Skip to content
2000
image of Biotechnological Advancements in Active Pharmaceutical Ingredient 
Removal: Sustainable Solutions for Pharmaceutical Wastewater Treatment

Abstract

The increasing manufacture and use of medications has created a huge environmental challenge: water pollution with) These toxins endanger aquatic ecosystems and human health, necessitating the implementation of effective and long-term wastewater treatment technologies. Traditional treatment procedures, such as chemical oxidation and adsorption, frequently fail to remove APIs while emitting secondary contaminants entirely. Biotechnological breakthroughs have emerged as a possible alternative, enabling environmentally friendly and effective API elimination solutions. This study focuses on current advances in biotechnological techniques, such as enzymatic degradation, microbial bioreactors, and genetically modified microbes designed to remove API. The potential of improved biofilms and immobilized enzyme systems for improving the breakdown efficiency of resistant medicines is highlighted. Additionally, combining biotechnological technologies with conventional treatment procedures, such as membrane bioreactors (MBRs) and hybrid systems, is being investigated for synergistic results. Furthermore, this study underlines the importance of omics technologies, such as genomics, proteomics, and metabolomics, in understanding microbial pathways and improving bioprocesses for targeted API breakdown. Operational scalability, legal restrictions, and the environmental effect of biotechnology treatments are all addressed. This study seeks to educate academics, policymakers, and industry stakeholders on cutting-edge solutions that are consistent with environmental sustainability goals by giving a thorough overview of sustainable biotechnological technologies for API removal. The findings provided herein highlight biotechnology's potential to transform pharmaceutical wastewater treatment while reducing its environmental impact.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461369309250409164858
2025-04-18
2025-09-30
Loading full text...

Full text loading...

References

  1. Katare A.K. Tabassum A. Sharma A.K. Sharma S. Treatment of pharmaceutical wastewater through activated sludge process—a critical review. Environ. Monit. Assess. 2023 195 12 1466 10.1007/s10661‑023‑11967‑3 37957309
    [Google Scholar]
  2. Ashiwaju B.I. Uzougbo C.G. Orikpete O.F. Environmental impact of pharmaceuticals: A comprehensive review. Mat. Sci. Pharma. 2023 7 3 85 94 10.4103/mtsp.mtsp_15_23
    [Google Scholar]
  3. Siddiqui T. Arif S. Raza S. Khan T. Adverse environmental impact of pharmaceutical waste and its computational assessment. Computat. Toxicol. Drug Saf. Sust. Enviro. 2023 86 20 86 105 10.2174/9789815196986123010008
    [Google Scholar]
  4. Sorlini S. Collivignarelli M.C. Miino M.C. Technologies for the control of emerging contaminants in drinking water treatment plants. Environ. Eng. Manag. J. 2019 18 10 2203 2216
    [Google Scholar]
  5. Aukidy A.M. Verlicchi P. Jelic A. Petrovic M. Barcelò D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012 438 15 25 10.1016/j.scitotenv.2012.08.061 22967493
    [Google Scholar]
  6. Sidhu J.P.S. Ahmed W. Gernjak W. Aryal R. McCarthy D. Palmer A. Kolotelo P. Toze S. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Sci. Total Environ. 2013 463-464 488 496 10.1016/j.scitotenv.2013.06.020 23831795
    [Google Scholar]
  7. Verlicchi P. Aukidy A.M. Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012 429 123 155 10.1016/j.scitotenv.2012.04.028 22583809
    [Google Scholar]
  8. Verlicchi P. Galletti A. Masotti L. Management of hospital wastewaters: The case of the effluent of a large hospital situated in a small town. Water Sci. Technol. 2010 61 10 2507 2519 10.2166/wst.2010.138 20453323
    [Google Scholar]
  9. Yi X. Tran N.H. Yin T. He Y. Gin K.Y.H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. 2017 121 46 60 10.1016/j.watres.2017.05.008 28511040
    [Google Scholar]
  10. Zhang X.X. Zhang T. Fang H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009 82 3 397 414 10.1007/s00253‑008‑1829‑z 19130050
    [Google Scholar]
  11. Kraemer S.A. Ramachandran A. Perron G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019 7 6 180 10.3390/microorganisms7060180 31234491
    [Google Scholar]
  12. Hughes J. Cowper-Heays K. Olesson E. Bell R. Stroombergen A. Impacts and implications of climate change on wastewater systems: A New Zealand perspective. Clim. Risk Manage. 2021 31 100262 10.1016/j.crm.2020.100262
    [Google Scholar]
  13. Bischel H.N. Lawrence J.E. Halaburka B.J. Plumlee M.H. Bawazir A.S. King J.P. McCray J.E. Resh V.H. Luthy R.G. Renewing urban streams with recycled water for streamflow augmentation: Hydrologic, water quality, and ecosystem services management. Environ. Eng. Sci. 2013 30 8 455 479 10.1089/ees.2012.0201
    [Google Scholar]
  14. Silva S. Cardoso V.V. Duarte L. Carneiro R.N. Almeida C.M.M. Characterization of five portuguese wastewater treatment plants: Removal efficiency of pharmaceutical active compounds through conventional treatment processes and environmental risk. Appl. Sci. 2021 11 16 7388 10.3390/app11167388
    [Google Scholar]
  15. Sangamnere R. Misra T. Bherwani H. Kapley A. Kumar R. A critical review of conventional and emerging wastewater treatment technologies. Sustain. Water Resour. Manag. 2023 9 2 58 10.1007/s40899‑023‑00829‑y
    [Google Scholar]
  16. Sathya R. Arasu M.V. Al-Dhabi N.A. Vijayaraghavan P. Ilavenil S. Rejiniemon T.S. Towards sustainable wastewater treatment by biological methods – A challenges and advantages of recent technologies. Urban Clim. 2023 47 101378 10.1016/j.uclim.2022.101378
