Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The growing demand for sustainable energy alternatives has highlighted biofuel as a promising substitute for fossil fuels. Coconut husk, a byproduct of the coconut industry, remains an underused but abundant biomass resource with significant potential in biofuel production. This review provides a comprehensive overview of current technologies, challenges, and strategic opportunities in utilizing coconut husks for biofuel generation. It looks at thermochemical processes like pyrolysis, gasification, and combustion, as well as biochemical processes like anaerobic digestion, fermentation, and transesterification, focusing on how well they work, how much they can produce, and how they affect the environment. While coconut husk offers advantages in terms of biomass availability and calorific value, various technical, economic, and regulatory barriers must be addressed to unlock its full potential. Key challenges include feedstock processing, cost-effective conversion technologies, and regulatory and market limitations. Additionally, the review compares coconut husk to other biomass feedstocks, highlighting its sustainability and yield benefits. Case studies of regional programs in major coconut-producing areas provide insights into real-world applications and outcomes. The review also identifies critical research gaps in life cycle assessment, environmental impact, and policy development. Future directions emphasize technological advancements and policy measures to enhance the viability of coconut husks as biofuel sources. Overall, this review underscores coconut husk's potential as a sustainable biofuel feedstock, advocating for coordinated efforts to address existing challenges and advance renewable energy adoption.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461376861250625225817
2025-07-04
2026-01-11
Loading full text...

Full text loading...

References

  1. HasanM. AbedinM.Z. AminM.B. NekmahmudM. OláhJ. Sustainable biofuel economy: A mapping through bibliometric research.J. Environ. Manage.202333611764410.1016/j.jenvman.2023.117644 36893543
    [Google Scholar]
  2. SimsR. FlamminiA. PuriM. Opportunities for agri-food chains to become energy-smart.2015Available from: https://www. researchgate.net/profile/Stefania_Bracco/publication/286623203_Opportunities_For_Agri-Food_Chains_To_Become_Energy-Smart/links/570e09c608aec783ddce6881/Opportunities-For-Agri-Food-Chains-To-Become-Energy-Smart.pdf
  3. EdenhoferO. Pichs-MadrugaR. SokonaY. SeybothK. Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. 2011Available from: https://books.google.com/books?hl=en&lr=&id=AjP9sVg01zoC&oi=fnd&pg=PR9&ots=p0-ZY2iWCG&sig=SOOtncYvs-eAVW15j6UKfK8ttS4
  4. DeoraP.S. VermaY. MuhalR.A. GoswamiC. SinghT. Biofuels: An alternative to conventional fuel and energy source.Mater. Today Proc.2022481178118410.1016/j.matpr.2021.08.227
    [Google Scholar]
  5. IgwebuikeC.M. AwadS. AndrèsY. Renewable energy potential: Second-generation biomass as feedstock for bioethanol production.Molecules2024297161910.3390/molecules29071619 38611898
    [Google Scholar]
  6. NakamyaM. How sustainable are biofuels in a natural resource-dependent economy?Energy Sustain. Dev.20226629630710.1016/j.esd.2021.12.012
    [Google Scholar]
  7. GielenD. BoshellF. SayginD. BazilianM.D. WagnerN. GoriniR. The role of renewable energy in the global energy transformation.Energy Strategy Reviews201924385010.1016/j.esr.2019.01.006
    [Google Scholar]
  8. Irena: Perspectives for the energy transition-investment.Available from: https://scholar.google.com/scholar_lookup?title=Perspectives%20for%20the%20Energy%20Transition%20%20Investment%20Needs%20for%20a%20Low-Carbon%20Energy%20System&publication_year=2017&author=IRENA%20and%20International%20Energy%20Agency%20(IEA
  9. MarketsS-G.B. Second-generation biofuel markets: State of play, trade and developing country perspectives.Available from: https://unctad.org/publication/second-generation-biofuel-markets-state-play-trade-and-developing-country-perspectives 2016
