Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/221334611203250305133615
2025-03-05
2025-12-08
Loading full text...

Full text loading...

/deliver/fulltext/cgc/12/3/CGC-12-3-01.html?itemId=/content/journals/cgc/10.2174/221334611203250305133615&mimeType=html&fmt=ahah

References

  1. AnastasP. EghbaliN. Green chemistry: principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B 20023854
    [Google Scholar]
  2. BanerjeeB. KaurG. Microwave assisted catalyst-free synthesis of bioactive heterocycles.Curr. Microw. Chem.20207152210.2174/2213335607666200226102010
    [Google Scholar]
  3. BanerjeeB. Recent developments on ultrasound assisted catalyst-free organic synthesis.Ultrason Sonochem201735Pt A11410.1016/j.ultsonch.2016.09.023 27771266
    [Google Scholar]
  4. BanerjeeB. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.Ultrason Sonochem201735Pt A153510.1016/j.ultsonch.2016.10.010 27771265
    [Google Scholar]
  5. SharmaA. PriyaA. KaurM. SinghA. KaurG. BanerjeeB. Ultrasound-assisted synthesis of bioactive S -heterocycles.Synth. Commun.202151213209323610.1080/00397911.2021.1970775
    [Google Scholar]
  6. BanerjeeB. Recent developments on ultrasound-assisted organic synthesis in aqueous medium.J. Serb. Chem. Soc.2017827-875579010.2298/JSC170217057B
    [Google Scholar]
  7. BanerjeeB. Ultrasound and nano-catalysts: An ideal and sustainable combination to carry out diverse organic transformations.ChemistrySelect2019482484250010.1002/slct.201803081
    [Google Scholar]
  8. BanerjeeB. TajtiA. KeglevichG. Ultrasound-assisted synthesis of organophosphorus compounds.Organophosphorus Chemistry: Novel DevelopmentsDe Gruyter: Berlin, Boston201824826310.1515/9783110535839‑013
    [Google Scholar]
  9. KaurG. ShamimM. BhardwajV. GuptaV.K. BanerjeeB. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature.Synth. Commun.202050101545156010.1080/00397911.2020.1745844
    [Google Scholar]
  10. KaurG. DeviM. KumariA. DeviR. BanerjeeB. One-pot pseudo five component synthesis of biologically relevant 1,2,6-triaryl-4-arylamino-piperidine-3-ene-3-carboxylates: a decade update.ChemistrySelect20183349892991010.1002/slct.201801887
    [Google Scholar]
  11. KaurG. SharmaA. BanerjeeB. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles.J. Serb. Chem. Soc.201883101071109710.2298/JSC180103052K
    [Google Scholar]
  12. BanerjeeB. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles.ChemistrySelect20172278362837610.1002/slct.201701700
    [Google Scholar]
  13. KaurG. SharmaA. BanerjeeB. Ultrasound and ionic liquid: An ideal combination for organic transformations.ChemistrySelect20183195283529510.1002/slct.201800326
    [Google Scholar]
  14. BanerjeeB. KaurG. Recent advances in photo-irradiated synthesis of bioactive heterocycles in.Green Sustainable Process. for Chemical and Environmental Engineering and Science.Amsterdam, NetherlandsElsevier202040745210.1016/B978‑0‑12‑819539‑0.00016‑6
    [Google Scholar]
  15. KaurG. BalaK. DeviS. BanerjeeB. Camphorsulfonic acid (CSA): an efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities.Curr. Green Chem.20185315016710.2174/2213346105666181001113413
    [Google Scholar]
  16. KaurG. ThakurS. KaundalP. ChandelK. BanerjeeB. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium.ChemistrySelect2018345129181293610.1002/slct.201802824
    [Google Scholar]
  17. KaurG. SinghA. BalaK. DeviM. KumariA. DeviS. DeviR. GuptaV.K. BanerjeeB. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature.Curr. Org. Chem.201923161778178810.2174/1385272822666190924182538