    [Google Scholar]
  17. Polesel F. Torresi E. Loreggian L. Casas M.E. Christensson M. Bester K. Plósz B.G. Removal of pharmaceuticals in pre-denitrifying MBBR – Influence of organic substrate availability in single- and three-stage configurations. Water Res. 2017 123 408 419 10.1016/j.watres.2017.06.068 28689125
    [Google Scholar]
  18. Yi Q. Zhang Y. Gao Y. Tian Z. Yang M. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs. Water Res. 2017 110 211 217 10.1016/j.watres.2016.12.020 28006711
    [Google Scholar]
  19. Hu D. Min H. Chen Z. Zhao Y. Cui Y. Zou X. Wu P. Ge H. Luo K. Zhang L. Liu W. Wang H. Performance improvement and model of a bio-electrochemical system built-in up-flow anaerobic sludge blanket for treating β-lactams pharmaceutical wastewater under different hydraulic retention time. Water Res. 2019 164 114915 10.1016/j.watres.2019.114915 31421511
    [Google Scholar]
  20. Wang K.M. Zhou L.X. Ji K.F. Xu S.N. Wang J.D. Evaluation of a modified internal circulation (MIC) anaerobic reactor for real antibiotic pharmaceutical wastewater treatment: Process performance, microbial community and antibiotic resistance genes evolutions. J. Water Process Eng. 2022 48 102914 10.1016/j.jwpe.2022.102914
    [Google Scholar]
  21. Granatto C.F. Grosseli G.M. Sakamoto I.K. Fadini P.S. Varesche M.B.A. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic Expanded Granular Sludge Bed reactor. J. Environ. Manage. 2021 299 113532 10.1016/j.jenvman.2021.113532 34614559
    [Google Scholar]
  22. Mahbub P. Duke M. Scalability of advanced oxidation processes (AOPs) in industrial applications: A review. J. Environ. Manage. 2023 345 118861 10.1016/j.jenvman.2023.118861 37651902
    [Google Scholar]
  23. Ejairu U. Aderamo A. T. Olisakwe H. C. Esiri A. E. Adanma U. M. Solomon N. O. Eco-friendly wastewater treatment technologies (concept): Conceptualizing advanced, sustainable wastewater treatment designs for industrial and municipal applications. Compreh. Res. Rev. Eng. Tech. 2024 02 01 083 104 10.57219/crret.2024.2.1.0063
    [Google Scholar]
  24. Ponnusami A. B. Sinha S. Ashokan H. Paul M. V. Hariharan S. P. Arun J. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environ. Res. 2023 237 116944 10.1016/j.envres.2023.116944 37611785
    [Google Scholar]
  25. Zdarta J. Jankowska K. Bachosz K. Degórska O. Kaźmierczak K. Nguyen L.N. Nghiem L.D. Jesionowski T. Enhanced wastewater treatment by immobilized enzymes. Curr. Pollut. Rep. 2021 7 2 167 179 10.1007/s40726‑021‑00183‑7
    [Google Scholar]
  26. Bilal M. Adeel M. Rasheed T. Zhao Y. Iqbal H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review. Environ. Int. 2019 124 336 353 10.1016/j.envint.2019.01.011 30660847
    [Google Scholar]
  27. Nascimento J.M.D. Otaviano J.J.S. Sousa H.S.D. Oliveira J.D.D. Biological method of heavy metal management: Biosorption and bioaccumulation. Hea. Met. Enviro. Manag. Strat. Glob. Poll. 2023 1456 315 360 10.1021/bk‑2023‑1456.ch016
    [Google Scholar]
  28. Calderón R.O.A. Abdeldayem O.M. Pugazhendhi A. Rene E.R. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater. Curr. Pollut. Rep. 2020 6 1 8 27 10.1007/s40726‑020‑00135‑7
    [Google Scholar]
  29. Dai Y. Sun Q. Wang W. Lu L. Liu M. Li J. Yang S. Sun Y. Zhang K. Xu J. Zheng W. Hu Z. Yang Y. Gao Y. Chen Y. Zhang X. Gao F. Zhang Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018 211 235 253 10.1016/j.chemosphere.2018.06.179 30077103
    [Google Scholar]
  30. Salama E.S. Roh H.S. Dev S. Khan M.A. Abou-Shanab R.A.I. Chang S.W. Jeon B.H. Algae as a green technology for heavy metals removal from various wastewater. World J. Microbiol. Biotechnol. 2019 35 5 75 10.1007/s11274‑019‑2648‑3 31053951
    [Google Scholar]
  31. Ighalo J.O. Igwegbe C.A. Aniagor C.O. Oba S.N. A review of methods for the removal of penicillins from water. J. Water Process Eng. 2021 39 101886 10.1016/j.jwpe.2020.101886
    [Google Scholar]
  32. Morocho-Jácome A.L. Almeida Cezare-Gomes D.E. Carvalho D.J.C.M. Sauce R. Rosado C. Velasco M.V.R. Baby A.R. UV-screening from microalgae. Handbook of Microalgae-Based Processes and Products. United States Academic Press 2020 647 657 10.1016/B978‑0‑12‑818536‑0.00023‑3
    [Google Scholar]
  33. Borowitzka M.A. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 2013 25 3 743 756 10.1007/s10811‑013‑9983‑9
    [Google Scholar]
  34. Bilal M. Rasheed T. Sosa-Hernández J.E. Raza A. Nabeel F. Iqbal H.M.N. Biosorption: An interplay between marine algae and potentially toxic elements—a review. Mar. Drugs 2018 16 2 65 10.3390/md16020065 29463058
    [Google Scholar]
  35. Sanghvi A.M. Lo Y.M. Present and potential industrial applications of macro- and microalgae. Recent Pat. Food Nutr. Agric. 2010 2 3 187 194 10.2174/1876142911002030187 20858194
    [Google Scholar]
  36. Yun E.J. Choi I.G. Kim K.H. Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 2015 33 5 247 249 10.1016/j.tibtech.2015.02.006 25818231
    [Google Scholar]
  37. Suganya T. Varman M. Masjuki H.H. Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016 55 909 941 10.1016/j.rser.2015.11.026
    [Google Scholar]
  38. Ahmed I. Microalgae as a source of high-value bioactive compounds. Front. Biosci. (Schol. Ed.) 2018 10 1 197 216 10.2741/s509
    [Google Scholar]
  39. Wang H.M.D. Chen C.C. Huynh P. Chang J.S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015 184 355 362 10.1016/j.biortech.2014.12.001 25537136
    [Google Scholar]
  40. Vasiliadou I.A. Sánchez-Vázquez R. Molina R. Martínez F. Melero J.A. Bautista L.F. Iglesias J. Morales G. Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. J. Environ. Manage. 2016 180 228 237 10.1016/j.jenvman.2016.05.035 27233048
