Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

The increasing manufacture and use of medications has created a huge environmental challenge: water pollution with) These toxins endanger aquatic ecosystems and human health, necessitating the implementation of effective and long-term wastewater treatment technologies. Traditional treatment procedures, such as chemical oxidation and adsorption, frequently fail to remove APIs while emitting secondary contaminants entirely. Biotechnological breakthroughs have emerged as a possible alternative, enabling environmentally friendly and effective API elimination solutions. This study focuses on current advances in biotechnological techniques, such as enzymatic degradation, microbial bioreactors, and genetically modified microbes designed to remove API. The potential of improved biofilms and immobilized enzyme systems for improving the breakdown efficiency of resistant medicines is highlighted. Additionally, combining biotechnological technologies with conventional treatment procedures, such as membrane bioreactors (MBRs) and hybrid systems, is being investigated for synergistic results. Furthermore, this study underlines the importance of omics technologies, such as genomics, proteomics, and metabolomics, in understanding microbial pathways and improving bioprocesses for targeted API breakdown. Operational scalability, legal restrictions, and the environmental effect of biotechnology treatments are all addressed. This study seeks to educate academics, policymakers, and industry stakeholders on cutting-edge solutions that are consistent with environmental sustainability goals by giving a thorough overview of sustainable biotechnological technologies for API removal. The findings provided herein highlight biotechnology's potential to transform pharmaceutical wastewater treatment while reducing its environmental impact.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461369309250409164858
2025-04-18
2025-12-09
Loading full text...

Full text loading...

References

  1. KatareA.K. TabassumA. SharmaA.K. SharmaS. Treatment of pharmaceutical wastewater through activated sludge process—A critical review.Environ. Monit. Assess.202319512146610.1007/s10661‑023‑11967‑337957309
    [Google Scholar]
  2. AshiwajuB.I. UzougboC.G. OrikpeteO.F. Environmental impact of pharmaceuticals: A comprehensive review.Mat. Sci. Pharma.202373859410.4103/mtsp.mtsp_15_23
    [Google Scholar]
  3. SiddiquiT. ArifS. RazaS. KhanT. Adverse environmental impact of pharmaceutical waste and its computational assessment.Computat. Toxicol. Drug Saf. Sust. Enviro.202386208610510.2174/9789815196986123010008
    [Google Scholar]
  4. SorliniS. CollivignarelliM.C. MiinoM.C. Technologies for the control of emerging contaminants in drinking water treatment plants.Environ. Eng. Manag. J.2019181022032216
    [Google Scholar]
  5. AukidyA.M. VerlicchiP. JelicA. PetrovicM. BarcelòD. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy.Sci. Total Environ.2012438152510.1016/j.scitotenv.2012.08.06122967493
    [Google Scholar]
  6. SidhuJ.P.S. AhmedW. GernjakW. AryalR. McCarthyD. PalmerA. KoloteloP. TozeS. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers.Sci. Total Environ.2013463-46448849610.1016/j.scitotenv.2013.06.02023831795
    [Google Scholar]
  7. VerlicchiP. AukidyA.M. ZambelloE. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review.Sci. Total Environ.201242912315510.1016/j.scitotenv.2012.04.02822583809
    [Google Scholar]
  8. VerlicchiP. GallettiA. MasottiL. Management of hospital wastewaters: The case of the effluent of a large hospital situated in a small town.Water Sci. Technol.201061102507251910.2166/wst.2010.13820453323
    [Google Scholar]
  9. YiX. TranN.H. YinT. HeY. GinK.Y.H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system.Water Res.2017121466010.1016/j.watres.2017.05.00828511040
    [Google Scholar]
  10. ZhangX.X. ZhangT. FangH.H.P. Antibiotic resistance genes in water environment.Appl. Microbiol. Biotechnol.200982339741410.1007/s00253‑008‑1829‑z19130050
    [Google Scholar]
  11. KraemerS.A. RamachandranA. PerronG.G. Antibiotic pollution in the environment: From microbial ecology to public policy.Microorganisms20197618010.3390/microorganisms706018031234491
    [Google Scholar]
  12. HughesJ. Cowper-HeaysK. OlessonE. BellR. StroombergenA. Impacts and implications of climate change on wastewater systems: A New Zealand perspective.Clim. Risk Manage.20213110026210.1016/j.crm.2020.100262
    [Google Scholar]
  13. BischelH.N. LawrenceJ.E. HalaburkaB.J. PlumleeM.H. BawazirA.S. KingJ.P. McCrayJ.E. ReshV.H. LuthyR.G. Renewing urban streams with recycled water for streamflow augmentation: Hydrologic, water quality, and ecosystem services management.Environ. Eng. Sci.201330845547910.1089/ees.2012.0201
    [Google Scholar]
  14. SilvaS. CardosoV.V. DuarteL. CarneiroR.N. AlmeidaC.M.M. Characterization of five portuguese wastewater treatment plants: Removal efficiency of pharmaceutical active compounds through conventional treatment processes and environmental risk.Appl. Sci.20211116738810.3390/app11167388
    [Google Scholar]
  15. SangamnereR. MisraT. BherwaniH. KapleyA. KumarR. A critical review of conventional and emerging wastewater treatment technologies.Sustain. Water Resour. Manag.2023925810.1007/s40899‑023‑00829‑y
    [Google Scholar]
  16. SathyaR. ArasuM.V. Al-DhabiN.A. VijayaraghavanP. IlavenilS. RejiniemonT.S. Towards sustainable wastewater treatment by biological methods – A challenges and advantages of recent technologies.Urban Clim.20234710137810.1016/j.uclim.2022.101378