  10. Bolivar-TelleriaM. TurbayC. FavaratoL. CarneiroT. De BiasiR.S. AlbertoA. Second-generation bioethanol from coconut husk.BioMed Res. Int.20182018491649710.1155/2018/4916497
    [Google Scholar]
  11. GasparF. BakatovichA. DavydenkoN. JoshiA. Building insulation materials based on agricultural wastes.Woodhead Publishing202014917010.1016/B978‑0‑12‑819481‑2.00008‑8
    [Google Scholar]
  12. AnuchiS.O. CampbellK.L.S. HallettJ.P. Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid.Scientific Reports202212111110.1038/s41598‑022‑09629‑4
    [Google Scholar]
  13. AlabiA.O. SamboA.S. Comparative bio-energy potential of de-oiled coconut pulp and coconut shell: Insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies.Fuel Process. Technol.202324310765810.1016/j.fuproc.2023.107658
    [Google Scholar]
  14. MenonS.D. SampathK. KaarthikS.S. Feasibility studies of coconut shells biomass for downdraft gasification.Mater. Today Proc.2021443133313710.1016/j.matpr.2021.02.813
    [Google Scholar]
  15. IghaloJ.O. ConradieJ. OhoroC.R. AmakuJ.F. OyedotunK.O. MaxakatoN.W. AkpomieK.G. OkekeE.S. OlisahC. MalloumA. AdegokeK.A. Biochar from coconut residues: An overview of production, properties, and applications.Ind. Crops Prod.202320411730010.1016/j.indcrop.2023.117300
    [Google Scholar]
  16. FardhyantiD.S. Producing bio-oil from coconut shell by fast pyrolysis processing.MATEC Web Conf.2018237210.1051/matecconf/201823702001
    [Google Scholar]
  17. AhmadK.R. SulaimanA.S. YusupS. DolS.S. InayatM. AminuU.H. Exploring the potential of coconut shell biomass for charcoal production.Ain Shams Eng. J.202213110149910.1016/j.asej.2021.05.013
    [Google Scholar]
  18. AraujoP. Felix FilhoLF. BarbosaJJ. Study of the thermophysical properties of minimally processed coconut fiber for application as thermal insulationInterdiscip J Res Innov.201511
    [Google Scholar]
  19. WangQ. SarkarJ. Pyrolysis behaviors of waste coconut shell and husk biomasses.Int. J. Energy Prod. Manag.201831344310.2495/EQ‑V3‑N1‑34‑43
    [Google Scholar]
  20. McNamaraJ.T. MorganJ.L.W. ZimmerJ. A molecular description of cellulose biosynthesis.Annu. Rev. Biochem.201584189592110.1146/annurev‑biochem‑060614‑033930 26034894
    [Google Scholar]
  21. ReidI.D. Biodegradation of lignin.Can. J. Bot.199673S11011101810.1139/b95‑351
    [Google Scholar]
  22. MujtabaM. Fernandes FracetoL. FazeliM. MukherjeeS. SavassaS.M. Araujo de MedeirosG. do Espírito Santo PereiraA. ManciniS.D. LipponenJ. VilaplanaF. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics.J. Clean. Prod.202340213681510.1016/j.jclepro.2023.136815
    [Google Scholar]
  23. HaoL.C. SapuanS.M. HassanM.R. SheltamiR.M. Natural fiber reinforced vinyl polymer composites. Natural fiber reinforced vinyl ester and vinyl polymer composites: Development, characterization and applications.Woodhead Publishing2018277010.1016/B978‑0‑08‑102160‑6.00002‑0
    [Google Scholar]
  24. StelteW. ReddyN. BarsbergS. SanadiA.R. Coir from coconut processing waste as a raw material for applications beyond traditional uses.BioResources202318121872212
    [Google Scholar]
  25. AdornaJ.Jr BorinesM. DangV.D. DoongR.A. Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization.Desalination202049211460210.1016/j.desal.2020.114602
    [Google Scholar]
  26. BaharumN.A. NasirH.M. IshakM.Y. IsaN.M. HassanM.A. ArisA.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar.Arab. J. Chem.20201376106612110.1016/j.arabjc.2020.05.011
    [Google Scholar]
  27. BeheraB. Selvam SM. DeyB. BalasubramanianP. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst.Bioresour. Technol.202031012339210.1016/j.biortech.2020.123392 32339890
    [Google Scholar]
  28. KhuenkaeoN. TippayawongN. Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues.Chem. Eng. Commun.2020207215316010.1080/00986445.2019.1574769
    [Google Scholar]
  29. NuryanaD. AlimM.F.R. YahayuM. ZainiM.A.A. SulongR.S.R. AzizM.F.S.A. Methylene blue removal using coconut shell biochar synthesized through microwave-assisted pyrolysis.J. Teknol.2020825314110.11113/jt.v82.14359
    [Google Scholar]