    [Google Scholar]
  41. Saravanan A. Kumar P.S. Yaashikaa P.R. Karishma S. Jeevanantham S. Swetha S. Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb(II) ions from water system. Chemosphere 2021 277 130236 10.1016/j.chemosphere.2021.130236 33770696
    [Google Scholar]
  42. Basri W.W. Daud H. Lam M. Cheng C. Oh W. Tan W. Shaharun M. Yeong Y. Paman U. Kusakabe K. Kadir A.E. Show P. Lim J. A sugarcane-bagasse-based adsorbent employed for mitigating eutrophication threats and producing biodiesel simultaneously. Processes 2019 7 9 572 10.3390/pr7090572
    [Google Scholar]
  43. Bacelo H.A.M. Santos S.C.R. Botelho C.M.S. Tannin-based biosorbents for environmental applications – A review. Chem. Eng. J. 2016 303 575 587 10.1016/j.cej.2016.06.044
    [Google Scholar]
  44. Davis T.A. Volesky B. Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003 37 18 4311 4330 10.1016/S0043‑1354(03)00293‑8 14511701
    [Google Scholar]
  45. Volesky B. Holan Z.R. Biosorption of heavy metals. Biotechnol. Prog. 1995 11 3 235 250 10.1021/bp00033a001 7619394
    [Google Scholar]
  46. Quesada H.B. Baptista A.T.A. Cusioli L.F. Seibert D. Bezerra O.D.C. Bergamasco R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019 222 766 780 10.1016/j.chemosphere.2019.02.009 30738319
    [Google Scholar]
  47. Silva A. Delerue-Matos C. Figueiredo S. Freitas O. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A review. Water 2019 11 8 1555 10.3390/w11081555
    [Google Scholar]
  48. Kyzas G.Z. Deliyanni E.A. Matis K.A. Lazaridis N.K. Bikiaris D.N. Mitropoulos A.C. Emerging nanocomposite biomaterials as biomedical adsorbents: An overview. Compos. Interfaces 2017 25 5–7 415 454
    [Google Scholar]
  49. Runjavec S.M. Domanovac V.M. Meštrović E. Removal of organic pollutants from real pharmaceutical industrial wastewater with environmentally friendly processes. Chem. Zvesti 2022 76 3 1423 1431 10.1007/s11696‑021‑01919‑x
    [Google Scholar]
  50. Angosto J.M. Roca M.J. Fernández-López J.A. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques: Comparative results. Water 2020 12 12 3567 10.3390/w12123567
    [Google Scholar]
  51. Yaashikaa P.R. Kumar P.S. Saravanan A. Vo D.V.N. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. J. Hazard. Mater. 2021 420 126596 10.1016/j.jhazmat.2021.126596 34274808
    [Google Scholar]
  52. Tee G.T. Gok X.Y. Yong W.F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022 212 Pt B 113248 10.1016/j.envres.2022.113248 35405129
    [Google Scholar]
  53. Rai P.K. Novel adsorbents in remediation of hazardous environmental pollutants: Progress, selectivity, and sustainability prospects. Clea. Mat. 2022 3 100054 10.1016/j.clema.2022.100054
    [Google Scholar]
  54. Costa F. Lago A. Rocha V. Barros Ó. Costa L. Vipotnik Z. Silva B. Tavares T. A review on Biological processes for pharmaceuticals Wastes Abatement—A growing threat to Modern society. Environ. Sci. Technol. 2019 53 13 7185 7202 10.1021/acs.est.8b06977 31244068
    [Google Scholar]
  55. Khan S.J. Ongerth J.E. Estimation of pharmaceutical residues in primary and secondary sewage sludge based on quantities of use and fugacity modelling. Water Sci. Technol. 2002 46 3 105 113 10.2166/wst.2002.0065 12227595
    [Google Scholar]
  56. Carballa M. Omil F. Ternes T. Lema J.M. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res. 2007 41 10 2139 2150 10.1016/j.watres.2007.02.012 17399761
    [Google Scholar]
  57. Jain R. Gaur A. Suravajhala R. Chauhan U. Pant M. Tripathi V. Pant G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Sci. Total Environ. 2023 905 167098 10.1016/j.scitotenv.2023.167098 37717754
    [Google Scholar]
  58. Niu L. Li Y. Li Y. Hu Q. Wang C. Hu J. Zhang W. Wang L. Zhang C. Zhang H. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Res. 2021 188 116449 10.1016/j.watres.2020.116449 33075600
    [Google Scholar]
  59. Ramadhani R. Said A. Assessment of chemical oxygen demand removal efficiency and microbial dynamics during aerobically degradation of wastewater in activated sludge. J. Biol. Educ. 2023 6 2 205 10.21043/jobe.v6i2.22833
    [Google Scholar]
  60. Qin L. Wang D. Zhang Z. Li X. Chai G. Lin Y. Liu C. Cao R. Song Y. Meng H. Wang Z. Wang H. Jiang C. Guo Y. Li J. Zheng X. Impact of dissolved oxygen on the performance and microbial dynamics in Side-Stream activated sludge hydrolysis process. Water 2023 15 11 1977 10.3390/w15111977
    [Google Scholar]
  61. Gibson C. Jauffur S. Guo B. Frigon D. Activated sludge microbial community assembly: The role of influent microbial community immigration. Appl. Environ. Microbiol. 2024 90 8 e00598-24 10.1128/aem.00598‑24 38995046
    [Google Scholar]
  62. Wang G. Wang D. Xu Y. Li Z. Huang L. Study on optimization and performance of biological enhanced activated sludge process for pharmaceutical wastewater treatment. Sci. Total Environ. 2020 739 140166 10.1016/j.scitotenv.2020.140166 32758957
    [Google Scholar]
  63. Shah A.F. Mahmood Q. Shah M.M. Pervez A. Asad A.S. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. ScientificWorldJournal 2014 2014 1 21 10.1155/2014/183752 24701142
    [Google Scholar]
  64. Ng K.K. Shi X. Tang M.K.Y. Ng H.Y. A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separ. Purif. Tech. 2014 132 634 643 10.1016/j.seppur.2014.06.021
    [Google Scholar]
  65. Skouteris G. Hermosilla D. López P. Negro C. Blanco Á. Anaerobic membrane bioreactors for wastewater treatment: A review. Chem. Eng. J. 2012 198-199 138 148 10.1016/j.cej.2012.05.070
    [Google Scholar]
  66. Bal A.S. Dhagat N.N. Upflow anaerobic sludge blanket reactor--a review. Indian J. Environ. Health 2001 43 2 1 82 12397675
    [Google Scholar]
