Skip to content
2000
image of Coconut Husk for Second-generation Biofuel Production to Advance a Circular Economy

Abstract

The growing demand for sustainable energy alternatives has highlighted biofuel as a promising substitute for fossil fuels. Coconut husk, a byproduct of the coconut industry, remains an underused but abundant biomass resource with significant potential in biofuel production. This review provides a comprehensive overview of current technologies, challenges, and strategic opportunities in utilizing coconut husks for biofuel generation. It looks at thermochemical processes like pyrolysis, gasification, and combustion, as well as biochemical processes like anaerobic digestion, fermentation, and transesterification, focusing on how well they work, how much they can produce, and how they affect the environment. While coconut husk offers advantages in terms of biomass availability and calorific value, various technical, economic, and regulatory barriers must be addressed to unlock its full potential. Key challenges include feedstock processing, cost-effective conversion technologies, and regulatory and market limitations. Additionally, the review compares coconut husk to other biomass feedstocks, highlighting its sustainability and yield benefits. Case studies of regional programs in major coconut-producing areas provide insights into real-world applications and outcomes. The review also identifies critical research gaps in life cycle assessment, environmental impact, and policy development. Future directions emphasize technological advancements and policy measures to enhance the viability of coconut husks as biofuel sources. Overall, this review underscores coconut husk's potential as a sustainable biofuel feedstock, advocating for coordinated efforts to address existing challenges and advance renewable energy adoption.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461376861250625225817
2025-07-04
2025-09-29
Loading full text...

Full text loading...

References

  1. Hasan M. Abedin M.Z. Amin M.B. Nekmahmud M. Oláh J. Sustainable biofuel economy: A mapping through bibliometric research. J. Environ. Manage. 2023 336 117644 10.1016/j.jenvman.2023.117644 36893543
    [Google Scholar]
  2. Sims R. Flammini A. Puri M. Opportunities for agri-food chains to become energy-smart. 2015 Available from: https://www.researchgate.net/profile/Stefania_Bracco/publication/286623203_Opportunities_For_Agri-Food_Chains_To_Become_Energy-Smart/links/570e09c608aec783ddce6881/Opportunities-For-Agri-Food-Chains-To-Become-Energy-Smart.pdf
    [Google Scholar]
  3. Edenhofer O. Pichs-Madruga R. Sokona Y. Seyboth K. Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. 2011 Available from https://books.google.com/books?hl=en&lr=&id=AjP9sVg01zoC&oi=fnd&pg=PR9&ots=p0-ZY2iWCG&sig=SOOtncYvseAVW15j6UKfK8ttS4
    [Google Scholar]
  4. Deora P.S. Verma Y. Muhal R.A. Goswami C. Singh T. Biofuels: An alternative to conventional fuel and energy source. Mater. Today Proc. 2022 48 1178 1184 10.1016/j.matpr.2021.08.227
    [Google Scholar]
  5. Igwebuike C.M. Awad S. Andrès Y. Renewable energy potential: Second-generation biomass as feedstock for bioethanol production. Molecules 2024 29 7 1619 10.3390/molecules29071619 38611898
    [Google Scholar]
  6. Nakamya M. How sustainable are biofuels in a natural resource-dependent economy? Energy Sustain. Dev. 2022 66 296 307 10.1016/j.esd.2021.12.012
    [Google Scholar]
  7. Gielen D. Boshell F. Saygin D. Bazilian M.D. Wagner N. Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 2019 24 38 50 10.1016/j.esr.2019.01.006
    [Google Scholar]
  8. Irena: Perspectives for the energy transition-investment Available from: https://scholar.google.com/scholar_lookup?title= Perspectives%20for%20the%20Energy%20Transition%20%20 Investment%20Needs%20for%20a%20Low-Carbon%20Energy% 20System&publication_year=2017&author=IRENA%20and%20In ternational%20Energy%20Agency%20(IEA 2017
  9. Markets S-G.B. Second-generation biofuel markets: State of play, trade and developing country perspectives. 2016 Available from: https://unctad.org/publication/second-generation-biofuel-markets-state-play-trade-and-developing-country-perspectives