    [Google Scholar]
  17. PoleselF. TorresiE. LoreggianL. CasasM.E. ChristenssonM. BesterK. PlószB.G. Removal of pharmaceuticals in pre-denitrifying MBBR – Influence of organic substrate availability in single- and three-stage configurations.Water Res.201712340841910.1016/j.watres.2017.06.06828689125
    [Google Scholar]
  18. YiQ. ZhangY. GaoY. TianZ. YangM. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs.Water Res.201711021121710.1016/j.watres.2016.12.02028006711
    [Google Scholar]
  19. HuD. MinH. ChenZ. ZhaoY. CuiY. ZouX. WuP. GeH. LuoK. ZhangL. LiuW. WangH. Performance improvement and model of a bio-electrochemical system built-in up-flow anaerobic sludge blanket for treating β-lactams pharmaceutical wastewater under different hydraulic retention time.Water Res.201916411491510.1016/j.watres.2019.11491531421511
    [Google Scholar]
  20. WangK.M. ZhouL.X. JiK.F. XuS.N. WangJ.D. Evaluation of a modified internal circulation (MIC) anaerobic reactor for real antibiotic pharmaceutical wastewater treatment: Process performance, microbial community and antibiotic resistance genes evolutions.J. Water Process Eng.20224810291410.1016/j.jwpe.2022.102914
    [Google Scholar]
  21. GranattoC.F. GrosseliG.M. SakamotoI.K. FadiniP.S. VarescheM.B.A. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic expanded granular sludge bed reactor.J. Environ. Manage.202129911353210.1016/j.jenvman.2021.11353234614559
    [Google Scholar]
  22. MahbubP. DukeM. Scalability of advanced oxidation processes (AOPs) in industrial applications: A review.J. Environ. Manage.202334511886110.1016/j.jenvman.2023.11886137651902
    [Google Scholar]
  23. EjairuU. AderamoA. T. OlisakweH. C. EsiriA. E. AdanmaU. M. SolomonN. O. Eco-friendly wastewater treatment technologies (concept): Conceptualizing advanced, sustainable wastewater treatment designs for industrial and municipal applications.Compreh. Res. Rev. Eng. Tech.2024020108310410.57219/crret.2024.2.1.0063
    [Google Scholar]
  24. PonnusamiA.B. SinhaS. AshokanH. PaulM.V. HariharanS.P. ArunJ. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques.Environ. Res.202323711694410.1016/j.envres.2023.11694437611785
    [Google Scholar]
  25. ZdartaJ. JankowskaK. BachoszK. DegórskaO. KaźmierczakK. NguyenL.N. NghiemL.D. JesionowskiT. Enhanced wastewater treatment by immobilized enzymes.Curr. Pollut. Rep.20217216717910.1007/s40726‑021‑00183‑7
    [Google Scholar]
  26. BilalM. AdeelM. RasheedT. ZhaoY. IqbalH.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review.Environ. Int.201912433635310.1016/j.envint.2019.01.01130660847
    [Google Scholar]
  27. NascimentoJ.M.D. OtavianoJ.J.S. SousaH.S.D. OliveiraJ.D.D. Biological method of heavy metal management: Biosorption and bioaccumulation.Hea. Met. Enviro. Manag. Strat. Glob. Poll.2023145631536010.1021/bk‑2023‑1456.ch016
    [Google Scholar]
  28. CalderónR.O.A. AbdeldayemO.M. PugazhendhiA. ReneE.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater.Curr. Pollut. Rep.20206182710.1007/s40726‑020‑00135‑7
    [Google Scholar]
  29. DaiY. SunQ. WangW. LuL. LiuM. LiJ. YangS. SunY. ZhangK. XuJ. ZhengW. HuZ. YangY. GaoY. ChenY. ZhangX. GaoF. ZhangY. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review.Chemosphere201821123525310.1016/j.chemosphere.2018.06.17930077103
    [Google Scholar]
  30. SalamaE.S. RohH.S. DevS. KhanM.A. Abou-ShanabR.A.I. ChangS.W. JeonB.H. Algae as a green technology for heavy metals removal from various wastewater.World J. Microbiol. Biotechnol.20193557510.1007/s11274‑019‑2648‑331053951
    [Google Scholar]
  31. IghaloJ.O. IgwegbeC.A. AniagorC.O. ObaS.N. A review of methods for the removal of penicillins from water.J. Water Process Eng.20213910188610.1016/j.jwpe.2020.101886
    [Google Scholar]
  32. Morocho-JácomeA.L. Almeida Cezare-GomesD.E. CarvalhoD.J.C.M. SauceR. RosadoC. VelascoM.V.R. BabyA.R. UV-screening from microalgae. Handbook of Microalgae-Based Processes and Products.United StatesAcademic Press202064765710.1016/B978‑0‑12‑818536‑0.00023‑3
    [Google Scholar]
  33. BorowitzkaM.A. High-value products from microalgae—their development and commercialisation.J. Appl. Phycol.201325374375610.1007/s10811‑013‑9983‑9
    [Google Scholar]
  34. BilalM. RasheedT. Sosa-HernándezJ.E. RazaA. NabeelF. IqbalH.M.N. Biosorption: An interplay between marine algae and potentially toxic elements—A review.Mar. Drugs20181626510.3390/md1602006529463058
    [Google Scholar]
  35. SanghviA.M. LoY.M. Present and potential industrial applications of macro- and microalgae.Recent Pat. Food Nutr. Agric.20102318719410.2174/187614291100203018720858194
    [Google Scholar]
  36. YunE.J. ChoiI.G. KimK.H. Red macroalgae as a sustainable resource for bio-based products.Trends Biotechnol.201533524724910.1016/j.tibtech.2015.02.00625818231
    [Google Scholar]
  37. SuganyaT. VarmanM. MasjukiH.H. RenganathanS. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach.Renew. Sustain. Energy Rev.20165590994110.1016/j.rser.2015.11.026
    [Google Scholar]
  38. AhmedI. Microalgae as a source of high-value bioactive compounds.Front. Biosci. (Schol. Ed.)201810119721610.2741/s509
    [Google Scholar]
  39. WangH.M.D. ChenC.C. HuynhP. ChangJ.S. Exploring the potential of using algae in cosmetics.Bioresour. Technol.201518435536210.1016/j.biortech.2014.12.00125537136
    [Google Scholar]