  67. Enright A.M. McHugh S. Collins G. O’Flaherty V. Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater. Water Res. 2005 39 19 4587 4596 10.1016/j.watres.2005.08.037 16242171
    [Google Scholar]
  68. Shi X. Leong K.Y. Ng H.Y. Anaerobic treatment of pharmaceutical wastewater: A critical review. Bioresour. Technol. 2017 245 Pt A 1238 1244 10.1016/j.biortech.2017.08.150 28899679
    [Google Scholar]
  69. Chelliapan S. Wilby T. Sallis P.J. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res. 2006 40 3 507 516 10.1016/j.watres.2005.11.020 16387347
    [Google Scholar]
  70. Comett-Ambriz I. Gonzalez-Martinez S. Wilderer P. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent. Water Sci. Technol. 2003 47 12 155 161 10.2166/wst.2003.0641 12926683
    [Google Scholar]
  71. Rodríguez M.J. Garza G.Y. Aguilera C.A. Martínez A.S.Y. Sosa S.G.J. Influence of nitrate and sulfate on the anaerobic treatment of pharmaceutical wastewater. Eng. Life Sci. 2005 5 6 568 573 10.1002/elsc.200520101
    [Google Scholar]
  72. Hu C. Yang Z. Chen Y. Tang J. Zeng L. peng C. Chen L. Wang J. Unlocking soil revival: The role of sulfate-reducing bacteria in mitigating heavy metal contamination. Environ. Geochem. Health 2024 46 10 417 10.1007/s10653‑024‑02190‑1 39240407
    [Google Scholar]
  73. Huang H. Biswal B.K. Chen G.H. Wu D. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. Bioresour. Technol. 2020 297 122396 10.1016/j.biortech.2019.122396 31748132
    [Google Scholar]
  74. Oliveira C.A. Fuess L.T. Soares L.A. Damianovic M.H.R.Z. Increasing salinity concentrations determine the long-term participation of methanogenesis and sulfidogenesis in the biodigestion of sulfate-rich wastewater. J. Environ. Manage. 2021 296 113254 10.1016/j.jenvman.2021.113254 34271347
    [Google Scholar]
  75. Cavalcante W.A. Gehring T.A. Zaiat M. Stimulation and inhibition of direct interspecies electron transfer mechanisms within methanogenic reactors by adding magnetite and granular actived carbon. Chem. Eng. J. 2021 415 128882 10.1016/j.cej.2021.128882
    [Google Scholar]
  76. Hou F. Liu S. Yin W.X. Gan L.L. Pang H.T. Lv J.Q. Liu Y. Wang A-J. Wang H-C. Methane production mechanism and control strategies for sewers: A critical review. Water 2024 16 24 3618 10.3390/w16243618
    [Google Scholar]
  77. Li W. Niu Q. Zhang H. Tian Z. Zhang Y. Gao Y. Li Y-Y. Nishimura O. Yang M. UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics. Chem. Eng. J. 2015 260 55 63 10.1016/j.cej.2014.08.085
    [Google Scholar]
  78. Palimeri T.D. Papadopoulou K. Vlyssides A.G. Vlysidis A.A. Improving the biogas production and methane yield in a uasb reactor with the addition of sulfate. Sustainability 2023 15 20 14896 10.3390/su152014896
    [Google Scholar]
  79. Chen Z. Zhou Y. Huang Z. Su C. Wan X. Xu Y. Lu M. Lin X. Effects of sulfate concentration and external voltage on operation efficiency, sludge characteristics, and microbial community of a bioelectrochemical system. Biochem. Eng. J. 2023 198 109011 10.1016/j.bej.2023.109011
    [Google Scholar]
  80. Paepatung N. Boonapatcharoen N. Songkasiri W. Yasui H. Phalakornkule C. Recovery of anaerobic system treating sulfate-rich wastewater using zero-valent iron. Chem. Eng. J. 2022 435 135175 10.1016/j.cej.2022.135175
    [Google Scholar]
  81. Yao Y. Shi K. Li Y. Wang J. Cheng D. Jiang Q. Gao Y. Qiao Y. Zhu N. Xue J. Mechanism of sulfate reduction hampered in anaerobic biosystem under the progressive decrease of chemical oxygen demand to sulfate ratios: Long-term performance and key microbial community dynamics. J. Water Process Eng. 2024 65 105782 10.1016/j.jwpe.2024.105782
    [Google Scholar]
  82. Varga B. Somogyi V. Meiczinger M. Kováts N. Domokos E. Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases - A review. J. Clean. Prod. 2019 221 306 322 10.1016/j.jclepro.2019.02.135
    [Google Scholar]
  83. Ouyang B. Xu W. Zhang W. Guang C. Mu W. An overview of different strategies involved in an efficient control of emerging contaminants: Promising enzymes and the related reaction process. J. Environ. Chem. Eng. 2022 10 5 108211 10.1016/j.jece.2022.108211
    [Google Scholar]
  84. Ekeoma B.C. Ekeoma L.N. Yusuf M. Haruna A. Ikeogu C.K. Merican Z.M.A. Kamyab H. Pham C.Q. Vo D.V.N. Chelliapan S. Recent advances in the biocatalytic mitigation of emerging pollutants: A comprehensive review. J. Biotechnol. 2023 369 14 34 10.1016/j.jbiotec.2023.05.003 37172936
    [Google Scholar]
  85. Cárdenas-Moreno Y. González-Bacerio J. Arellano G.H. del Monte-Martínez A. Oxidoreductase enzymes: Characteristics, applications, and challenges as a biocatalyst. Biotechnol. Appl. Biochem. 2023 70 6 2108 2135 10.1002/bab.2513 37753743
    [Google Scholar]
  86. Rahman A.N. H. Murugesu K. Rahman R. A. Mohamad Z. Jaafar J. Illias R. M. A Brief Review of Immobilized Oxidoreductase Enzymes for the Removal of Endocrine-Disrupting Chemicals from Wastewater. J. Biopro. Bio. Tech. 2023 2 1 1 11 10.11113/bioprocessing.v2n1.27
    [Google Scholar]
  87. Khalil A. Iqbal A. Shabir M.A. Hasnain A. Niaz Z. The transformative potential of oxidoreductases in pollutant remediation – a review. Curr. Enzym. Inhib. 2024 20 3 173 184 10.2174/0115734080313745240802110504
    [Google Scholar]
  88. Jun L.Y. Yon L.S. Mubarak N.M. Bing C.H. Pan S. Danquah M.K. Abdullah E.C. Khalid M. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J. Environ. Chem. Eng. 2019 7 2 102961 10.1016/j.jece.2019.102961
    [Google Scholar]
  89. Zdarta J. Meyer A.S. Jesionowski T. Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol. Adv. 2019 37 7 107401 10.1016/j.biotechadv.2019.05.007 31128206
    [Google Scholar]
  90. Pei X. Luo Z. Qiao L. Xiao Q. Zhang P. Wang A. Sheldon R.A. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem. Soc. Rev. 2022 51 16 7281 7304 10.1039/D1CS01004B 35920313