    [Google Scholar]
  10. Bolivar-Telleria M. Turbay C. Favarato L. Carneiro T. De Biasi R.S. Alberto A. Second-generation bioethanol from coconut husk. BioMed Res. Int. 2018 2018 4916497 10.1155/2018/4916497
    [Google Scholar]
  11. Gaspar F. Bakatovich A. Davydenko N. Joshi A. Building insulation materials based on agricultural wastes. Woodhead Publishing 2020 149 170 10.1016/B978‑0‑12‑819481‑2.00008‑8
    [Google Scholar]
  12. Anuchi S.O. Campbell K.L.S. Hallett J.P. Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports. 2022 12 1 1 11 10.1038/s41598‑022‑09629‑4
    [Google Scholar]
  13. Alabi A.O. Sambo A.S. Comparative bio-energy potential of de-oiled coconut pulp and coconut shell: Insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies. Fuel Process. Technol. 2023 243 107658 10.1016/j.fuproc.2023.107658
    [Google Scholar]
  14. Menon S.D. Sampath K. Kaarthik S.S. Feasibility studies of coconut shells biomass for downdraft gasification. Mater. Today Proc. 2021 44 3133 3137 10.1016/j.matpr.2021.02.813
    [Google Scholar]
  15. Ighalo J.O. Conradie J. Ohoro C.R. Amaku J.F. Oyedotun K.O. Maxakato N.W. Akpomie K.G. Okeke E.S. Olisah C. Malloum A. Adegoke K.A. Biochar from coconut residues: An overview of production, properties, and applications. Ind. Crops Prod. 2023 204 117300 10.1016/j.indcrop.2023.117300
    [Google Scholar]
  16. Fardhyanti D.S. Producing bio-oil from coconut shell by fast pyrolysis processing. MATEC Web Conf. 2018 237 2 10.1051/matecconf/201823702001
    [Google Scholar]
  17. Kabir Ahmad R. Anwar Sulaiman S. Yusup S. Sham Dol S. Inayat M. Aminu Umar H. Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng. J. 2022 13 1 101499 10.1016/j.asej.2021.05.013
    [Google Scholar]
  18. Araujo P. FELIX Filho, LF.; BARBOSA, JJ. Study of the thermophysical properties of minimally processed coconut fiber for application as thermal insulation Interdiscip J Res Innov. 2015 1 1
    [Google Scholar]
  19. Wang Q. Sarkar J. Pyrolysis behaviors of waste coconut shell and husk biomasses. Int. J. Energy Prod. Manag. 2018 3 1 34 43 10.2495/EQ‑V3‑N1‑34‑43
    [Google Scholar]
  20. McNamara J.T. Morgan J.L.W. Zimmer J. A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 2015 84 1 895 921 10.1146/annurev‑biochem‑060614‑033930 26034894
    [Google Scholar]
  21. Reid I.D. Biodegradation of lignin. Can. J. Bot. 1996 73 S1 1011 1018 10.1139/b95‑351
    [Google Scholar]
  22. Mujtaba M. Fernandes Fraceto L. Fazeli M. Mukherjee S. Savassa S.M. Araujo de Medeiros G. do Espírito Santo Pereira A. Mancini S.D. Lipponen J. Vilaplana F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023 402 136815 10.1016/j.jclepro.2023.136815
    [Google Scholar]
  23. Hao L.C. Sapuan S.M. Hassan M.R. Sheltami R.M. Natural fiber reinforced vinyl polymer composites. In: Natural fiber reinforced vinyl ester and vinyl polymer composites: Development, characterization and applications. Woodhead Publishing 2018 27 70 10.1016/B978‑0‑08‑102160‑6.00002‑0
    [Google Scholar]
  24. Stelte W. Reddy N. Barsberg S. Sanadi A.R. Coir from coconut processing waste as a raw material for applications beyond traditional uses. BioResources 2023 18 1 2187 2212
    [Google Scholar]
  25. Adorna J. Jr Borines M. Dang V.D. Doong R.A. Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization. Desalination 2020 492 114602 10.1016/j.desal.2020.114602
    [Google Scholar]
  26. Baharum N.A. Nasir H.M. Ishak M.Y. Isa N.M. Hassan M.A. Aris A.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem. 2020 13 7 6106 6121 10.1016/j.arabjc.2020.05.011
    [Google Scholar]
  27. Behera B. Selvam S.M. Dey B. Balasubramanian P. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresour. Technol. 2020 310 123392 10.1016/j.biortech.2020.123392 32339890
    [Google Scholar]
  28. Khuenkaeo N. Tippayawong N. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chem. Eng. Commun. 2020 207 2 153 160 10.1080/00986445.2019.1574769
    [Google Scholar]
  29. Nuryana D. Alim M.F.R. Yahayu M. Zaini M.A.A. Sulong R.S.R. Aziz M.F.S.A. Methylene blue removal using coconut shell biochar synthesized through microwave-assisted pyrolysis. J. Teknol. 2020 82 5 31 41 10.11113/jt.v82.14359