  30. PituyaP. SriburiT. WijitkosumS. Properties of biochar prepared from acacia wood and coconut shell for soil amendment.Eng. J.20172136375
    [Google Scholar]
  31. WindeattJ.H. RossA.B. WilliamsP.T. ForsterP.M. NahilM.A. SinghS. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment.J. Environ. Manage.201414618919710.1016/j.jenvman.2014.08.003 25173727
    [Google Scholar]
  32. VerheijenF. JefferyS. BastosA.C. Van Der VeldeM. DiafasI. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions.Environment201084144
    [Google Scholar]
  33. SiedtM. SchäfferA. SmithK.E.C. NabelM. Roß-NickollM. van DongenJ.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides.Sci. Total Environ.202175114160710.1016/j.scitotenv.2020.141607 32871314
    [Google Scholar]
  34. SchmidtH.P. KammannC. HagemannN. LeifeldJ. BucheliT.D. Sánchez MonederoM.A. CayuelaM.L. Biochar in agriculture – A systematic review of 26 global meta‐analyses.Glob. Change Biol. Bioenergy202113111708173010.1111/gcbb.12889
    [Google Scholar]
  35. GuptaS. KuaH.W. Factors determining the potential of biochar as a carbon capturing and sequestering construction material: Critical review.J. Mater. Civ. Eng.20172990401708610.1061/(ASCE)MT.1943‑5533.0001924
    [Google Scholar]
  36. VargheseJ.T. Sarath RajN.S. JijiG. Development of biodegradable composites and investigation of mechanical behaviour.Mater. Today Proc.2021383378338510.1016/j.matpr.2020.10.478
    [Google Scholar]
  37. LairdD.A. BrownR.C. AmonetteJ.E. LehmannJ. Review of the pyrolysis platform for coproducing bio‐oil and biochar.Biofuels Bioprod. Biorefin.20093554756210.1002/bbb.169
    [Google Scholar]
  38. CzajczyńskaD. AnguilanoL. GhazalH. KrzyżyńskaR. ReynoldsA.J. SpencerN. JouharaH. Potential of pyrolysis processes in the waste management sector.Therm. Sci. Eng. Prog.2017317119710.1016/j.tsep.2017.06.003
    [Google Scholar]
  39. DurakH. Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery.Processes2023117209210.3390/pr11072092
    [Google Scholar]
  40. SumanS. SourcesS.G.E. RecoveryP.A. Pyrolysis of coconut husk biomass: Analysis of its biochar properties.Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.201739876176710.1080/15567036.2016.1263252
    [Google Scholar]
  41. GonzagaM. MackowiakC. de AlmeidaA.Q. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition.Catena201816241442010.1016/j.catena.2017.10.018
    [Google Scholar]
  42. KumarN.V. SawargaonkarG. RaniC.S. PasumarthiR. KaleS. PrakashT.R. TriveniS. SinghA. DavalaM.S. KhopadeR. KarthikR. VenkateshB. ChandraM.S. Harnessing the potential of pigeonpea and maize feedstock biochar for carbon sequestration, energy generation, and environmental sustainability.Bioresour. Bioprocess.2024111510.1186/s40643‑023‑00719‑3 38647804
    [Google Scholar]
  43. SafdariM.S. AminiE. WeiseD.R. FletcherT.H. Heating rate and temperature effects on pyrolysis products from live wildland fuels.Fuel201924229530410.1016/j.fuel.2019.01.040
    [Google Scholar]
  44. LiS. HarrisS. AnandhiA. ChenG. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses.J. Clean. Prod.201921589090210.1016/j.jclepro.2019.01.106
    [Google Scholar]
  45. FawzyS. OsmanA.I. YangH. DoranJ. RooneyD.W. Industrial biochar systems for atmospheric carbon removal: A review.Environ. Chem. Lett.20211943023305510.1007/s10311‑021‑01210‑1
    [Google Scholar]
  46. Al-RumaihiA. ShahbazM. MckayG. MackeyH. Al-AnsariT. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield.Renew. Sustain. Energy Rev.202216711271510.1016/j.rser.2022.112715
    [Google Scholar]
  47. AmalinaF. RazakA.S.A. KrishnanS. SulaimanH. ZularisamA.W. NasrullahM. Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review.J. Hazard. Mater. Adv.2022710013410.1016/j.hazadv.2022.100134
    [Google Scholar]
  48. PahnilaM. KoskelaA. SulasalmiP. FabritiusT. A review of pyrolysis technologies and the effect of process parameters on biocarbon properties.Energies20231619693610.3390/en16196936
    [Google Scholar]
  49. AboelelaD. SalehH. AttiaA.M. ElhenawyY. MajoziT. BassyouniM. Recent advances in biomass pyrolysis processes for bioenergy production: Optimization of operating conditions.Sustainability202315141123810.3390/su151411238