    [Google Scholar]
  91. Maghraby Y.R. El-Shabasy R.M. Ibrahim A.H. Azzazy H.M.E.S. Enzyme immobilization technologies and industrial applications. ACS Omega 2023 8 6 5184 5196 10.1021/acsomega.2c07560 36816672
    [Google Scholar]
  92. Bashir N. Sood M. Bandral J.D. Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud. 2020 8 2 254 261 10.22271/chemi.2020.v8.i2d.8779
    [Google Scholar]
  93. Fopase R. Paramasivam S. Kale P. Paramasivan B. Strategies, challenges and opportunities of enzyme immobilization on porous silicon for biosensing applications. J. Environ. Chem. Eng. 2020 8 5 104266 10.1016/j.jece.2020.104266
    [Google Scholar]
  94. Morellon-Sterling R. Carballares D. Arana-Peña S. Siar E.H. Braham S.A. Fernandez-Lafuente R. Advantages of supports activated with divinyl sulfone in enzyme coimmobilization: Possibility of multipoint covalent immobilization of the most stable enzyme and immobilization via ion exchange of the least stable enzyme. ACS Sustain. Chem. Eng. 2021 9 22 7508 7518 10.1021/acssuschemeng.1c01065
    [Google Scholar]
  95. Liu S. Bilal M. Rizwan K. Gul I. Rasheed T. Iqbal H.M.N. Smart chemistry of enzyme immobilization using various support matrices – A review. Int. J. Biol. Macromol. 2021 190 396 408 10.1016/j.ijbiomac.2021.09.006 34506857
    [Google Scholar]
  96. Lima S.D.J. Boemo A.P.S.I. Araújo D.P.H.H. Oliveira D.D. Immobilization of endoglucanase on kaolin by adsorption and covalent bonding. Bioprocess Biosyst. Eng. 2021 44 8 1627 1637 10.1007/s00449‑021‑02545‑3 33686500
    [Google Scholar]
  97. Zhang Z. Zhao F. Meng Y. Lin J. Xu Y. Feng Y. Ding F. Li P. Microencapsulation of the enzyme breaker by double-layer embedding method. SPE J. 2023 28 2 908 916 10.2118/212836‑PA
    [Google Scholar]
  98. Pereira S.D.A. Souza C.P.L. Moraes L. Fontes-Sant’Ana G.C. Amaral P.F.F. Polymers as encapsulating agents and delivery vehicles of enzymes. Polymers 2021 13 23 4061 10.3390/polym13234061 34883565
    [Google Scholar]
  99. Weng Y. Ranaweera S. Zou D. Cameron A.P. Chen X. Song H. Zhao C.X. Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocoll. 2023 137 108385 10.1016/j.foodhyd.2022.108385
    [Google Scholar]
  100. Palmer T. Bonner P. L. Biotechnological applications of enzymes. Enzymes 2011 356 376
    [Google Scholar]
  101. Chen N. Chang B. Shi N. Yan W. Lu F. Liu F. Cross-linked enzyme aggregates immobilization: Preparation, characterization, and applications. Crit. Rev. Biotechnol. 2023 43 3 369 383 10.1080/07388551.2022.2038073 35430938
    [Google Scholar]
  102. Frota E.G. Sartor K.B. Biduski B. Margarites A.C.F. Colla L.M. Piccin J.S. Co-immobilization of amylases in porous crosslinked gelatin matrices by different reticulations approaches. Int. J. Biol. Macromol. 2020 165 Pt A 1002 1009 10.1016/j.ijbiomac.2020.09.220 33011269
    [Google Scholar]
  103. Rahman A.N.H. Rahman R.A. Illias R.M. Investigating glutaraldehyde cross-linked starch as a hybrid support for immobilizing pectinase and xylanase for pectic-oligosaccharides production. Food Biosci. 2024 63 May 105713 10.1016/j.fbio.2024.105713
    [Google Scholar]
  104. Velasco-Lozano S. Immobilization of enzymes as cross-linked enzyme aggregates: General strategy to obtain robust biocatalysts. Methods Mol. Biol. 2020 2100 345 361 10.1007/978‑1‑0716‑0215‑7_23
    [Google Scholar]
  105. Zdarta J. Kołodziejczak-Radzimska A. Bachosz K. Rybarczyk A. Bilal M. Iqbal H.M.N. Buszewski B. Jesionowski T. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Adv. Colloid Interface Sci. 2023 315 102889 10.1016/j.cis.2023.102889 37030261
    [Google Scholar]
  106. Li L.J. Xia W.J. Ma G.P. Chen Y.L. Ma Y.Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express 2019 9 1 112 10.1186/s13568‑019‑0835‑0 31332555
    [Google Scholar]
  107. Zdarta J. Meyer A.S. Jesionowski T. Pinelo M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Adv. Colloid Interface Sci. 2018 258 1 20 10.1016/j.cis.2018.07.004 30075852
    [Google Scholar]
  108. Yusuf Y. The utilization of laccase-functionalized graphene oxide as an effective biodegradation of pharmaceutical industry waste: Diclofenac and ibuprofen. Syst. Rev. Pharm. 2020 11 1 536 544 10.5530/srp.2020.1.67
    [Google Scholar]
  109. ía-Delgado C. Eymar E. Camacho-Arévalo R. Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity. J. Chem. Technol. Biotechnol. 2018 93 12 3394 3409 10.1002/jctb.5697
    [Google Scholar]
  110. Becker D. Varela Della Giustina S. Rodriguez-Mozaz S. Schoevaart R. Barceló D. Cazes D.M. Belleville M.P. Sanchez-Marcano J. Gunzburg D.J. Couillerot O. Völker J. Oehlmann J. Wagner M. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – Degradation of compounds does not always eliminate toxicity. Bioresour. Technol. 2016 219 500 509 10.1016/j.biortech.2016.08.004 27521787
    [Google Scholar]
  111. Mathur P. Kochar M. Conlan X.A. Pfeffer F.M. Dubey M. Callahan D.L. Laccase mediated transformation of fluoroquinolone antibiotics: Analyzing degradation pathways and assessing algal toxicity. Environ. Pollut. 2024 360 124700 10.1016/j.envpol.2024.124700 39137875
    [Google Scholar]
  112. Zhao S. Li X. Yao X. Wan W. Xu L. Guo L. Bai J. Hu C. Yu H. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata. J. Hazard. Mater. 2024 476 135099 10.1016/j.jhazmat.2024.135099 38981236
    [Google Scholar]
  113. Chmelová D. Ondrejovič M. Miertuš S. Laccases as effective tools in the removal of pharmaceutical products from aquatic systems. Life 2024 14 2 230 10.3390/life14020230 38398738
    [Google Scholar]
  114. Xu J. Zhang Y. Zhu X. Shen C. Liu S. Xiao Y. Fang Z. Direct evolution of an alkaline fungal laccase to degrade tetracyclines. Int. J. Biol. Macromol. 2024 277 Pt 4 134534 10.1016/j.ijbiomac.2024.134534 39111464