    [Google Scholar]
  30. Pituya P. Sriburi T. Wijitkosum S. Properties of biochar prepared from acacia wood and coconut shell for soil amendment. Eng. J. 2017 21 3 63 75
    [Google Scholar]
  31. Windeatt J.H. Ross A.B. Williams P.T. Forster P.M. Nahil M.A. Singh S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 2014 146 189 197 10.1016/j.jenvman.2014.08.003 25173727
    [Google Scholar]
  32. Verheijen F. Jeffery S. Bastos A.C. Van Der Velde M. Diafas I. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions. Environment 2010 8 4 144
    [Google Scholar]
  33. Siedt M. Schäffer A. Smith K.E.C. Nabel M. Roß-Nickoll M. van Dongen J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021 751 141607 10.1016/j.scitotenv.2020.141607 32871314
    [Google Scholar]
  34. Schmidt H.P. Kammann C. Hagemann N. Leifeld J. Bucheli T.D. Sánchez Monedero M.A. Cayuela M.L. Biochar in agriculture – A systematic review of 26 global meta‐analyses. Glob. Change Biol. Bioenergy 2021 13 11 1708 1730 10.1111/gcbb.12889
    [Google Scholar]
  35. Gupta S. Kua H.W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: Critical review. J. Mater. Civ. Eng. 2017 29 9 04017086 10.1061/(ASCE)MT.1943‑5533.0001924
    [Google Scholar]
  36. Varghese J.T. Sarath Raj N.S. Jiji G. Development of biodegradable composites and investigation of mechanical behaviour. Mater. Today Proc. 2021 38 3378 3385 10.1016/j.matpr.2020.10.478
    [Google Scholar]
  37. Laird D.A. Brown R.C. Amonette J.E. Lehmann J. Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels Bioprod. Biorefin. 2009 3 5 547 562 10.1002/bbb.169
    [Google Scholar]
  38. Czajczyńska D. Anguilano L. Ghazal H. Krzyżyńska R. Reynolds A.J. Spencer N. Jouhara H. Potential of pyrolysis processes in the waste management sector. Therm. Sci. Eng. Prog. 2017 3 171 197 10.1016/j.tsep.2017.06.003
    [Google Scholar]
  39. Durak H. Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery. Processes 2023 11 7 2092 10.3390/pr11072092
    [Google Scholar]
  40. Suman S. Sources S.G.E. Recovery P.A. Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2017 39 8 761 767 10.1080/15567036.2016.1263252
    [Google Scholar]
  41. Gonzaga M. Mackowiak C. de Almeida A.Q. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 2018 162 414 420 10.1016/j.catena.2017.10.018
    [Google Scholar]
  42. Kumar N.V. Sawargaonkar G. Rani C.S. Pasumarthi R. Kale S. Prakash T.R. Triveni S. Singh A. Davala M.S. Khopade R. Karthik R. Venkatesh B. Chandra M.S. Harnessing the potential of pigeonpea and maize feedstock biochar for carbon sequestration, energy generation, and environmental sustainability. Bioresour. Bioprocess. 2024 11 1 5 10.1186/s40643‑023‑00719‑3 38647804
    [Google Scholar]
  43. Safdari M.S. Amini E. Weise D.R. Fletcher T.H. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 2019 242 295 304 10.1016/j.fuel.2019.01.040
    [Google Scholar]
  44. Li S. Harris S. Anandhi A. Chen G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019 215 890 902 10.1016/j.jclepro.2019.01.106
    [Google Scholar]
  45. Fawzy S. Osman A.I. Yang H. Doran J. Rooney D.W. Industrial biochar systems for atmospheric carbon removal: A review. Environ. Chem. Lett. 2021 19 4 3023 3055 10.1007/s10311‑021‑01210‑1
    [Google Scholar]
  46. Al-Rumaihi A. Shahbaz M. Mckay G. Mackey H. Al-Ansari T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022 167 112715 10.1016/j.rser.2022.112715
    [Google Scholar]
  47. Amalina F. Razak A.S.A. Krishnan S. Sulaiman H. Zularisam A.W. Nasrullah M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. J. Hazard. Mater. Adv. 2022 7 100134 10.1016/j.hazadv.2022.100134
    [Google Scholar]
  48. Pahnila M. Koskela A. Sulasalmi P. Fabritius T. A review of pyrolysis technologies and the effect of process parameters on biocarbon properties. Energies 2023 16 19 6936 10.3390/en16196936
    [Google Scholar]
  49. Aboelela D. Saleh H. Attia A.M. Elhenawy Y. Majozi T. Bassyouni M. Recent advances in biomass pyrolysis processes for bioenergy production: Optimization of operating conditions. Sustainability 2023 15 14 11238 10.3390/su151411238