  40. VasiliadouI.A. Sánchez-VázquezR. MolinaR. MartínezF. MeleroJ.A. BautistaL.F. IglesiasJ. MoralesG. Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass.J. Environ. Manage.201618022823710.1016/j.jenvman.2016.05.03527233048
    [Google Scholar]
  41. SaravananA. KumarP.S. YaashikaaP.R. KarishmaS. JeevananthamS. SwethaS. Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb(II) ions from water system.Chemosphere202127713023610.1016/j.chemosphere.2021.13023633770696
    [Google Scholar]
  42. BasriW.W. DaudH. LamM. ChengC. OhW. TanW. ShaharunM. YeongY. PamanU. KusakabeK. KadirA.E. ShowP. LimJ. A sugarcane-bagasse-based adsorbent employed for mitigating eutrophication threats and producing biodiesel simultaneously.Processes20197957210.3390/pr7090572
    [Google Scholar]
  43. BaceloH.A.M. SantosS.C.R. BotelhoC.M.S. Tannin-based biosorbents for environmental applications – A review.Chem. Eng. J.201630357558710.1016/j.cej.2016.06.044
    [Google Scholar]
  44. DavisT.A. VoleskyB. MucciA. A review of the biochemistry of heavy metal biosorption by brown algae.Water Res.200337184311433010.1016/S0043‑1354(03)00293‑814511701
    [Google Scholar]
  45. VoleskyB. HolanZ.R. Biosorption of heavy metals.Biotechnol. Prog.199511323525010.1021/bp00033a0017619394
    [Google Scholar]
  46. QuesadaH.B. BaptistaA.T.A. CusioliL.F. SeibertD. BezerraO.D.C. BergamascoR. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review.Chemosphere201922276678010.1016/j.chemosphere.2019.02.00930738319
    [Google Scholar]
  47. SilvaA. Delerue-MatosC. FigueiredoS. FreitasO. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A review.Water2019118155510.3390/w11081555
    [Google Scholar]
  48. KyzasG.Z. DeliyanniE.A. MatisK.A. LazaridisN.K. BikiarisD.N. MitropoulosA.C. Emerging nanocomposite biomaterials as biomedical adsorbents: An overview.Compos. Interfaces2017255–7415454
    [Google Scholar]
  49. RunjavecS.M. DomanovacV.M. MeštrovićE. Removal of organic pollutants from real pharmaceutical industrial wastewater with environmentally friendly processes.Chem. Zvesti20227631423143110.1007/s11696‑021‑01919‑x
    [Google Scholar]
  50. AngostoJ.M. RocaM.J. Fernández-LópezJ.A. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques: Comparative results.Water20201212356710.3390/w12123567
    [Google Scholar]
  51. YaashikaaP.R. KumarP.S. SaravananA. VoD.V.N. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook.J. Hazard. Mater.202142012659610.1016/j.jhazmat.2021.12659634274808
    [Google Scholar]
  52. TeeG.T. GokX.Y. YongW.F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review.Environ. Res.2022212Pt B11324810.1016/j.envres.2022.11324835405129
    [Google Scholar]
  53. RaiP.K. Novel adsorbents in remediation of hazardous environmental pollutants: Progress, selectivity, and sustainability prospects.Clea. Mat.2022310005410.1016/j.clema.2022.100054
    [Google Scholar]
  54. CostaF. LagoA. RochaV. BarrosÓ. CostaL. VipotnikZ. SilvaB. TavaresT. A review on biological processes for pharmaceuticals wastes abatement—A growing threat to modern society.Environ. Sci. Technol.201953137185720210.1021/acs.est.8b0697731244068
    [Google Scholar]
  55. KhanS.J. OngerthJ.E. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling.Water Sci. Technol.200246310511310.2166/wst.2002.006512227595
    [Google Scholar]
  56. CarballaM. OmilF. TernesT. LemaJ.M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge.Water Res.200741102139215010.1016/j.watres.2007.02.01217399761
    [Google Scholar]
  57. JainR. GaurA. SuravajhalaR. ChauhanU. PantM. TripathiV. PantG. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction.Sci. Total Environ.202390516709810.1016/j.scitotenv.2023.16709837717754
    [Google Scholar]
  58. NiuL. LiY. LiY. HuQ. WangC. HuJ. ZhangW. WangL. ZhangC. ZhangH. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments.Water Res.202118811644910.1016/j.watres.2020.11644933075600
    [Google Scholar]
  59. RamadhaniR. SaidA. Assessment of chemical oxygen demand removal efficiency and microbial dynamics during aerobically degradation of wastewater in activated sludge.J. Biol. Educ.20236220510.21043/jobe.v6i2.22833
    [Google Scholar]
  60. QinL. WangD. ZhangZ. LiX. ChaiG. LinY. LiuC. CaoR. SongY. MengH. WangZ. WangH. JiangC. GuoY. LiJ. ZhengX. Impact of dissolved oxygen on the performance and microbial dynamics in side-stream activated sludge hydrolysis process.Water20231511197710.3390/w15111977
    [Google Scholar]
  61. GibsonC. JauffurS. GuoB. FrigonD. Activated sludge microbial community assembly: The role of influent microbial community immigration.Appl. Environ. Microbiol.2024908e00598e2410.1128/aem.00598‑2438995046
    [Google Scholar]
  62. WangG. WangD. XuY. LiZ. HuangL. Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment.Sci. Total Environ.202073914016610.1016/j.scitotenv.2020.14016632758957
    [Google Scholar]
  63. ShahA.F. MahmoodQ. ShahM.M. PervezA. AsadA.S. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. The Sci.Worl. J.2014201412110.1155/2014/18375224701142
    [Google Scholar]
  64. NgK.K. ShiX. TangM.K.Y. NgH.Y. A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater.Separ. Purif. Tech.201413263464310.1016/j.seppur.2014.06.021
    [Google Scholar]
  65. SkouterisG. HermosillaD. LópezP. NegroC. BlancoÁ. Anaerobic membrane bioreactors for wastewater treatment: A review.Chem. Eng. J.2012198-19913814810.1016/j.cej.2012.05.070
    [Google Scholar]
  66. BalA.S. DhagatN.N. Upflow anaerobic sludge blanket reactor- A review.Indian J. Environ. Health200143218212397675