    [Google Scholar]
  115. Bhatt S. Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation – A comprehensive review. Environ. Pollut. 2022 315 120440 10.1016/j.envpol.2022.120440 36265724
    [Google Scholar]
  116. Mora-Gamboa M.P.C. Rincón-Gamboa S.M. Ardila-Leal L.D. Poutou-Piñales R.A. Pedroza-Rodríguez A.M. Quevedo-Hidalgo B.E. Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules 2022 27 14 4436 10.3390/molecules27144436 35889311
    [Google Scholar]
  117. Somu P. Narayanasamy S. Gomez L.A. Rajendran S. Lee Y.R. Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. Environ. Res. 2022 212 Pt D 113411 10.1016/j.envres.2022.113411 35561819
    [Google Scholar]
  118. Sheldon R.A. Basso A. Brady D. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 2021 50 10 5850 5862 10.1039/D1CS00015B 34027942
    [Google Scholar]
  119. Gong Y.Z. Niu Q.Y. Liu Y.G. Dong J. Xia M.M. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. Environ. Pollut. 2022 314 120232 10.1016/j.envpol.2022.120232 36155222
    [Google Scholar]
  120. Malato S. Antakyali D. Beretsou V. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Sci. Total Environ. 2019 655 986 1008
    [Google Scholar]
  121. Rosman N. Salleh W.N.W. Mohamed M.A. Jaafar J. Ismail A.F. Harun Z. Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue. J. Colloid Interface Sci. 2018 532 236 260 10.1016/j.jcis.2018.07.118 30092507
    [Google Scholar]
  122. Kumar R. Awino E. Njeri D.W. Basu A. Chattaraj S. Nayak J. Roy S. Khan G.A. Jeon B.H. Ghosh A.K. Pal S. Banerjee S. Rout P. Chakrabortty S. Tripathy S.K. Advancing pharmaceutical wastewater treatment: A comprehensive review on application of catalytic membrane reactor-based hybrid approaches. J. Water Process Eng. 2024 58 104838 10.1016/j.jwpe.2024.104838
    [Google Scholar]
  123. Thakur A.K. Kumar R. Kumar A. Shankar R. Khan N.A. Gupta K.N. Ram M. Arya R.K. Pharmaceutical waste-water treatment via advanced oxidation based integrated processes: An engineering and economic perspective. J. Water Process Eng. 2023 54 103977 10.1016/j.jwpe.2023.103977
    [Google Scholar]
  124. Gupta B. Gupta A.K. Bhatnagar A. Treatment of pharmaceutical wastewater using photocatalytic reactor and hybrid system integrated with biofilm based process: Mechanistic insights and degradation pathways. J. Environ. Chem. Eng. 2023 11 1 109141 10.1016/j.jece.2022.109141
    [Google Scholar]
  125. Glaze W.H. Kang J.W. Chapin D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987 9 4 335 352 10.1080/01919518708552148
    [Google Scholar]
  126. Oturan M.A. Aaron J-J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. a review. Crit. Rev. Environ. Sci. Technol. 2014 44 23 2577 2641 10.1080/10643389.2013.829765
    [Google Scholar]
  127. Molinari R. Pirillo F. Loddo V. Palmisano L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today 2006 118 1-2 205 213 10.1016/j.cattod.2005.11.091
    [Google Scholar]
  128. Paredes L. Murgolo S. Dzinun H. Othman O.M.H. Ismail A.F. Carballa M. Mascolo G. Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Appl. Catal. B 2019 240 9 18 10.1016/j.apcatb.2018.08.067
    [Google Scholar]
  129. Li X.W. Li J.X. Gao C.Y. Chang M. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning. Appl. Surf. Sci. 2011 258 1 489 493 10.1016/j.apsusc.2011.08.083
    [Google Scholar]
  130. Martínez F. López-Muñoz M.J. Aguado J. Melero J.A. Arsuaga J. Sotto A. Molina R. Segura Y. Pariente M.I. Revilla A. Cerro L. Carenas G. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Res. 2013 47 15 5647 5658 10.1016/j.watres.2013.06.045 23863375
    [Google Scholar]
  131. Ramasundaram S. Yoo H.N. Song K.G. Lee J. Choi K.J. Hong S.W. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds. J. Hazard. Mater. 2013 258-259 124 132 10.1016/j.jhazmat.2013.04.047 23721729
    [Google Scholar]
  132. Sarasidis V.C. Plakas K.V. Patsios S.I. Karabelas A.J. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Infl. Operat. Paramet. 2014 239 299 311
    [Google Scholar]
  133. Kanakaraju D. Glass B.D. Oelgemöller M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ. Chem. Lett. 2014 12 1 27 47 10.1007/s10311‑013‑0428‑0
    [Google Scholar]
  134. Molinari R. Caruso A. Argurio P. Poerio T. Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. J. Membr. Sci. 2008 319 1-2 54 63 10.1016/j.memsci.2008.03.033
    [Google Scholar]
  135. Real F.J. Benitez F.J. Acero J.L. Roldan G. Combined chemical oxidation and membrane filtration techniques applied to the removal of some selected pharmaceuticals from water systems. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2012 47 4 522 533 10.1080/10934529.2012.650549 22375535
    [Google Scholar]
  136. Navidpour A.H. Ahmed M.B. Zhou J.L. Photocatalytic Degradation of Pharmaceutical Residues from Water and Sewage Effluent Using Different TiO2 Nanomaterials. Nanomaterials 2024 14 2 135 10.3390/nano14020135 38251100
    [Google Scholar]
  137. Ganiyu S.O. Hullebusch V.E.D. Cretin M. Esposito G. Oturan M.A. S. O. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Separ. Purif. Tech. 2015 156 891 914 10.1016/j.seppur.2015.09.059
    [Google Scholar]
  138. Liu P. Zhang H. Feng Y. Yang F. Zhang J. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem. Eng. J. 2014 240 211 220 10.1016/j.cej.2013.11.057
    [Google Scholar]
  139. Ejraei A. Aroon M.A. Saravani Z.A. Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes. J. Water Process Eng. 2019 28 45 53 10.1016/j.jwpe.2019.01.003
    [Google Scholar]
  140. Titchou F.E. Zazou H. Afanga H. Gaayda E.J. Akbour A.R. Nidheesh P.V. Hamdani M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process. 2021 169 108631 10.1016/j.cep.2021.108631