    [Google Scholar]
  50. Quispe I. Navia R. Kahhat R. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Manag. 2017 59 200 210 10.1016/j.wasman.2016.10.001 27751683
    [Google Scholar]
  51. Shi W. Wang H. Yan J. Shan L. Quan G. Pan X. Cui L. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties. Separ. Purif. Tech. 2022 289 120796 10.1016/j.seppur.2022.120796
    [Google Scholar]
  52. Shmakov V.D. Unconventional gas. Bulletin of the Saint Petersburg University. Ser Geol Geogr. 2019 2010 1 59 98
    [Google Scholar]
  53. Basu P. Kaushal P. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design, Theory, and Climate Change Mitigation. 4th ed Elsevier 2023
    [Google Scholar]
  54. Chen W.H. Lin B.J. Lin Y.Y. Chu Y.S. Ubando A.T. Show P.L. Ong H.C. Chang J-S. Ho S-H. Culaba A.B. Pétrissans A. Pétrissans M. Progress in biomass torrefaction: Principles, applications and challenges. Pror. Energy Combust. Sci. 2021 82 100887 10.1016/j.pecs.2020.100887
    [Google Scholar]
  55. Narayanan K.V. Natarajan E. Experimental studies on cofiring of coal and biomass blends in India. Renew. Energy 2007 32 15 2548 2558 10.1016/j.renene.2006.12.018
    [Google Scholar]
  56. Miller B.G. Clean coal engineering technology. 2010 Available from: http://www.sciencedirect.com:5070/book/9781856177108/cleancoal-engineering-technology
  57. Manikandan S. Vickram S. Sirohi R. Subbaiya R. Krishnan R.Y. Karmegam N. Sumathijones C. Rajagopal R. Chang S.W. Ravindran B. Awasthi M.K. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. Bioresour. Technol. 2023 372 128679 10.1016/j.biortech.2023.128679 36706818
    [Google Scholar]
  58. Sharma K. Sharma M. Samridhi Kaul K. Singh G. Arya S.K. Commercial waste to energy, technologies, economics, and challenges: Stores, hotels, restaurant. Reference Module in Earth Systems and Environmental Sciences 2024 29 40
    [Google Scholar]
  59. Masud M.H. Rashid M. Domestic waste to energy, technologies, economics, and challenges. In: Reference Module in Earth Systems and Environmental Sciences 2024 1 16
    [Google Scholar]
  60. Börjesson P. Berglund M. Environmental systems analysis of biogas systems—Part I: Fuel-cycle emissions. Biomass Bioenergy 2006 30 5 469 485 10.1016/j.biombioe.2005.11.014
    [Google Scholar]
  61. Ding T.Y. Hii S.L. Ong L.G.A. Pretreatments of coconut husk. BioResources 2012 7 2 1540 1547
    [Google Scholar]
  62. Gonçalves F.A. Ruiz H.A. dos Santos E.S. Teixeira J.A. de Macedo G.R. Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind. Crops Prod. 2015 77 1 12 10.1016/j.indcrop.2015.06.041
    [Google Scholar]
  63. Sivaramakrishnan R. Incharoensakdi A. Microalgae as feedstock for biodiesel production under ultrasound treatment – A review. Bioresour. Technol. 2018 250 877 887 10.1016/j.biortech.2017.11.095 29221914
    [Google Scholar]
  64. Murugesan A. Umarani C. Subramanian R. Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines—A review. Renew. Sustain. Energy Rev. 2009 13 3 653 662 10.1016/j.rser.2007.10.007
    [Google Scholar]
  65. Narnaware S.L. Panwar N.L. Biomass gasification for climate change mitigation and policy framework in India: A review. Bioresour. Technol. Rep. 2022 17 100892 10.1016/j.biteb.2021.100892
    [Google Scholar]
  66. Kumar A.K. Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017 4 1 7 10.1186/s40643‑017‑0137‑9
    [Google Scholar]
  67. Rajendran N. Gurunathan B. Han J. Krishna S. Ananth A. Venugopal K. Sherly Priyanka R.B. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. Bioresour. Technol. 2021 337 125498 10.1016/j.biortech.2021.125498 34320774
    [Google Scholar]
  68. Seo M.W. Lee S.H. Nam H. Lee D. Tokmurzin D. Wang S. Park Y.K. Recent advances of thermochemical conversion processes for biorefinery. Bioresour. Technol. 2022 343 126109 10.1016/j.biortech.2021.126109 34637907
    [Google Scholar]
  69. Oduor W.W. Wandera S.M. Murunga S.I. Raude J.M. Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon 2022 8 9 e10580 10.1016/j.heliyon.2022.e10580 36148270
    [Google Scholar]
