Skip to content
2000
image of Recent Advances and Applications of Green Analytical Chemistry in Environmental Monitoring, Food Safety, and Pharmaceutical Analysis

Abstract

Green analytical chemistry (GAC), which emphasizes environmental sustainability and responsibility, has now become an attractive choice for researchers. This review article provides a comprehensive introduction to the principles of GAC, which involve reducing excessive solvent consumption, toxicity of reagents, high power output, and complex sample treatment, making the analytical processes more efficient and effective. The article also highlights the recent developments in analytical techniques, like microfluidic devices [miniaturized extraction methods (combining LPME with DES, QuEChERS)], greenness evaluating tools (GAPI, AGREE, NEMI, Eco-scale, .) for data analysis, as well as metal-organic frameworks (like bimetallic MoF, Zn-MoF, .) to enhance detection sensitivity and specificity due to their larger surface area and superior physical properties as compared to traditional sorbents. Furthermore, these innovations are essential to meet the growing demand for less expensive and more environment-friendly methods for analysis. The various applications of GAC in the fields of food safety, environmental monitoring, and pharmaceutical analysis are discussed here, which might lead to a revolution in analytical techniques, improving health outcomes and fostering environmentally friendly societies.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461364164250324051123
2025-05-08
2025-09-29
Loading full text...

Full text loading...

References

  1. Gomes da Silva F. J. Gouveia R. M. Gomes da Silva F. J. Gouveia R. M. Global population growth and industrial impact on the environment. Cleaner Production Cham Springer 2020 33 75
    [Google Scholar]
  2. Zuin V.G. Eilks I. Elschami M. Kümmerer K. Education in green chemistry and in sustainable chemistry: Perspectives towards sustainability. Green Chem. 2021 23 4 1594 1608 10.1039/D0GC03313H
    [Google Scholar]
  3. Ardila-Fierro K.J. Hernández J.G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem 2021 14 10 2145 2162 10.1002/cssc.202100478 33835716
    [Google Scholar]
  4. Abdussalam-Mohammed W. Ali A.Q. Errayes A.O. Green chemistry: Principles, applications, and disadvantages. Chem. Methodol. 2020 4 4 408 423 10.33945/SAMI/CHEMM.2020.4.4
    [Google Scholar]
  5. Valle D.M. Sensors as green tools in analytical chemistry. Curr. Opin. Green Sustain. Chem. 2021 31 100501 10.1016/j.cogsc.2021.100501
    [Google Scholar]
  6. Parastar H. Weller P. Towards greener volatilomics: Is GC-IMS the new Swiss army knife of gas phase analysis? Trends Analyt. Chem. 2024 170 117438 10.1016/j.trac.2023.117438
    [Google Scholar]
  7. Gałuszka A. Migaszewski Z. Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Analyt. Chem. 2013 50 78 84 10.1016/j.trac.2013.04.010
    [Google Scholar]
  8. Płotka-Wasylka J. Gałuszka A. Namieśnik J. Green analytical chemistry: Summary of existing knowledge and future trends. Green Analytical Chemistry Singapore Springer 2019 431 449
    [Google Scholar]
  9. Ding B. Pharma Industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Saf. Environ. Prot. 2018 119 115 130 10.1016/j.psep.2018.06.031
    [Google Scholar]
  10. Umrethia B. Kalsariya B. Vaishnav P.P.U. Classical and modern drug extraction techniques: Facts and figures. J. Ayurv. Integ. Med. Sci. 2017 2 4 277 183 10.21760/jaims.v2i4.9367
    [Google Scholar]
