Mol. Cancer Ther.20043121533154210.1158/1535‑7163.1533.3.1215634646
    [Google Scholar]
  123. FengK.R. WangF. ShiX.W. TanY.X. ZhaoJ.Y. ZhangJ.W. LiQ.H. LinG.Q. GaoD. TianP. Design, synthesis and biological evaluation of novel potent STAT3 inhibitors based on BBI608 for cancer therapy.Eur. J. Med. Chem.202020111242810.1016/j.ejmech.2020.11242832603980
    [Google Scholar]
  124. ZuoC. HongY. QiuX. YangD. LiuN. ShengX. ZhouK. TangB. XiongS. MaM. LiuZ. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3/NF-κB and L1CAM activities.Pancreatology201818332833310.1016/j.pan.2018.02.00629525378
    [Google Scholar]
  125. ShiahJ.V. GrandisJ.R. JohnsonD.E. Targeting STAT3 with proteolysis targeting chimeras and next-generation antisense oligonucleotides.Mol. Cancer Ther.202120221922810.1158/1535‑7163.MCT‑20‑059933203730
    [Google Scholar]
  126. VoH.H. CartwrightC. SongI.W. KarpD.D. Nogueras GonzalezG.M. XieY. KarolM. HitronM. ViningD. TsimberidouA.M. Ipilimumab, pembrolizumab, or nivolumab in combination with bbi608 in patients with advanced cancers treated at MD anderson cancer center.Cancers2022145133010.3390/cancers1405133035267638
    [Google Scholar]
  127. SantoniM. MicciniF. CimadamoreA. PivaF. MassariF. ChengL. Lopez-BeltranA. MontironiR. BattelliN. An update on investigational therapies that target STAT3 for the treatment of cancer.Expert Opin. Investig. Drugs202130324525110.1080/13543784.2021.189122233599169
    [Google Scholar]
  128. WongA.L.A. HirparaJ.L. PervaizS. EuJ.Q. SethiG. GohB.C. Do STAT3 inhibitors have potential in the future for cancer therapy?Expert Opin. Investig. Drugs201726888388710.1080/13543784.2017.135194128714740
    [Google Scholar]
  129. ThilakasiriP.S. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Seminars in cancer biology.Elsevier202110.1016/j.semcancer.2019.09.022
    [Google Scholar]
  130. MingT. LeiJ. PengY. WangM. LiangY. TangS. TaoQ. WangM. TangX. HeZ. LiuX. XuH. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.Phytother. Res.20243883954397210.1002/ptr.825838837315
    [Google Scholar]
  131. ZhuJ. JiangX. LuoX. ZhaoR. LiJ. CaiH. YeX.Y. BaiR. XieT. Combination of chemotherapy and gaseous signaling molecular therapy: Novel β-elemene nitric oxide donor derivatives against leukemia.Drug Dev. Res.202384471873510.1002/ddr.2205136988106
    [Google Scholar]
  132. ChenL. HeY. ZhuJ. ZhaoS. QiS. ChenX. ZhangH. NiZ. ZhouY. ChenG. LiuS. XieT. The roles and mechanism of m6A RNA methylation regulators in cancer immunity.Biomed. Pharmacother.202316311483910.1016/j.biopha.2023.11483937156113
    [Google Scholar]
  133. ChenL. JiangZ. YangL. FangY. LuS. AkakuruO.U. HuangS. LiJ. MaS. WuA. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque.Chin. J. Chem.202341219920610.1002/cjoc.202200406
    [Google Scholar]
  134. SchustJ. SperlB. HollisA. MayerT.U. BergT. Stattic: A small- molecule inhibitor of STAT3 activation and dimerization.Chem. Biol.200613111235124210.1016/j.chembiol.2006.09.01817114005
    [Google Scholar]
  135. AlnoudM.A.H. ChenW. LiuN. ZhuW. QiaoJ. ChangS. WuY. WangS. YangY. SunQ. KangJ. Sirt7-p21 signaling pathway mediates glucocorticoid-induced inhibition of mouse neural stem cell proliferation.Neurotox. Res.202139244445510.1007/s12640‑020‑00294‑x33025360
    [Google Scholar]
  136. SpitznerM. RoeslerB. BielfeldC. EmonsG. GaedckeJ. WolffH.A. Rave-FränkM. KramerF. BeissbarthT. KitzJ. WienandsJ. GhadimiB.M. EbnerR. RiedT. GradeM. STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo.Int. J. Cancer20141344997100710.1002/ijc.2842923934972
    [Google Scholar]
  137. LiF. ZhanL. DongQ. WangQ. WangY. LiX. ZhangY. ZhangJ. Tumor-derived exosome-educated hepatic stellate cells regulate lactate metabolism of hypoxic colorectal tumor cells via the IL-6/STAT3 pathway to confer drug resistance.OncoTargets Ther.2020137851786410.2147/OTT.S25348532821126