  70. Chowdhury M.B.I. Nickel-based catalysts for casification of glucose in supercritical water. Canada The University of Western Ontario 2010 48
    [Google Scholar]
  71. Crater J.S. Lievense J.C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 2018 365 13 fny138 10.1093/femsle/fny138 29860483
    [Google Scholar]
  72. National lab pilot plants help industry de-risk biofuel processes. Available from: https://ethanolproducer.com/articles/national-lab-pilot-plants-help-industry-de-risk-biofuel-processes?utm_source=chatgpt.com
  73. Limayem A. Ricke S.C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Pror. Energy Combust. Sci. 2012 38 4 449 467 10.1016/j.pecs.2012.03.002
    [Google Scholar]
  74. Demirbas A. Progress and recent trends in biofuels. Pror. Energy Combust. Sci. 2007 33 1 1 18 10.1016/j.pecs.2006.06.001
    [Google Scholar]
  75. Pandian K. Vijayakumar S. Mustaffa M.R.A.F. Subramanian P. Chitraputhirapillai S. Biochar – A sustainable soil conditioner for improving soil health, crop production and environment under changing climate: A review. Front. Soil Sci. 2024 4 1376159 10.3389/fsoil.2024.1376159
    [Google Scholar]
  76. Srirangan K. Akawi L. Moo-Young M. Chou C.P. Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 2012 100 172 186 10.1016/j.apenergy.2012.05.012
    [Google Scholar]
  77. Nigam P.S. Singh A. Production of liquid biofuels from renewable resources. Pror. Energy Combust. Sci. 2011 37 1 52 68 10.1016/j.pecs.2010.01.003
    [Google Scholar]
  78. Atapattu A.J. Udumann S.S. Nuwarapaksha T.D. Dissanayaka N.S. Upcycling coconut husk by-products: Transitioning from traditional applications to emerging high-value usages. In: Agricultural Waste to Value-Added Products. Singapore Springer 2024 249 273 10.1007/978‑981‑97‑2535‑9_12
    [Google Scholar]
  79. Harvey M. The new competition for land: Food, energy, and climate change. Food Policy 2011 36 S1 S40 S51 10.1016/j.foodpol.2010.11.009
    [Google Scholar]
  80. Rajagopal D. Sexton S.E. Roland-Holst D. Zilberman D. Challenge of biofuel: filling the tank without emptying the stomach? Environmental. Research. Letters. 2007 2 4 044004 Available from http://faostat.fao.org
    [Google Scholar]
  81. Gupta S.K. Technological innovations in major world oil crops. Breeding. Springer 2012 1 405
    [Google Scholar]
  82. Crops and livestock products. 2024 Available from: https://www.fao.org/faostat/en/#data/QCL
  83. Marikkar J.M.N. Madurapperuma W.S. Coconut. In: Tropical and Subtropical Fruits. Wiley 2012 159 177 10.1002/9781118324097.ch9
    [Google Scholar]
  84. Roumasset J. Clarete R. An analysis of the economic policies affecting the Philippine coconut industry. 1983 Available from: https://opendocs.ids.ac.uk/articles/report/An_analysis_of_the_economic_policies_affecting_the_Philippine_coconut_industry/26442334/1/files/48090325.pdf
    [Google Scholar]
  85. Van Dam J. Improvement of drying, softening, bleaching and dyeing coir fibre/yarn and printing coir floor coverings. 2002 Available from: https://agris.fao.org/search/en/providers/122621/records/647761c6f2e6fe92b367b218
    [Google Scholar]
  86. Prasertsan S. Sajjakulnukit B. Biomass and biogas energy in Thailand: Potential, opportunity and barriers. Renew. Energy 2006 31 5 599 610 10.1016/j.renene.2005.08.005
    [Google Scholar]
  87. Jahirul M. Rasul M. Chowdhury A. Ashwath N. Biofuels production through biomass pyrolysis —a technological review. Energies 2012 5 12 4952 5001 10.3390/en5124952
    [Google Scholar]
  88. Agbor V.B. Cicek N. Sparling R. Berlin A. Levin D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011 29 6 675 685 10.1016/j.biotechadv.2011.05.005 21624451
    [Google Scholar]
  89. Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 2010 51 7 1412 1421 10.1016/j.enconman.2010.01.015
    [Google Scholar]
  90. Roadmap T. Technology roadmap: Biofuels for transport. 2011 Available from: https://www.oecd-ilibrary.org/energy/technology-roadmap-biofuels-for-transport_9789264118461-
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461376861250625225817
Loading
/content/journals/cgc/10.2174/0122133461376861250625225817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test