  11. Joshi D.R. Adhikari N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019 28 3 1 18 10.9734/jpri/2019/v28i330203
    [Google Scholar]
  12. Russo E.B. Plumb J. Whiteley V.L. Novel solventless extraction technique to preserve cannabinoid and terpenoid profiles of fresh cannabis inflorescence. Molecules 2021 26 18 5496 10.3390/molecules26185496 34576967
    [Google Scholar]
  13. Omar K.A. Sadeghi R. Hydrophobic deep eutectic solvents: Thermo-physical characteristics and their application in liquid–liquid extraction. J. Indian Chem. Soc. 2022 19 8 3529 3537
    [Google Scholar]
  14. Herce-Sesa B. López-López J.A. Moreno C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Analyt. Chem. 2021 143 116398 10.1016/j.trac.2021.116398
    [Google Scholar]
  15. González-Curbelo M.Á. Socas-Rodríguez B. Herrera-Herrera A.V. González-Sálamo J. Hernández-Borges J. Rodríguez-Delgado M.Á. Evolution and applications of the QuEChERS method. Trends Analyt. Chem. 2015 71 169 185 10.1016/j.trac.2015.04.012
    [Google Scholar]
  16. Santana-Mayor Á. Socas-Rodríguez B. Herrera-Herrera A.V. Rodríguez-Delgado M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Analyt. Chem. 2019 116 214 235 10.1016/j.trac.2019.04.018
    [Google Scholar]
  17. Zhang C. Deng Y. Zheng J. Zhang Y. Yang L. Liao C. Su L. Zhou Y. Gong D. Chen L. Luo A. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. Trends Analyt. Chem. 2019 118 517 537 10.1016/j.trac.2019.06.012
    [Google Scholar]
  18. Santana-Mayor A. Rodríguez-Ramos R. Herrera-Herrera A.V. Socas-Rodríguez B. Rodríguez-Delgado M.A. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020–2023). Trends Analyt. Chem. 2023 169 117375 10.1016/j.trac.2023.117375
    [Google Scholar]
  19. Lee H.J. Jung Y.S. Seo D. Kim E. Yoo M. Development and validation of QuEChERS-based LC-MS/MS method for simultaneous quantification of eleven N-nitrosamines in processed fish meat, processed meat, and salted fish products. Food Chem. 2024 459 140281 10.1016/j.foodchem.2024.140281 39047543
    [Google Scholar]
  20. Kim T.E. Yoo G. Lee H.M. Kim B.K. Jang W.H. Novel QuEChERS-ultra-performance liquid chromatography–atmospheric-pressure chemical ionization tandem mass spectrometry method for the simultaneous determination of vitamin D and vitamin K in vitamin-fortified nanoemulsions. Food Chem. 2022 389 133009 10.1016/j.foodchem.2022.133009 35490514
    [Google Scholar]
  21. Izcara S. Casado N. Morante-Zarcero S. Pérez-Quintanilla D. Sierra I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chem. 2022 380 132189 10.1016/j.foodchem.2022.132189 35086011
    [Google Scholar]
  22. Montemurro N. Joedicke J. Pérez S. Development and application of a QuEChERS method with liquid chromatography-quadrupole time of flight-mass spectrometry for the determination of 50 wastewater-borne pollutants in earthworms exposed through treated wastewater. Chemosphere 2021 263 128222 10.1016/j.chemosphere.2020.128222 33297178
    [Google Scholar]
  23. Sereshti H. Mohammadi Z. Soltani S. Najarzadekan H. A green miniaturized QuEChERS based on an electrospun nanofibrous polymeric deep eutectic solvent coupled to gas chromatography-mass spectrometry for analysis of multiclass pesticide residues in cereal flour samples. J. Mol. Liq. 2022 364 120077 10.1016/j.molliq.2022.120077
    [Google Scholar]
  24. Jin C. Wang T. Zhao T. Jiang W. Zhen X. Li H. Determination of nine cardiovascular drugs in human plasma by QuEChERS-UPLC-MS/MS. Heliyon 2023 9 12 e22543 10.1016/j.heliyon.2023.e22543 38094060