    [Google Scholar]
  50. QuispeI. NaviaR. KahhatR. Energy potential from rice husk through direct combustion and fast pyrolysis: A review.Waste Manag.20175920021010.1016/j.wasman.2016.10.001 27751683
    [Google Scholar]
  51. ShiW. WangH. YanJ. ShanL. QuanG. PanX. CuiL. Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties.Separ. Purif. Tech.202228912079610.1016/j.seppur.2022.120796
    [Google Scholar]
  52. ShmakovV.D. Unconventional gas. Bulletin of the Saint Petersburg University.Ser Geol Geogr.2019201015998
    [Google Scholar]
  53. BasuP. KaushalP. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design, Theory, and Climate Change Mitigation.4th edElsevier2023
    [Google Scholar]
  54. ChenW.H. LinB.J. LinY.Y. ChuY.S. UbandoA.T. ShowP.L. OngH.C. ChangJ-S. HoS-H. CulabaA.B. PétrissansA. PétrissansM. Progress in biomass torrefaction: Principles, applications and challenges.Pror. Energy Combust. Sci.20218210088710.1016/j.pecs.2020.100887
    [Google Scholar]
  55. NarayananK.V. NatarajanE. Experimental studies on cofiring of coal and biomass blends in India.Renew. Energy200732152548255810.1016/j.renene.2006.12.018
    [Google Scholar]
  56. MillerB.G. Clean coal engineering technology.2010Available from: https://www.sciencedirect.com:5070/book/9781856177108/clean-coal-engineering-technology
  57. ManikandanS. VickramS. SirohiR. SubbaiyaR. KrishnanR.Y. KarmegamN. SumathijonesC. RajagopalR. ChangS.W. RavindranB. AwasthiM.K. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy.Bioresour. Technol.202337212867910.1016/j.biortech.2023.128679 36706818
    [Google Scholar]
  58. SharmaK. SharmaM. Samridhi KaulK. SinghG. AryaS.K. Commercial waste to energy, technologies, economics, and challenges: Stores, hotels, restaurant. Reference Module in Earth Systems and Environmental Sciences20242940
    [Google Scholar]
  59. MasudM.H. RashidM. Domestic waste to energy, technologies, economics, and challenges. Reference Module in Earth Systems and Environmental Sciences2024116
    [Google Scholar]
  60. BörjessonP. BerglundM. Environmental systems analysis of biogas systems—Part I: Fuel-cycle emissions.Biomass Bioenergy200630546948510.1016/j.biombioe.2005.11.014
    [Google Scholar]
  61. DingT.Y. HiiS.L. OngL.G.A. Pretreatments of coconut husk.BioResources20127215401547
    [Google Scholar]
  62. GonçalvesF.A. RuizH.A. dos SantosE.S. TeixeiraJ.A. de MacedoG.R. Bioethanol production from coconuts and cactus pretreated by autohydrolysis.Ind. Crops Prod.20157711210.1016/j.indcrop.2015.06.041
    [Google Scholar]
  63. SivaramakrishnanR. IncharoensakdiA. Microalgae as feedstock for biodiesel production under ultrasound treatment – A review.Bioresour. Technol.201825087788710.1016/j.biortech.2017.11.095 29221914
    [Google Scholar]
  64. MurugesanA. UmaraniC. SubramanianR. NedunchezhianN. Bio-diesel as an alternative fuel for diesel engines—A review.Renew. Sustain. Energy Rev.200913365366210.1016/j.rser.2007.10.007
    [Google Scholar]
  65. NarnawareS.L. PanwarN.L. Biomass gasification for climate change mitigation and policy framework in India: A review.Bioresour. Technol. Rep.20221710089210.1016/j.biteb.2021.100892
    [Google Scholar]
  66. KumarA.K. SharmaS. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review.Bioresour. Bioprocess.201741710.1186/s40643‑017‑0137‑9
    [Google Scholar]
  67. RajendranN. GurunathanB. HanJ. KrishnaS. AnanthA. VenugopalK. PriyankaS.R.B. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis.Bioresour. Technol.202133712549810.1016/j.biortech.2021.125498 34320774
    [Google Scholar]
  68. SeoM.W. LeeS.H. NamH. LeeD. TokmurzinD. WangS. ParkY.K. Recent advances of thermochemical conversion processes for biorefinery.Bioresour. Technol.202234312610910.1016/j.biortech.2021.126109 34637907
    [Google Scholar]
  69. OduorW.W. WanderaS.M. MurungaS.I. RaudeJ.M. Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery.Heliyon202289e1058010.1016/j.heliyon.2022.e10580 36148270
    [Google Scholar]