    [Google Scholar]
  67. EnrightA.M. McHughS. CollinsG. O’FlahertyV. Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater.Water Res.200539194587459610.1016/j.watres.2005.08.03716242171
    [Google Scholar]
  68. ShiX. LeongK.Y. NgH.Y. Anaerobic treatment of pharmaceutical wastewater: A critical review.Bioresour. Technol.2017245Pt A1238124410.1016/j.biortech.2017.08.15028899679
    [Google Scholar]
  69. ChelliapanS. WilbyT. SallisP.J. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics.Water Res.200640350751610.1016/j.watres.2005.11.02016387347
    [Google Scholar]
  70. Comett-AmbrizI. Gonzalez-MartinezS. WildererP. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.Water Sci. Technol.2003471215516110.2166/wst.2003.064112926683
    [Google Scholar]
  71. RodríguezM.J. GarzaG.Y. AguileraC.A. MartínezA.S.Y. SosaS.G.J. Influence of nitrate and sulfate on the anaerobic treatment of pharmaceutical wastewater.Eng. Life Sci.20055656857310.1002/elsc.200520101
    [Google Scholar]
  72. HuC. YangZ. ChenY. TangJ. ZengL. peng, C.; Chen, L.; Wang, J. Unlocking soil revival: The role of sulfate-reducing bacteria in mitigating heavy metal contamination.Environ. Geochem. Health2024461041710.1007/s10653‑024‑02190‑139240407
    [Google Scholar]
  73. HuangH. BiswalB.K. ChenG.H. WuD. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community.Bioresour. Technol.202029712239610.1016/j.biortech.2019.12239631748132
    [Google Scholar]
  74. OliveiraC.A. FuessL.T. SoaresL.A. DamianovicM.H.R.Z. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater.J. Environ. Manage.202129611325410.1016/j.jenvman.2021.11325434271347
    [Google Scholar]
  75. CavalcanteW.A. GehringT.A. ZaiatM. Stimulation and inhibition of direct interspecies electron transfer mechanisms within methanogenic reactors by adding magnetite and granular actived carbon.Chem. Eng. J.202141512888210.1016/j.cej.2021.128882
    [Google Scholar]
  76. HouF. LiuS. YinW.X. GanL.L. PangH.T. LvJ.Q. LiuY. WangA-J. WangH-C. Methane production mechanism and control strategies for sewers: A critical review.Water20241624361810.3390/w16243618
    [Google Scholar]
  77. LiW. NiuQ. ZhangH. TianZ. ZhangY. GaoY. LiY-Y. NishimuraO. YangM. UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics.Chem. Eng. J.2015260556310.1016/j.cej.2014.08.085
    [Google Scholar]
  78. PalimeriT.D. PapadopoulouK. VlyssidesA.G. VlysidisA.A. Improving the biogas production and methane yield in a uasb reactor with the addition of sulfate.Sustainability202315201489610.3390/su152014896
    [Google Scholar]
  79. ChenZ. ZhouY. HuangZ. SuC. WanX. XuY. LuM. LinX. Effects of sulfate concentration and external voltage on operation efficiency, sludge characteristics, and microbial community of a bioelectrochemical system.Biochem. Eng. J.202319810901110.1016/j.bej.2023.109011
    [Google Scholar]
  80. PaepatungN. BoonapatcharoenN. SongkasiriW. YasuiH. PhalakornkuleC. Recovery of anaerobic system treating sulfate-rich wastewater using zero-valent iron.Chem. Eng. J.202243513517510.1016/j.cej.2022.135175
    [Google Scholar]
  81. YaoY. ShiK. LiY. WangJ. ChengD. JiangQ. GaoY. QiaoY. ZhuN. XueJ. Mechanism of sulfate reduction hampered in anaerobic biosystem under the progressive decrease of chemical oxygen demand to sulfate ratios: Long-term performance and key microbial community dynamics.J. Water Process Eng.20246510578210.1016/j.jwpe.2024.105782
    [Google Scholar]
  82. VargaB. SomogyiV. MeiczingerM. KovátsN. DomokosE. Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases - A review.J. Clean. Prod.201922130632210.1016/j.jclepro.2019.02.135
    [Google Scholar]
  83. OuyangB. XuW. ZhangW. GuangC. MuW. An overview of different strategies involved in an efficient control of emerging contaminants: Promising enzymes and the related reaction process.J. Environ. Chem. Eng.202210510821110.1016/j.jece.2022.108211
    [Google Scholar]
  84. EkeomaB.C. EkeomaL.N. YusufM. HarunaA. IkeoguC.K. MericanZ.M.A. KamyabH. PhamC.Q. VoD.V.N. ChelliapanS. Recent advances in the biocatalytic mitigation of emerging pollutants: A comprehensive review.J. Biotechnol.2023369143410.1016/j.jbiotec.2023.05.00337172936
    [Google Scholar]
  85. Cárdenas-MorenoY. González-BacerioJ. ArellanoG.H. del Monte-MartínezA. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst.Biotechnol. Appl. Biochem.20237062108213510.1002/bab.251337753743
    [Google Scholar]
  86. RahmanA.N.H. MurugesuK. RahmanR.A. MohamadZ. JaafarJ. IlliasR.M. A brief review of immobilized oxidoreductase enzymes for the removal of endocrine-disrupting chemicals from wastewater.J. Biopro. Bio. Tech.20232111110.11113/bioprocessing.v2n1.27
    [Google Scholar]
  87. KhalilA. IqbalA. ShabirM.A. HasnainA. NiazZ. The transformative potential of oxidoreductases in pollutant remediation – A review.Curr. Enzym. Inhib.202420317318410.2174/0115734080313745240802110504
    [Google Scholar]
  88. JunL.Y. YonL.S. MubarakN.M. BingC.H. PanS. DanquahM.K. AbdullahE.C. KhalidM. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater.J. Environ. Chem. Eng.20197210296110.1016/j.jece.2019.102961
    [Google Scholar]
  89. ZdartaJ. MeyerA.S. JesionowskiT. PineloM. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review.Biotechnol. Adv.201937710740110.1016/j.biotechadv.2019.05.00731128206
    [Google Scholar]
  90. PeiX. LuoZ. QiaoL. XiaoQ. ZhangP. WangA. SheldonR.A. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry.Chem. Soc. Rev.202251167281730410.1039/D1CS01004B35920313