    [Google Scholar]
  25. Soni D. Khushbu Moudgil P. Bangar Y.C. Jadhav V.J. Development of QuEChERS method for simultaneous detection of cyromazine and melamine residues in eggs. J. Food Compos. Anal. 2024 128 106025 10.1016/j.jfca.2024.106025
    [Google Scholar]
  26. Jeong W.T. Kim C.J. Ryu S.H. Establishment of a GC-HRMS-IDMS-based modified QuEChERS approach for rapid, reliable, and simultaneous determination of organochlorine pesticides in soil. Microchem. J. 2024 197 109754 10.1016/j.microc.2023.109754
    [Google Scholar]
  27. Kannaiah K.P. Sugumaran A. Chanduluru H.K. Rathinam S. Environmental impact of greenness assessment tools in liquid chromatography – A review. Microchem. J. 2021 170 106685 10.1016/j.microc.2021.106685
    [Google Scholar]
  28. Sajid M. Płotka-Wasylka J. Green analytical chemistry metrics: A review. Talanta 2022 238 Pt 2 123046 10.1016/j.talanta.2021.123046 34801903
    [Google Scholar]
  29. Kurowska-Susdorf A. Zwierżdżyński M. Bevanda A.M. Talić S. Ivanković A. Płotka-Wasylka J. Green analytical chemistry: Social dimension and teaching. Trends Analyt. Chem. 2019 111 185 196 10.1016/j.trac.2018.10.022
    [Google Scholar]
  30. Soares da Silva Burato J. Medina V.D.A. Toffoli D.A.L. Vasconcelos Soares Maciel E. Lanças M.F. Recent advances and trends in miniaturized sample preparation techniques. J. Sep. Sci. 2020 43 1 202 225 10.1002/jssc.201900776 31692234
    [Google Scholar]
  31. Azorín C. Benedé J.L. Chisvert A. Ultramicroextraction as a miniaturization of the already miniaturized. A step toward nanoextraction and beyond. J. Sep. Sci. 2023 46 15 2300223 10.1002/jssc.202300223 37269204
    [Google Scholar]
  32. Muslim N.M. Abbood F.K. Hammood N.H. Azooz E.A. Air-assisted solidified floating organic drop microextraction method based on green supramolecular solvent for arsenic and selenium qantification in water and food samples. J. Food Comp. Anal. 2024 134 106558 10.1016/j.jfca.2024.106558
    [Google Scholar]
  33. Pang J. Chen H. Guo H. Lin K. Huang S. Lin B. Zhang Y. High-sensitive determination of tetracycline antibiotics adsorbed on microplastics in mariculture water using pre-COF/monolith composite-based in-tube solid phase microextraction on-line coupled to HPLC-MS/MS. J. Hazard. Mater. 2024 469 133768 10.1016/j.jhazmat.2024.133768 38422729
    [Google Scholar]
  34. Moema D. Makwakwa T.A. Gebreyohannes B.E. Dube S. Nindi M.M. Hollow fiber liquid phase microextraction of fluoroquinolones in chicken livers followed by high pressure liquid chromatography: Greenness assessment using National Environmental Methods Index Label (NEMI), green analytical procedure index (GAPI), Analytical GREEnness metric (AGREE), and Eco Scale. J. Food Compos. Anal. 2023 117 105131 10.1016/j.jfca.2023.105131
    [Google Scholar]
  35. Vállez-Gomis V. Benedé J.L. Lara-Molina E. López-Nogueroles M. Chisvert A. A miniaturized stir bar sorptive dispersive microextraction method for the determination of bisphenols in follicular fluid using a magnetic covalent organic framework. Anal. Chim. Acta 2024 1289 342215 10.1016/j.aca.2024.342215 38245199
    [Google Scholar]
  36. Ye P. Yu L. Guo J. Yao M. Qiu J. Chen G. Xu J. Zhu F. Ouyang G. Green determination of glucocorticoids in water environment based on novel polydopamine coated iron tetroxide via magnetic dispersive solid phase microextraction. Green Analytical Chemistry 2024 10 100136 10.1016/j.greeac.2024.100136
    [Google Scholar]