    [Google Scholar]
  18. KaurG. KumarR. SarochS. GuptaV.K. BanerjeeB. Mandelic Acid: An efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature.Curr. Organocatal.20218114715910.2174/22133380MTA4jMTIf1
    [Google Scholar]
  19. BanerjeeB. Recent developments on organo-bycyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles.Curr. Org. Chem.201822320823310.2174/1385272821666170703123129
    [Google Scholar]
  20. BanerjeeB. SinghA. KaurM. PriyaA. SharmaA. Synthesis of biologically promising spiroheterocycles through electrolysis.Curr. Green Chem.121910.2174/0122133461332614240919091051
    [Google Scholar]
  21. BanerjeeB. KaurM. PriyaA. SharmaA. SinghA. Ionic liquid promoted synthesis of structurally diverse pyrans, pyran annulated heterocycles and spiropyrans.Curr. Org. Chem.202428752654410.2174/0113852728300880240223063813
    [Google Scholar]
  22. BanerjeeB. SinghA. SharmaA. PriyaA. KaurM. KaurG. Ultrasound-assisted synthesis of biologically promising organoselenium scaffolds.Curr. Org. Chem.202327756857910.2174/1385272827666230522151128
    [Google Scholar]
  23. BanerjeeB. SharmaA. KaurG. PriyaA. KaurM. SinghA. Latest developments on the synthesis of bioactive organotellurium scaffolds.Physical Sciences Reviews20238124611462910.1515/psr‑2021‑0115
    [Google Scholar]
  24. BanerjeeB. SinghA. KaurG. 9 Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions.Phys. Sci. Rev.2022722725010.1515/9783110732542‑009
    [Google Scholar]
  25. BanikB.K. BanerjeeB. KaurG. SarochS. KumarR. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles.Molecules20202524591810.3390/molecules25245918 33327504
    [Google Scholar]
  26. ChakrabortiA.K. BanerjeeB. Aqueous-mediated synthesis.Bioactive Heterocycles.GermanyDe Gruyter publisher2024
    [Google Scholar]
  27. Non-conventional synthesis KeglevichG. BanerjeeB. Bioactive Heterocycles.GermanyDe Gruyter publisher2023
    [Google Scholar]
  28. Non-metal catalyzed synthesis. DuY. BanerjeeB. Bioactive Heterocycles.GermanyDe Gruyter publisher2023
    [Google Scholar]
  29. Solvent-free synthesis. JonnalagaddaS.B. BanerjeeB. Bioactive Heterocycles.GermanyDe Gruyter publisher2023
    [Google Scholar]
  30. SynthesisM. Bioactive Heterocycles; Basu, B. BanerjeeB. GermanyDe Gruyter publisher2023
    [Google Scholar]
  31. Non-conventional solvents. MukhopadhyayC. BanerjeeB. Organic Synthesis, Natural Products Isolation, Drug Design, Industry and the Environment.GermanyDe Gruyter publisher2023
    [Google Scholar]
  32. Non-conventional solvents. MukhopadhyayC. BanerjeeB. Ionic Liquids, Deep Eutectic Solvents, Crown Ethers, Fluorinated Solvents, Glycols and Glycerol.GermanyDe Gruyter publisher2023
    [Google Scholar]
  33. NanocatalysisM. Magnetic Nanocatalysis: Synthetic Applications; Rajender, S. BanerjeeB. GermanyDe Gruyter publisher2022
    [Google Scholar]
  34. Organocatalysis: A green tool for sustainable developments’ Editor Bimal Krishna Banik and Bubun Banerjee 2022De Gruyter: Germany202218
    [Google Scholar]
  35. Aqueous mediated heterogeneous catalysis’ Editors Asit Kumar Chakraborti and Bubun BanerjeeDe Gruyter: Germany202215
    [Google Scholar]
  36. SharmaR.K. BanerjeeB. Green bond forming reactions: Carbon-carbon and Carbon-heteroatom.GermanyDe Gruyter publisher202210.1515/9783110759549
    [Google Scholar]