    [Google Scholar]
  141. Buzzetti L. Crisenza G.E.M. Melchiorre P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019 58 12 3730 3747 10.1002/anie.201809984
    [Google Scholar]
  142. Nosaka Y. Nosaka A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017 117 17 11302 11336 10.1021/acs.chemrev.7b00161 28777548
    [Google Scholar]
  143. Nosaka Y. Nosaka A. Understanding hydroxyl radical ( • OH) generation processes in photocatalysis. ACS Energy Lett. 2016 1 2 356 359 10.1021/acsenergylett.6b00174
    [Google Scholar]
  144. Li N. Ma J. Zhang Y. Zhang L. Jiao T. Recent developments in functional nanocomposite photocatalysts for wastewater treatment: A review. Adv. Sustain. Syst. 2022 6 7 2200106 10.1002/adsu.202200106
    [Google Scholar]
  145. Islam S.M.D.U. Electrocoagulation (EC) technology for wastewater treatment and pollutants removal. Sustain. Water Resour. Manag. 2019 5 1 359 380 10.1007/s40899‑017‑0152‑1
    [Google Scholar]
  146. Bharti M. Das P.P. Purkait M.K. A review on the treatment of water and wastewater by electrocoagulation process: Advances and emerging applications. J. Environ. Chem. Eng. 2023 11 6 111558 10.1016/j.jece.2023.111558
    [Google Scholar]
  147. Abdel-Gawad S.A. Baraka A.M. Omran K.A. Mokhtar M.M. Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int. J. Electrochem. Sci. 2012 7 8 6654 6665 10.1016/S1452‑3981(23)15737‑3
    [Google Scholar]
  148. Sahu O. Mazumdar B. Chaudhari P.K. Treatment of wastewater by electrocoagulation: A review. Environ. Sci. Pollut. Res. Int. 2014 21 4 2397 2413 10.1007/s11356‑013‑2208‑6 24243160
    [Google Scholar]
  149. Mollah M.Y.A. Gomes J.A.G. Das K.K. Cocke D.L. Electrochemical treatment of Orange II dye solution—Use of aluminum sacrificial electrodes and floc characterization. J. Hazard. Mater. 2010 174 1-3 851 858 10.1016/j.jhazmat.2009.09.131 19857925
    [Google Scholar]
  150. Sponza D.T. Demirden P. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine. J. Hazard. Mater. 2010 176 1-3 64 75 10.1016/j.jhazmat.2009.10.127 19944528
    [Google Scholar]
  151. Sponza D. Demirden P. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes. Separ. Purif. Tech. 2007 56 1 108 117 10.1016/j.seppur.2006.07.013
    [Google Scholar]
  152. Ooi G.T.H. Tang K. Chhetri R.K. Kaarsholm K.M.S. Sundmark K. Kragelund C. Litty K. Christensen A. Lindholst S. Sund C. Christensson M. Bester K. Andersen H.R. Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresour. Technol. 2018 267 677 687 10.1016/j.biortech.2018.07.077 30071459
    [Google Scholar]
  153. Qian F. Sun X. Liu Y. Effect of ozone on removal of dissolved organic matter and its biodegradability and adsorbability in biotreated textile effluents. Ozone Sci. Eng. 2013 35 1 7 15 10.1080/01919512.2013.720211
    [Google Scholar]
  154. Li H. Pan Y. Wang Z. Chen S. Guo R. Chen J. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Advances 2015 5 122 100775 100782 10.1039/C5RA21508K
    [Google Scholar]
  155. Aravind P. Subramanyan V. Ferro S. Gopalakrishnan R. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Res. 2016 93 230 241 10.1016/j.watres.2016.02.041 26921849
    [Google Scholar]
  156. Welter J.B. Silva D.S.W. Schneider D.E. Rodrigues M.A.S. Ferreira J.Z. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix. Chemosphere 2020 248 126062 10.1016/j.chemosphere.2020.126062 32032880
    [Google Scholar]
  157. ździor K. Bilińska L. Microscopic analysis of activated sludge in industrial textile wastewater treatment plant. AUTEX Res. J. 2020 22 3 354 364 10.2478/aut‑2020‑0050
    [Google Scholar]
  158. Saquib M. Vinckier C. Bruggen D.V.B. The effect of UF on the efficiency of O3/H2O2 for the removal of organics from surface water. Desalination 2010 260 1-3 39 42 10.1016/j.desal.2010.05.003
    [Google Scholar]
  159. Azaïs A. Mendret J. Petit E. Brosillon S. Influence of volumetric reduction factor during ozonation of nanofiltration concentrates for wastewater reuse. Chemosphere 2016 165 497 506 10.1016/j.chemosphere.2016.09.071 27681105
    [Google Scholar]
  160. Acero J.L. Benitez F.J. Real F.J. Teva F. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem. Eng. J. 2016 289 48 58 10.1016/j.cej.2015.12.082
    [Google Scholar]
  161. Narváez J.F. Grant H. Gil V.C. Porras J. Sanchez B.J.C. Duque O.L.F. Sossa R.R. Quintana-Castillo J.C. Assessment of endocrine disruptor effects of levonorgestrel and its photoproducts: Environmental implications of released fractions after their photocatalytic removal. J. Hazard. Mater. 2019 371 273 279 10.1016/j.jhazmat.2019.02.095 30856437
    [Google Scholar]
  162. Zhang Y. Geißen S.U. Gal C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008 73 8 1151 1161 10.1016/j.chemosphere.2008.07.086 18793791
    [Google Scholar]
  163. Svitková V. Nemčeková K. Drdanová A.P. Imreová Z. Tulipánová A. Homola T. Zažímal F. Debnárová S. Stýskalík A. Ryba J. Bača Ľ. Šimunková M.M. Gál M. Mackuľak T. Staňová V.A. Advancing wastewater treatment: The efficacy of carbon-based electrochemical platforms in removal of pharmaceuticals. Chem. Eng. J. 2024 500 156946 10.1016/j.cej.2024.156946
    [Google Scholar]
  164. Zango Z.U. Khoo K.S. Garba A. Lawal M.A. Abidin A.Z. Wadi I.A. Eisa M.H. Aldaghri O. Ibnaouf K.H. Lim J.W. Oh D.W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. Environ. Geochem. Health 2024 46 4 145 10.1007/s10653‑024‑01936‑1 38568460
    [Google Scholar]
  165. Ajiboye T. O. Oladoye P. O. Omotola E. O. Adsorptive reclamation of pharmaceuticals from wastewater using carbon-based materials: A review. Kuw. J. Sci. 2024 51 3 100225 10.1016/j.kjs.2024.100225
    [Google Scholar]