  37. Majd M. Gholami M. Fathi A. Sedghi R. Nojavan S. Thin-film solid-phase microextraction of pesticides from cereal samples using electrospun polyvinyl alcohol/modified chitosan/porous organic framework nanofibers. Food Chem. 2024 444 138647 10.1016/j.foodchem.2024.138647 38325082
    [Google Scholar]
  38. Tintrop L.K. Salemi A. Jochmann M.A. Engewald W.R. Schmidt T.C. Improving greenness and sustainability of standard analytical methods by microextraction techniques: A critical review. Anal. Chim. Acta 2023 1271 341468 10.1016/j.aca.2023.341468 37328248
    [Google Scholar]
  39. Aryasomayajula A. Bayat P. Rezai P. Selvaganapathy P.R. Microfluidic devices and their applications. Handbook Of Nanotechnology cham Springer 2017 487 536
    [Google Scholar]
  40. Niculescu A.G. Chircov C. Bîrcă A.C. Grumezescu A.M. Fabrication and applications of microfluidic devices: A review. Int. J. Mol. Sci. 2021 22 4 2011 10.3390/ijms22042011 33670545
    [Google Scholar]
  41. Oday J. Hadi H. Hashim P. Richardson S. Iles A. Pamme N. Development and validation of spectrophotometric method and paper-based microfluidic devices for the quantitative determination of Amoxicillin in pure form and pharmaceutical formulations. Heliyon 2024 10 3 e24968 10.1016/j.heliyon.2024.e24968 38318013
    [Google Scholar]
  42. Pholsiri T. Khamcharoen W. Suksuwan A. vimolmangkang S. Siangproh W. Chailapakul O. Dual-mode electrochemical/colorimetric capillary-driven microfluidic device for simultaneous determination of Δ⁹-tetrahydrocannabinol and cannabidiol in cannabis flower. Sens. Actuat. B Chem. 2024 417 136152 10.1016/j.snb.2024.136152
    [Google Scholar]
  43. Balasubramanian S. Udayabhanu A. Kumar P.S. Muthamilselvi P. Eswari C. Vasantavada A. Kanetkar S. Kapoor A. Digital colorimetric analysis for estimation of iron in water with smartphone-assisted microfluidic paper-based analytical devices. Int. J. Environ. Anal. Chem. 2023 103 11 2480 2497 10.1080/03067319.2021.1893711
    [Google Scholar]
  44. Zhao Z. Li Q. Dong Y. Gong J. Li Z. Zhang J. Core-shell structured gold nanorods on thread-embroidered fabric-based microfluidic device for Ex Situ detection of glucose and lactate in sweat. Sens. Actuat. B Chem. 2022 353 131154 10.1016/j.snb.2021.131154
    [Google Scholar]
  45. Saiboh T. Malahom N. Prakobkij A. Seebunrueng K. Amatatongchai M. Chairam S. Sameenoi Y. Jarujamrus P. Visual detection of formalin in food samples by using a microfluidic thread-based analytical device. Microchem. J. 2023 190 108685 10.1016/j.microc.2023.108685
    [Google Scholar]
  46. Vasconcelos Soares Maciel E. Toffoli D.A.L. Sobieski E. Nazário D.C.E. Lanças F.M. Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal. Chim. Acta 2020 1103 11 31 10.1016/j.aca.2019.12.064 32081175
    [Google Scholar]
  47. Mejía-Carmona K. Maciel E.V.S. Lanças F.M. Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis 2020 41 20 1680 1693 10.1002/elps.202000019 32359175
    [Google Scholar]
  48. Foster S.W. Parker D. Kurre S. Boughton J. Stoll D.R. Grinias J.P. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal. Chim. Acta 2022 1228 340300 10.1016/j.aca.2022.340300 36127000
    [Google Scholar]
  49. Medina V.D.A. Maciel E.V.S. Lanças F.M. Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. Trends Analyt. Chem. 2020 131 116003 10.1016/j.trac.2020.116003
    [Google Scholar]
  50. Sharma S. Tolley L.T. Tolley H.D. Plistil A. Stearns S.D. Lee M.L. Hand-portable liquid chromatographic instrumentation. J. Chromatogr. A 2015 1421 38 47 10.1016/j.chroma.2015.07.119 26592464