  70. ChowdhuryM.B.I. Nickel-based catalysts for casification of glucose in supercritical water.The University of Western Ontario (Canada)201048
    [Google Scholar]
  71. CraterJ.S. LievenseJ.C. Scale-up of industrial microbial processes.FEMS Microbiol. Lett.201836513fny13810.1093/femsle/fny138 29860483
    [Google Scholar]
  72. National lab pilot plants help industry de-risk biofuel processes.Available from: https://ethanolproducer.com/articles/national-lab-pilot-plants-help-industry-de-risk-biofuel-processes?utm_source=chatgpt.com
  73. LimayemA. RickeS.C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects.Pror. Energy Combust. Sci.201238444946710.1016/j.pecs.2012.03.002
    [Google Scholar]
  74. DemirbasA. Progress and recent trends in biofuels.Pror. Energy Combust. Sci.200733111810.1016/j.pecs.2006.06.001
    [Google Scholar]
  75. PandianK. VijayakumarS. MustaffaM.R.A.F. SubramanianP. ChitraputhirapillaiS. Biochar – A sustainable soil conditioner for improving soil health, crop production and environment under changing climate: A review.Front. Soil Sci.20244137615910.3389/fsoil.2024.1376159
    [Google Scholar]
  76. SriranganK. AkawiL. Moo-YoungM. ChouC.P. Towards sustainable production of clean energy carriers from biomass resources.Appl. Energy201210017218610.1016/j.apenergy.2012.05.012
    [Google Scholar]
  77. NigamP.S. SinghA. Production of liquid biofuels from renewable resources.Pror. Energy Combust. Sci.2011371526810.1016/j.pecs.2010.01.003
    [Google Scholar]
  78. AtapattuA.J. UdumannS.S. NuwarapakshaT.D. DissanayakaN.S. Upcycling coconut husk by-products: Transitioning from traditional applications to emerging high-value usages. Agricultural Waste to Value-Added Products.SingaporeSpringer202424927310.1007/978‑981‑97‑2535‑9_12
    [Google Scholar]
  79. HarveyM. The new competition for land: Food, energy, and climate change.Food Policy201136S1S40S5110.1016/j.foodpol.2010.11.009
    [Google Scholar]
  80. RajagopalD. SextonS.E. Roland-HolstD. ZilbermanD. Challenge of biofuel: filling the tank without emptying the stomach?Environmental Research Letters200724p.044004Available from: http://faostat.fao.org
    [Google Scholar]
  81. GuptaS.K. Technological innovations in major world oil crops. Breeding.Springer20121405
    [Google Scholar]
  82. Crops and livestock products.2024Available from: https://www.fao.org/faostat/en/#data/QCL
  83. MarikkarJ.M.N. MadurapperumaW.S. Coconut. Tropical and Subtropical Fruits.Wiley201215917710.1002/9781118324097.ch9
    [Google Scholar]
  84. RoumassetJ. ClareteR. An analysis of the economic policies affecting the Philippine coconut industry.Available from: https://opendocs.ids.ac.uk/articles/report/An_analysis_of_the_economic_policies_affecting_the_Philippine_coconut_industry/26442334/1/files/48090325.pdf 1983
  85. Van DamJ. Improvement of drying, softening, bleaching and dyeing coir fibre/yarn and printing coir floor coverings.2002Available from: https://agris.fao.org/search/en/providers/122621/records/647761c6f2e6fe92b367b218
  86. PrasertsanS. SajjakulnukitB. Biomass and biogas energy in Thailand: Potential, opportunity and barriers.Renew. Energy200631559961010.1016/j.renene.2005.08.005
    [Google Scholar]
  87. JahirulM. RasulM. ChowdhuryA. AshwathN. Biofuels production through biomass pyrolysis —a technological review.Energies20125124952500110.3390/en5124952
    [Google Scholar]
  88. AgborV.B. CicekN. SparlingR. BerlinA. LevinD.B. Biomass pretreatment: Fundamentals toward application.Biotechnol. Adv.201129667568510.1016/j.biotechadv.2011.05.005 21624451
    [Google Scholar]
  89. CherubiniF. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals.Energy Convers. Manage.20105171412142110.1016/j.enconman.2010.01.015
    [Google Scholar]
  90. RoadmapT. Technology roadmap: Biofuels for transport.Available from: https://www.oecd-ilibrary.org/energy/technologyroadmap-biofuels-for-transport_9789264118461-en 2011
/content/journals/cgc/10.2174/0122133461376861250625225817
Loading
/content/journals/cgc/10.2174/0122133461376861250625225817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test