  37. SharmaR.K. BanerjeeB. Green bond forming reactions: Synthesis of bioactive scaffolds.GermanyDe Gruyter publisher202210.1515/9783110797428
    [Google Scholar]
  38. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part I).Curr. Org. Chem.202327755755810.2174/138527282707230725111644
    [Google Scholar]
  39. BanerjeeB. Non-conventional approaches towards various organic transformations -(Part II).Curr. Org. Chem.2023271298398410.2174/138527282712231023164926
    [Google Scholar]
  40. BanerjeeB. Microwave-assisted synthesis of bioactive heterocycles.Curr. Microw. Chem.2023102676910.2174/221333561002231227185523
    [Google Scholar]
  41. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1B.Curr. Green Chem.20231013410.2174/221334611001230406103842
    [Google Scholar]
  42. BanerjeeB. Role of the heterocycles to design anti-cancer agents.Anticancer. Agents Med. Chem.202222193194319510.2174/187152062219220930154651 36221179
    [Google Scholar]
  43. BanerjeeB. Green synthesis of bioactive heterocycles-Part 1A.Curr. Green Chem.20229312412610.2174/221334610903230102122357
    [Google Scholar]
  44. BanerjeeB. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 1A.Curr. Microw. Chem.2020713410.2174/221333560701200422091717
    [Google Scholar]
  45. BanerjeeB. Microwave-assisted carbon-carbon and carbon-heteroatom bond forming reactions - Part 1B.Curr. Microw. Chem.202072848510.2174/221333560702200714141435
    [Google Scholar]
  46. BanerjeeB. Carbon-carbon and carbon-heteroatom bond-forming reactions under greener conditions-part 1B.Curr. Org. Chem.20202412310.2174/138527282401200305142223
    [Google Scholar]
  47. BanerjeeB. Organic transformations by following green credentials- Part 1 (B).Curr. Green Chem.2020713410.2174/221334610701200403100438
    [Google Scholar]
  48. BanerjeeB. Organic transformations by following green credentials-Part 1A.Curr. Green Chem.20196315410.2174/221334610603191120125019
    [Google Scholar]
  49. BanerjeeB. Synthesis of biorelevant scaffolds under greener conditions (Part: 1).Curr. Top. Med. Chem.20252512310.2174/156802662501241212145625 39868457
    [Google Scholar]
  50. BanerjeeB. Synthesis of biorelevant scaffolds under greener conditions (Part: 2).Curr. Top. Med. Chem.202525543543610.2174/156802662505250128121058
    [Google Scholar]
  51. JebliN. GuptaG.K. Recent advances on oximes derivatives: Green catalysis and various synthetic routes.Curr. Green Chem.202512317018410.2174/0122133461349649241029175504
    [Google Scholar]
  52. SharmaP. ChoudharyT. SinhaP. Exploring the synthetic challenges of functionalized 2-iminopyrans.Curr. Green Chem.202512318521410.2174/0122133461340263241125092239
    [Google Scholar]
  53. LoharS. MitraP. MajhiS. Current applications of organocatalysis in total synthesis of natural products at room temperature.Curr. Green Chem.202512321523310.2174/0122133461340116241020175907
    [Google Scholar]
  54. NageswarY.V.D. RameshK. RakhiK. Microwave-assisted synthesis of quinolines.Curr. Green Chem.202512323426010.2174/0122133461335061241101114827
    [Google Scholar]
  55. BanerjeeB. KaurM. SinghA. SharmaA. PriyaA. One-pot three-component synthesis of fully and diversely functionalized pyrans and spiropyrans using sodium formate as catalyst in aqueous ethanol at room temperature.Curr. Green Chem.202512326127110.2174/0122133461339667240910052814
    [Google Scholar]
/content/journals/cgc/10.2174/221334611203250305133615
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test