    [Google Scholar]
  91. MaghrabyY.R. El-ShabasyR.M. IbrahimA.H. AzzazyH.M.E.S. Enzyme immobilization technologies and industrial applications.ACS Omega2023865184519610.1021/acsomega.2c0756036816672
    [Google Scholar]
  92. BashirN. SoodM. BandralJ.D. Enzyme immobilization and its applications in food processing: A review.Int. J. Chem. Stud.20208225426110.22271/chemi.2020.v8.i2d.8779
    [Google Scholar]
  93. FopaseR. ParamasivamS. KaleP. ParamasivanB. Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications.J. Environ. Chem. Eng.20208510426610.1016/j.jece.2020.104266
    [Google Scholar]
  94. Morellon-SterlingR. CarballaresD. Arana-PeñaS. SiarE.H. BrahamS.A. Fernandez-LafuenteR. Advantages of supports activated with divinyl sulfone in enzyme coimmobilization: Possibility of multipoint covalent immobilization of the most stable enzyme and immobilization via ion exchange of the least stable enzyme.ACS Sustain. Chem.& Eng.20219227508751810.1021/acssuschemeng.1c01065
    [Google Scholar]
  95. LiuS. BilalM. RizwanK. GulI. RasheedT. IqbalH.M.N. Smart chemistry of enzyme immobilization using various support matrices – A review.Int. J. Biol. Macromol.202119039640810.1016/j.ijbiomac.2021.09.00634506857
    [Google Scholar]
  96. LimaS.D.J. BoemoA.P.S.I. AraújoD.P.H.H. OliveiraD.D. Immobilization of endoglucanase on kaolin by adsorption and covalent bonding.Bioprocess Biosyst. Eng.20214481627163710.1007/s00449‑021‑02545‑333686500
    [Google Scholar]
  97. ZhangZ. ZhaoF. MengY. LinJ. XuY. FengY. DingF. LiP. Microencapsulation of the enzyme breaker by double-layer embedding method.SPE J.202328290891610.2118/212836‑PA
    [Google Scholar]
  98. PereiraS.D.A. SouzaC.P.L. MoraesL. Fontes-Sant’AnaG.C. AmaralP.F.F. Polymers as encapsulating agents and delivery vehicles of enzymes.Polymers20211323406110.3390/polym1323406134883565
    [Google Scholar]
  99. WengY. RanaweeraS. ZouD. CameronA.P. ChenX. SongH. ZhaoC.X. Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation.Food Hydrocoll.202313710838510.1016/j.foodhyd.2022.108385
    [Google Scholar]
  100. PalmerT. BonnerP.L. Biotechnological applications of enzymes.Enzymes2011356376
    [Google Scholar]
  101. ChenN. ChangB. ShiN. YanW. LuF. LiuF. Cross-linked enzyme aggregates immobilization: Preparation, characterization, and applications.Crit. Rev. Biotechnol.202343336938310.1080/07388551.2022.203807335430938
    [Google Scholar]
  102. FrotaE.G. SartorK.B. BiduskiB. MargaritesA.C.F. CollaL.M. PiccinJ.S. Co-immobilization of amylases in porous crosslinked gelatin matrices by different reticulations approaches.Int. J. Biol. Macromol.2020165Pt A1002100910.1016/j.ijbiomac.2020.09.22033011269
    [Google Scholar]
  103. RahmanA.N.H. RahmanR.A. IlliasR.M. Investigating glutaraldehyde cross-linked starch as a hybrid support for immobilizing pectinase and xylanase for pectic-oligosaccharides production.Food Biosci.202463May10571310.1016/j.fbio.2024.105713
    [Google Scholar]
  104. Velasco-LozanoS. Immobilization of enzymes as cross-linked enzyme aggregates: General strategy to obtain robust biocatalysts.Methods Mol. Biol.2020210034536110.1007/978‑1‑0716‑0215‑7_23
    [Google Scholar]
  105. ZdartaJ. Kołodziejczak-RadzimskaA. BachoszK. RybarczykA. BilalM. IqbalH.M.N. BuszewskiB. JesionowskiT. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects.Adv. Colloid Interface Sci.202331510288910.1016/j.cis.2023.10288937030261
    [Google Scholar]
  106. LiL.J. XiaW.J. MaG.P. ChenY.L. MaY.Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate.AMB Express20199111210.1186/s13568‑019‑0835‑031332555
    [Google Scholar]
  107. ZdartaJ. MeyerA.S. JesionowskiT. PineloM. Developments in support materials for immobilization of oxidoreductases: A comprehensive review.Adv. Colloid Interface Sci.201825812010.1016/j.cis.2018.07.00430075852
    [Google Scholar]
  108. YusufY. The utilization of laccase-functionalized graphene oxide as an effective biodegradation of pharmaceutical industry waste: Diclofenac and ibuprofen.Syst. Rev. Pharm.2020111536544[https://dx.doi.org/10.5530/srp.2020.1.67
    [Google Scholar]
  109. ía-Delgado, C.; Eymar, E.; Camacho-Arévalo, R. Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity.J. Chem. Technol. Biotechnol.201893123394340910.1002/jctb.5697
    [Google Scholar]
  110. BeckerD. Varela Della GiustinaS. Rodriguez-MozazS. SchoevaartR. BarcelóD. CazesD.M. BellevilleM.P. Sanchez-MarcanoJ. GunzburgD.J. CouillerotO. VölkerJ. OehlmannJ. WagnerM. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – Degradation of compounds does not always eliminate toxicity.Bioresour. Technol.201621950050910.1016/j.biortech.2016.08.00427521787
    [Google Scholar]
  111. MathurP. KocharM. ConlanX.A. PfefferF.M. DubeyM. CallahanD.L. Laccase mediated transformation of fluoroquinolone antibiotics: Analyzing degradation pathways and assessing algal toxicity.Environ. Pollut.202436012470010.1016/j.envpol.2024.12470039137875
    [Google Scholar]
  112. ZhaoS. LiX. YaoX. WanW. XuL. GuoL. BaiJ. HuC. YuH. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata.J. Hazard. Mater.202447613509910.1016/j.jhazmat.2024.13509938981236
    [Google Scholar]
  113. ChmelováD. OndrejovičM. MiertušS. Laccases as effective tools in the removal of pharmaceutical products from aquatic systems.Life202414223010.3390/life1402023038398738
    [Google Scholar]