  166. Imreová Z. Staňová A.V. Zažímal F. Debnárová S. Vrána L. Petrovičová N. Tulipánová A. Lukáč T. Végh D. Stýskalík A. Mackuľak T. Homola T. Low-cost carbon-based sorbents for the removal of pharmaceuticals from wastewaters. J. Water Process Eng. 2024 61 105181 10.1016/j.jwpe.2024.105181
    [Google Scholar]
  167. Oladipo A.A. Ogulewe E.F. Ansari H. Aleshinloye A. Gazi M. Carbon Materials as Adsorbents and Catalysts. Advanced Materials for Pharmaceutical Wastewater Treatment. Boca Raton, FL CRC Press 2024 117 146 10.1201/9781003340164‑6
    [Google Scholar]
  168. Orge C.A. Graça C.A.L. Restivo J. Pereira M.F.R. Soares O.S.G.P. Catalytic ozonation of pharmaceutical compounds using carbon-based catalysts. Catal. Commun. 2024 187 106863 10.1016/j.catcom.2024.106863
    [Google Scholar]
  169. Abdullah M. Iqbal J. Rehman U.M.S. Khalid U. Mateen F. Arshad S.N. Al-Sehemi A.G. Algarni H. Al-Hartomy O.A. Fazal T. Removal of ceftriaxone sodium antibiotic from pharmaceutical wastewater using an activated carbon based TiO2 composite: Adsorption and photocatalytic degradation evaluation. Chemosphere 2023 317 137834 10.1016/j.chemosphere.2023.137834 36640968
    [Google Scholar]
  170. Singh R. Samuel M.S. Ravikumar M. Ethiraj S. Kirankumar V.S. Kumar M. Arulvel R. Suresh S. Processing of Carbon-Based Nanomaterials for the Removal of Pollutants from Water/Wastewater Application. Water 2023 15 16 3003 10.3390/w15163003
    [Google Scholar]
  171. Cruz-Cruz A. Rivas-Sanchez A. Gallareta-Olivares G. González-González R.B. Cárdenas-Alcaide M.F. Iqbal H.M.N. Parra-Saldívar R. Carbon-based materials: Adsorptive removal of antibiotics from water. Water Emerg. Cont. Nanoplast. 2023 2 1 2 10.20517/wecn.2022.19
    [Google Scholar]
  172. Khan M. Wibowo A. Karim Z. Posoknistakul P. Matsagar B. Wu K. Sakdaronnarong C. Wastewater treatment using membrane bioreactor technologies: Removal of phenolic contaminants from oil and coal refineries and pharmaceutical industries. Polymers 2024 16 3 443 10.3390/polym16030443 38337332
    [Google Scholar]
  173. Moghaddam A. Khayatan D. Barzegar E.F.P. Ranjbar R. Yazdanian M. Tahmasebi E. Alam M. Abbasi K. Ghaleh E.G.H. Tebyaniyan H. Biodegradation of pharmaceutical compounds in industrial wastewater using biological treatment: A comprehensive overview. Int. J. Environ. Sci. Technol. 2023 20 5 5659 5696 10.1007/s13762‑023‑04880‑2
    [Google Scholar]
  174. Nath S. Electrochemical wastewater treatment technologies through life cycle assessment: A review. ChemBioEng Rev. 2024 11 4 e202400016 10.1002/cben.202400016
    [Google Scholar]
  175. Magalhães I.B. Pereira A.S.A.P. Silva T.A. Ferreira J. Braga M.Q. Couto E.A. Assemany P.P. Calijuri M.L. Advancements in high-rate algal pond technology for enhanced wastewater treatment and biomass production: A review. J. Water Process Eng. 2024 66 105929 10.1016/j.jwpe.2024.105929
    [Google Scholar]
  176. Sar T. Marchlewicz A. Harirchi S. Mantzouridou F.T. Hosoglu M.I. Akbas M.Y. Hellwig C. Taherzadeh M.J. Resource recovery and treatment of wastewaters using filamentous fungi. Sci. Total Environ. 2024 951 175752 10.1016/j.scitotenv.2024.175752 39182768
    [Google Scholar]
  177. Carpanez R. Dos-Santos T.G. Casella C.R. Biohydrogen production from wastewater: Production technologies, environmental and economic aspects. J. Environ. Chem. Eng. 2024 12 5 114104 10.1016/j.jece.2024.114104
    [Google Scholar]
  178. Adewuyi A. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 2020 12 6 1551 10.3390/w12061551
    [Google Scholar]
  179. Sá H. Michelin M. Tavares T. Silva B. Current challenges for biological treatment of pharmaceutical-based contaminants with oxidoreductase enzymes: Immobilization processes, real aqueous matrices and hybrid techniques. Biomolecules 2022 12 10 1489 10.3390/biom12101489 36291698
    [Google Scholar]
  180. Vasiliadou I.A. Molina R. Pariente M.I. Christoforidis K.C. Martinez F. Melero J.A. Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi. Chem. Eng. J. 2019 359 1427 1435 10.1016/j.cej.2018.11.035
    [Google Scholar]
  181. Al-Maqdi K.A. Elmerhi N. Athamneh K. Bilal M. Alzamly A. Ashraf S.S. Shah I. Challenges and recent advances in enzyme-mediated wastewater remediation—a review. Nanomaterials 2021 11 11 3124 10.3390/nano11113124 34835887
    [Google Scholar]
  182. Sayadi M.H. Chamanehpour E. Fahoul N. Recent advances and future outlook for treatment of pharmaceutical from water: An overview. Int. J. Environ. Sci. Technol. 2023 20 3 3437 3454 10.1007/s13762‑022‑04674‑y
    [Google Scholar]
  183. Bhandari G. Chaudhary P. Gangola S. Gupta S. Gupta A. Rafatullah M. Chen S. A review on hospital wastewater treatment technologies: Current management practices and future prospects. J. Water Process Eng. 2023 56 104516 10.1016/j.jwpe.2023.104516
    [Google Scholar]
  184. Chauhan B. Dodamani S. Malik S. Almalki W.H. Haque S. Sayyed R.Z. Microbial approaches for pharmaceutical wastewater recycling and management for sustainable development: A multicomponent approach. Environ. Res. 2023 237 Pt 2 116983 10.1016/j.envres.2023.116983 37640091
    [Google Scholar]
  185. Roslan N.N. Lau H.L.H. Suhaimi N.A.A. Shahri N.N.M. Verinda S.B. Nur M. Lim J-W. Usman A. Recent advances in advanced oxidation processes for degrading pharmaceuticals in wastewater—a review. Catalysts 2024 14 3 189 10.3390/catal14030189
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461369309250409164858
Loading
/content/journals/cgc/10.2174/0122133461369309250409164858
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Biotechnology ; API ; biodegradation ; wastewater ; bioremediation ; pharmaceutical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test