    [Google Scholar]
  138. WuT. WangZ. LiuY. MeiZ. WangG. LiangZ. CuiA. HuX. CuiL. YangY. LiuC.Y. Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8.Clin. Immunol.2014154211612610.1016/j.clim.2014.07.00525063444
    [Google Scholar]
  139. LiuZ. WangH. GuanL. LaiC. YuW. LaiM. LL1, a novel and highly selective STAT3 inhibitor, displays anti-colorectal cancer activities in vitro and in vivo.Br. J. Pharmacol.2020177229831310.1111/bph.1486331499589
    [Google Scholar]
  140. Gonçalves-RibeiroS. Díaz-MarotoN.G. Berdiel-AcerM. SorianoA. GuardiolaJ. Martínez-VillacampaM. SalazarR. CapellàG. VillanuevaA. Martínez-BalibreaE. MollevíD.G. Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells.Oncotarget2016737597665978010.18632/oncotarget.1112127517495
    [Google Scholar]
  141. LiC. ChenC. AnQ. YangT. SangZ. YangY. JuY. TongA. LuoY. A novel series of napabucasin derivatives as orally active inhibitors of signal transducer and activator of transcription 3 (STAT3).Eur. J. Med. Chem.201916254355410.1016/j.ejmech.2018.10.06730472602
    [Google Scholar]
  142. ZhuangY. BaiY. HuY. GuoY. XuL. HuW. YangL. ZhaoC. LiX. ZhaoH. Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway.OncoTargets Ther.2019125281529110.2147/OTT.S20683331308698
    [Google Scholar]
  143. KnapperS. RussellN. GilkesA. HillsR.K. GaleR.E. CavenaghJ.D. JonesG. KjeldsenL. GrunwaldM.R. ThomasI. KonigH. LevisM.J. BurnettA.K. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML.Blood201712991143115410.1182/blood‑2016‑07‑73064827872058
    [Google Scholar]
  144. BrownP.A. KairallaJ.A. HildenJ.M. DreyerZ.E. CarrollA.J. HeeremaN.A. WangC. DevidasM. GoreL. SalzerW.L. WinickN.J. CarrollW.L. RaetzE.A. BorowitzM.J. SmallD. LohM.L. HungerS.P. FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children’s Oncology Group trial AALL0631.Leukemia20213551279129010.1038/s41375‑021‑01177‑633623141
    [Google Scholar]
  145. ArgirisA. DuffyA.G. KummarS. SimoneN.L. AraiY. KimS.W. RudyS.F. KannabiranV.R. YangX. JangM. ChenZ. SukstaN. Cooley-ZgelaT. RamanandS.G. AhsanA. NyatiM.K. WrightJ.J. Van WaesC. Early tumor progression associated with enhanced EGFR signaling with bortezomib, cetuximab, and radiotherapy for head and neck cancer.Clin. Cancer Res.201117175755576410.1158/1078‑0432.CCR‑11‑086121750205
    [Google Scholar]
  146. HarariP.M. HarrisJ. KiesM.S. MyersJ.N. JordanR.C. GillisonM.L. FooteR.L. MachtayM. RotmanM. KhuntiaD. StraubeW. ZhangQ. AngK. Postoperative chemoradiotherapy and cetuximab for high-risk squamous cell carcinoma of the head and neck: Radiation Therapy Oncology Group RTOG-0234.J. Clin. Oncol.201432232486249510.1200/JCO.2013.53.916325002723
    [Google Scholar]
  147. SenM. ThomasS.M. KimS. YehJ.I. FerrisR.L. JohnsonJ.T. DuvvuriU. LeeJ. SahuN. JoyceS. FreilinoM.L. ShiH. LiC. LyD. RapireddyS. EtterJ.P. LiP.K. WangL. ChioseaS. SeethalaR.R. GoodingW.E. ChenX. KaminskiN. PanditK. JohnsonD.E. GrandisJ.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy.Cancer Discov.20122869470510.1158/2159‑8290.CD‑12‑019122719020
    [Google Scholar]
  148. ReilleyM.J. McCoonP. CookC. LyneP. KurzrockR. KimY. WoessnerR. YounesA. NemunaitisJ. FowlerN. CurranM. LiuQ. ZhouT. SchmidtJ. JoM. LeeS.J. YamashitaM. HughesS.G. FayadL. Piha-PaulS. NadellaM.V.P. XiaoX. HsuJ. RevenkoA. MoniaB.P. MacLeodA.R. HongD.S. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial.J. Immunother. Cancer20186111910.1186/s40425‑018‑0436‑530446007
    [Google Scholar]
  149. BharadwajU. KasembeliM.M. RobinsonP. TweardyD.J. Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution.Pharmacol. Rev.202072248652610.1124/pr.119.01844032198236
    [Google Scholar]
/content/journals/cgt/10.2174/0115665232336447241010094744
Loading
/content/journals/cgt/10.2174/0115665232336447241010094744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test