  114. XuJ. ZhangY. ZhuX. ShenC. LiuS. XiaoY. FangZ. Direct evolution of an alkaline fungal laccase to degrade tetracyclines.Int. J. Biol. Macromol.2024277Pt 413453410.1016/j.ijbiomac.2024.13453439111464
    [Google Scholar]
  115. BhattS. ChatterjeeS. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation – A comprehensive review.Environ. Pollut.202231512044010.1016/j.envpol.2022.12044036265724
    [Google Scholar]
  116. Mora-GamboaM.P.C. Rincón-GamboaS.M. Ardila-LealL.D. Poutou-PiñalesR.A. Pedroza-RodríguezA.M. Quevedo-HidalgoB.E. Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases.Molecules20222714443610.3390/molecules2714443635889311
    [Google Scholar]
  117. SomuP. NarayanasamyS. GomezL.A. RajendranS. LeeY.R. BalakrishnanD. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy.Environ. Res.2022212Pt D11341110.1016/j.envres.2022.11341135561819
    [Google Scholar]
  118. SheldonR.A. BassoA. BradyD. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy.Chem. Soc. Rev.202150105850586210.1039/D1CS00015B34027942
    [Google Scholar]
  119. GongY.Z. NiuQ.Y. LiuY.G. DongJ. XiaM.M. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review.Environ. Pollut.202231412023210.1016/j.envpol.2022.12023236155222
    [Google Scholar]
  120. MalatoS. AntakyaliD. BeretsouV. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater.Sci. Total Environ.20196559861008
    [Google Scholar]
  121. RosmanN. SallehW.N.W. MohamedM.A. JaafarJ. IsmailA.F. HarunZ. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue.J. Colloid Interface Sci.201853223626010.1016/j.jcis.2018.07.11830092507
    [Google Scholar]
  122. KumarR. AwinoE. NjeriD.W. BasuA. ChattarajS. NayakJ. RoyS. KhanG.A. JeonB.H. GhoshA.K. PalS. BanerjeeS. RoutP. ChakraborttyS. TripathyS.K. Advancing pharmaceutical wastewater treatment: A comprehensive review on application of catalytic membrane reactor-based hybrid approaches.J. Water Process Eng.20245810483810.1016/j.jwpe.2024.104838
    [Google Scholar]
  123. ThakurA.K. KumarR. KumarA. ShankarR. KhanN.A. GuptaK.N. RamM. AryaR.K. Pharmaceutical waste-water treatment via advanced oxidation based integrated processes: An engineering and economic perspective.J. Water Process Eng.20235410397710.1016/j.jwpe.2023.103977
    [Google Scholar]
  124. GuptaB. GuptaA.K. BhatnagarA. Treatment of pharmaceutical wastewater using photocatalytic reactor and hybrid system integrated with biofilm based process: Mechanistic insights and degradation pathways.J. Environ. Chem. Eng.202311110914110.1016/j.jece.2022.109141
    [Google Scholar]
  125. GlazeW.H. KangJ.W. ChapinD.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.Ozone Sci. Eng.19879433535210.1080/01919518708552148
    [Google Scholar]
  126. OturanM.A. AaronJ-J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review.Crit. Rev. Environ. Sci. Technol.201444232577264110.1080/10643389.2013.829765
    [Google Scholar]
  127. MolinariR. PirilloF. LoddoV. PalmisanoL. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor.Catal. Today20061181-220521310.1016/j.cattod.2005.11.091
    [Google Scholar]
  128. ParedesL. MurgoloS. DzinunH. OthmanO.M.H. IsmailA.F. CarballaM. MascoloG. Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices.Appl. Catal. B201924091810.1016/j.apcatb.2018.08.067
    [Google Scholar]
  129. LiX.W. LiJ.X. GaoC.Y. ChangM. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning.Appl. Surf. Sci.2011258148949310.1016/j.apsusc.2011.08.083
    [Google Scholar]
  130. MartínezF. López-MuñozM.J. AguadoJ. MeleroJ.A. ArsuagaJ. SottoA. MolinaR. SeguraY. ParienteM.I. RevillaA. CerroL. CarenasG. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.Water Res.201347155647565810.1016/j.watres.2013.06.04523863375
    [Google Scholar]
  131. RamasundaramS. YooH.N. SongK.G. LeeJ. ChoiK.J. HongS.W. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds.J. Hazard. Mater.2013258-25912413210.1016/j.jhazmat.2013.04.04723721729
    [Google Scholar]
  132. SarasidisV.C. PlakasK.V. PatsiosS.I. KarabelasA.J. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor.Chem. Eng. J.2014239299311
    [Google Scholar]
  133. KanakarajuD. GlassB.D. OelgemöllerM. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment.Environ. Chem. Lett.2014121274710.1007/s10311‑013‑0428‑0
    [Google Scholar]
  134. MolinariR. CarusoA. ArgurioP. PoerioT. Degradation of the drugs gemfibrozil and tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst.J. Membr. Sci.20083191-2546310.1016/j.memsci.2008.03.033
    [Google Scholar]
  135. RealF.J. BenitezF.J. AceroJ.L. RoldanG. Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.201247452253310.1080/10934529.2012.65054922375535
    [Google Scholar]
  136. NavidpourA.H. AhmedM.B. ZhouJ.L. Photocatalytic degradation of pharmaceutical residues from water and sewage effluent using different TiO2 nanomaterials.Nanomaterials202414213510.3390/nano1402013538251100
    [Google Scholar]
  137. GaniyuS.O. HullebuschV.E.D. CretinM. EspositoG. OturanM.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review.Separ. Purif. Tech.201515689191410.1016/j.seppur.2015.09.059
    [Google Scholar]
  138. LiuP. ZhangH. FengY. YangF. ZhangJ. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes.Chem. Eng. J.201424021122010.1016/j.cej.2013.11.057
    [Google Scholar]
  139. EjraeiA. AroonM.A. SaravaniZ.A. Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes.J. Water Process Eng.201928455310.1016/j.jwpe.2019.01.003
    [Google Scholar]
  140. TitchouF.E. ZazouH. AfangaH. GaaydaE.J. AkbourA.R. NidheeshP.V. HamdaniM. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes.Chem. Eng. Process.202116910863110.1016/j.cep.2021.108631
    [Google Scholar]
  141. BuzzettiL. CrisenzaG.E.M. MelchiorreP. Mechanistic studies in photocatalysis.Angew. Chem. Int. Ed.201958123730374710.1002/anie.201809984
    [Google Scholar]
  142. NosakaY. NosakaA.Y. Generation and detection of reactive oxygen species in photocatalysis.Chem. Rev.201711717113021133610.1021/acs.chemrev.7b0016128777548
    [Google Scholar]
  143. NosakaY. NosakaA. Understanding hydroxyl radical (•OH) generation processes in photocatalysis.ACS Energy Lett.20161235635910.1021/acsenergylett.6b00174
    [Google Scholar]
  144. LiN. MaJ. ZhangY. ZhangL. JiaoT. Recent developments in functional nanocomposite photocatalysts for wastewater treatment: A review.Adv. Sustain. Syst.202267220010610.1002/adsu.202200106
    [Google Scholar]
  145. IslamS.M.D.U. Electrocoagulation (EC) technology for wastewater treatment and pollutants removal.Sustain. Water Resour. Manag.20195135938010.1007/s40899‑017‑0152‑1
    [Google Scholar]
  146. BhartiM. DasP.P. PurkaitM.K. A review on the treatment of water and wastewater by electrocoagulation process: Advances and emerging applications.J. Environ. Chem. Eng.202311611155810.1016/j.jece.2023.111558
    [Google Scholar]
  147. Abdel-GawadS.A. BarakaA.M. OmranK.A. MokhtarM.M. Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes.Int. J. Electrochem. Sci.2012786654666510.1016/S1452‑3981(23)15737‑3
    [Google Scholar]
  148. SahuO. MazumdarB. ChaudhariP.K. Treatment of wastewater by electrocoagulation: A review.Environ. Sci. Pollut. Res. Int.20142142397241310.1007/s11356‑013‑2208‑624243160
    [Google Scholar]
  149. MollahM.Y.A. GomesJ.A.G. DasK.K. CockeD.L. Electrochemical treatment of Orange II dye solution—Use of aluminum sacrificial electrodes and floc characterization.J. Hazard. Mater.20101741-385185810.1016/j.jhazmat.2009.09.13119857925
    [Google Scholar]
  150. SponzaD.T. DemirdenP. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine.J. Hazard. Mater.20101761-3647510.1016/j.jhazmat.2009.10.12719944528
    [Google Scholar]
  151. SponzaD. DemirdenP. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes.Separ. Purif. Tech.200756110811710.1016/j.seppur.2006.07.013
    [Google Scholar]
  152. OoiG.T.H. TangK. ChhetriR.K. KaarsholmK.M.S. SundmarkK. KragelundC. LittyK. ChristensenA. LindholstS. SundC. ChristenssonM. BesterK. AndersenH.R. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes.Bioresour. Technol.201826767768710.1016/j.biortech.2018.07.07730071459
    [Google Scholar]
  153. QianF. SunX. LiuY. Effect of ozone on removal of dissolved organic matter and its biodegradability and adsorbability in biotreated textile effluents.Ozone Sci. Eng.201335171510.1080/01919512.2013.720211
    [Google Scholar]
  154. LiH. PanY. WangZ. ChenS. GuoR. ChenJ. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine.RSC Advances2015512210077510078210.1039/C5RA21508K
    [Google Scholar]
  155. AravindP. SubramanyanV. FerroS. GopalakrishnanR. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.Water Res.20169323024110.1016/j.watres.2016.02.04126921849
    [Google Scholar]
  156. WelterJ.B. SilvaD.S.W. SchneiderD.E. RodriguesM.A.S. FerreiraJ.Z. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix.Chemosphere202024812606210.1016/j.chemosphere.2020.12606232032880
    [Google Scholar]
  157. ździor, K.; Bilińska, L. Microscopic analysis of activated sludge in industrial textile wastewater treatment plant.AUTEX Res. J.202022335436410.2478/aut‑2020‑0050
    [Google Scholar]
  158. SaquibM. VinckierC. BruggenD.V.B. The effect of UF on the efficiency of O3/H2O2 for the removal of organics from surface water.Desalination20102601-3394210.1016/j.desal.2010.05.003
    [Google Scholar]
  159. AzaïsA. MendretJ. PetitE. BrosillonS. Influence of volumetric reduction factor during ozonation of nanofiltration concentrates for wastewater reuse.Chemosphere201616549750610.1016/j.chemosphere.2016.09.07127681105
    [Google Scholar]
  160. AceroJ.L. BenitezF.J. RealF.J. TevaF. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes.Chem. Eng. J.2016289485810.1016/j.cej.2015.12.082
    [Google Scholar]
  161. NarváezJ.F. GrantH. GilV.C. PorrasJ. SanchezB.J.C. DuqueO.L.F. SossaR.R. Quintana-CastilloJ.C. Assessment of endocrine disruptor effects of levonorgestrel and its photoproducts: Environmental implications of released fractions after their photocatalytic removal.J. Hazard. Mater.201937127327910.1016/j.jhazmat.2019.02.09530856437
    [Google Scholar]
  162. ZhangY. GeißenS.U. GalC. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies.Chemosphere20087381151116110.1016/j.chemosphere.2008.07.08618793791
    [Google Scholar]
  163. SvitkováV. NemčekováK. DrdanováA.P. ImreováZ. TulipánováA. HomolaT. ZažímalF. DebnárováS. StýskalíkA. RybaJ. BačaĽ. ŠimunkováM.M. GálM. MackuľakT. StaňováV.A. Advancing wastewater treatment: The efficacy of carbon-based electrochemical platforms in removal of pharmaceuticals.Chem. Eng. J.202450015694610.1016/j.cej.2024.156946
    [Google Scholar]
  164. ZangoZ.U. KhooK.S. GarbaA. LawalM.A. AbidinA.Z. WadiI.A. EisaM.H. AldaghriO. IbnaoufK.H. LimJ.W. OhD.W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater.Environ. Geochem. Health202446414510.1007/s10653‑024‑01936‑138568460
    [Google Scholar]
  165. AjiboyeT.O. OladoyeP.O. OmotolaE.O. Adsorptive reclamation of pharmaceuticals from wastewater using carbon-based materials: A review.Kuw. J. Sci.202451310022510.1016/j.kjs.2024.100225
    [Google Scholar]
  166. ImreováZ. StaňováA.V. ZažímalF. DebnárováS. VránaL. PetrovičováN. TulipánováA. LukáčT. VéghD. StýskalíkA. MackuľakT. HomolaT. Low-cost carbon-based sorbents for the removal of pharmaceuticals from wastewaters.J. Water Process Eng.20246110518110.1016/j.jwpe.2024.105181
    [Google Scholar]
  167. OladipoA.A. OguleweE.F. AnsariH. AleshinloyeA. GaziM. Carbon materials as adsorbents and catalysts.Advanced Materials for Pharmaceutical Wastewater Treatment.Boca Raton, FLCRC Press202411714610.1201/9781003340164‑6
    [Google Scholar]
  168. OrgeC.A. GraçaC.A.L. RestivoJ. PereiraM.F.R. SoaresO.S.G.P. Catalytic ozonation of pharmaceutical compounds using carbon-based catalysts.Catal. Commun.202418710686310.1016/j.catcom.2024.106863
    [Google Scholar]
  169. AbdullahM. IqbalJ. RehmanU.M.S. KhalidU. MateenF. ArshadS.N. Al-SehemiA.G. AlgarniH. Al-HartomyO.A. FazalT. Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon based TiO2 composite: Adsorption and photocatalytic degradation evaluation.Chemosphere202331713783410.1016/j.chemosphere.2023.13783436640968
    [Google Scholar]
  170. SinghR. SamuelM.S. RavikumarM. EthirajS. KirankumarV.S. KumarM. ArulvelR. SureshS. Processing of carbon-based nanomaterials for the removal of pollutants from water/wastewater application.Water20231516300310.3390/w15163003
    [Google Scholar]
  171. Cruz-CruzA. Rivas-SanchezA. Gallareta-OlivaresG. González-GonzálezR.B. Cárdenas-AlcaideM.F. IqbalH.M.N. Parra-SaldívarR. Carbon-based materials: Adsorptive removal of antibiotics from water.Water Emerg. Cont. Nanoplast.202321210.20517/wecn.2022.19
    [Google Scholar]
  172. KhanM. WibowoA. KarimZ. PosoknistakulP. MatsagarB. WuK. SakdaronnarongC. Wastewater treatment using membrane bioreactor technologies: Removal of phenolic contaminants from oil and coal refineries and pharmaceutical industries.Polymers202416344310.3390/polym1603044338337332
    [Google Scholar]
  173. MoghaddamA. KhayatanD. BarzegarE.F.P. RanjbarR. YazdanianM. TahmasebiE. AlamM. AbbasiK. GhalehE.G.H. TebyaniyanH. Biodegradation of pharmaceutical compounds in industrial wastewater using biological treatment: A comprehensive overview.Int. J. Environ. Sci. Technol.20232055659569610.1007/s13762‑023‑04880‑2
    [Google Scholar]
  174. NathS. Electrochemical wastewater treatment technologies through life cycle assessment: A review.ChemBioEng Rev.2024114e20240001610.1002/cben.202400016
    [Google Scholar]
  175. MagalhãesI.B. PereiraA.S.A.P. SilvaT.A. FerreiraJ. BragaM.Q. CoutoE.A. AssemanyP.P. CalijuriM.L. Advancements in high-rate algal pond technology for enhanced wastewater treatment and biomass production: A review.J. Water Process Eng.20246610592910.1016/j.jwpe.2024.105929
    [Google Scholar]
  176. SarT. MarchlewiczA. HarirchiS. MantzouridouF.T. HosogluM.I. AkbasM.Y. HellwigC. TaherzadehM.J. Resource recovery and treatment of wastewaters using filamentous fungi.Sci. Total Environ.202495117575210.1016/j.scitotenv.2024.17575239182768
    [Google Scholar]
  177. CarpanezR. Dos-SantosT.G. CasellaC.R. Biohydrogen production from wastewater: Production technologies, environmental and economic aspects.J. Environ. Chem. Eng.202412511410410.1016/j.jece.2024.114104
    [Google Scholar]
  178. AdewuyiA. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system.Water2020126155110.3390/w12061551
    [Google Scholar]
  179. SáH. MichelinM. TavaresT. SilvaB. Current challenges for biological treatment of pharmaceutical-based contaminants with oxidoreductase enzymes: Immobilization processes, real aqueous matrices and hybrid techniques.Biomolecules20221210148910.3390/biom1210148936291698
    [Google Scholar]
  180. VasiliadouI.A. MolinaR. ParienteM.I. ChristoforidisK.C. MartinezF. MeleroJ.A. Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi.Chem. Eng. J.20193591427143510.1016/j.cej.2018.11.035
    [Google Scholar]
  181. Al-MaqdiK.A. ElmerhiN. AthamnehK. BilalM. AlzamlyA. AshrafS.S. ShahI. Challenges and recent advances in enzyme-mediated wastewater remediation—A review.Nanomaterials20211111312410.3390/nano1111312434835887
    [Google Scholar]
  182. SayadiM.H. ChamanehpourE. FahoulN. Recent advances and future outlook for treatment of pharmaceutical from water: An overview.Int. J. Environ. Sci. Technol.20232033437345410.1007/s13762‑022‑04674‑y
    [Google Scholar]
  183. BhandariG. ChaudharyP. GangolaS. GuptaS. GuptaA. RafatullahM. ChenS. A review on hospital wastewater treatment technologies: Current management practices and future prospects.J. Water Process Eng.20235610451610.1016/j.jwpe.2023.104516
    [Google Scholar]
  184. ChauhanB. DodamaniS. MalikS. AlmalkiW.H. HaqueS. SayyedR.Z. Microbial approaches for pharmaceutical wastewater recycling and management for sustainable development: A multicomponent approach.Environ. Res.2023237Pt 211698310.1016/j.envres.2023.11698337640091
    [Google Scholar]
  185. RoslanN.N. LauH.L.H. SuhaimiN.A.A. ShahriN.N.M. VerindaS.B. NurM. LimJ-W. UsmanA. Recent advances in advanced oxidation processes for degrading pharmaceuticals in wastewater—A review.Catalysts202414318910.3390/catal14030189
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461369309250409164858
Loading
/content/journals/cgc/10.2174/0122133461369309250409164858
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): API; biodegradation; bioremediation; Biotechnology; pharmaceutical; wastewater
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test