    [Google Scholar]
  51. Barreiro J.C. Luiz A.L. Maciel S.C.F. Maciel E.V.S. Lanças F.M. Recent approaches for on‐line analysis of residues and contaminants in food matrices: A review. J. Sep. Sci. 2015 38 10 1721 1732 10.1002/jssc.201401285 25773972
    [Google Scholar]
  52. Mauriz E. Dey P. Lechuga L.M. Advances in nanoplasmonic biosensors for clinical applications. Analyst (Lond.) 2019 144 24 7105 7129 10.1039/C9AN00701F 31663527
    [Google Scholar]
  53. Xing G. Ai J. Wang N. Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt. Chem. 2022 157 116792 10.1016/j.trac.2022.116792
    [Google Scholar]
  54. Khalaf E.M. Jabbar S.H. Mireya Romero-Parra R. Raheem Lateef Al-Awsi G. Budi S.H. Altamimi A.S. Gatea A.M. Falih K.T. Singh K. Alkhuzai K.A. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem. J. 2023 190 108692 10.1016/j.microc.2023.108692
    [Google Scholar]
  55. Upadhyay S. Kumar A. Srivastava M. Srivastava A. Dwivedi A. Singh R.K. Srivastava S.K. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024 275 126080 10.1016/j.talanta.2024.126080 38615454
    [Google Scholar]
  56. Zhou W. Dou M. Timilsina S.S. Xu F. Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip 2021 21 14 2658 2683 10.1039/D1LC00414J 34180494
    [Google Scholar]
  57. Wang J. Qin Y. Molecularly imprinted sensors for the determination of anthocyanins in food products. Int. J. Electrochem. Sci. 2024 19 8 100673 10.1016/j.ijoes.2024.100673
    [Google Scholar]
  58. Qin L. Yu Q. Huang Y. Zhang L. Yan X. Wu W. Liao F. Zhang J. Cui H. Zhang J. Fan H. A novel fluorescent sensor with an overtone peak reference for highly sensitive detection of mercury (II) ions and hydrogen sulfide: Mechanisms and applications in environmental monitoring and bioanalysis. Anal. Chim. Acta 2024 1287 342086 10.1016/j.aca.2023.342086 38182341
    [Google Scholar]
  59. Yuan M. Zheng C.J. Qian S.Q. Ye T. Wu X.X. Yin F.Q. Huang H.X. Wang Y-X. Ye Y.W. Xu F. Yang K.L. An ultrasensitive, high throughput paper-based electrochemical chip for real-time detection of multiple heavy metal ions. Microchem. J. 2024 204 111119 10.1016/j.microc.2024.111119
    [Google Scholar]
  60. Lin X. Guo K. Wang Z. Kang L. Duan N. Wang Z. Wu S. Construction of aptamer-gated colorimetric sensor based on MIL-acetylcholinesterase to detect acrylamide in food. Sens. Actuat. B Chem. 2024 418 136338 10.1016/j.snb.2024.136338
    [Google Scholar]
  61. Hao G. Tian H. Zhang Z. Qin X. Yang T. Yuan L. Yang X. A dual-channel and dual-signal microfluidic paper chip for simultaneous rapid detection of difenoconazole and mancozeb. Microchem. J. 2023 190 108674 10.1016/j.microc.2023.108674
    [Google Scholar]
  62. Tian Z. Zhang X. Zhang Y. Wu Z. Luan G. Bao L. Ji Y. Cui M. Li C. A MOF-on-MOF heterostructure ratiometric/colorimetric dual-mode fluorescence sensor based on support vector machine for detecting tetracyclines in animal-derived foods. Food Chem. 2024 460 Pt 3 140690 10.1016/j.foodchem.2024.140690 39106752
    [Google Scholar]
  63. Wu J. Wei W. Zareef M. Li S. Ouyang Q. Chen Q. Simple design of upconversion nanoparticles-based aptasensor integrated microfluidic chip for ultra-sensitive detection of bisphenol A in aquatic products. Sens. Actuat. B Chem. 2023 390 134017 10.1016/j.snb.2023.134017
    [Google Scholar]
  64. Jiang S. Zhang H. Wang P. Li Z. Electrophoretic chip based on special wettability surfaces for detection of heavy metals. Microchem. J. 2023 195 109432 10.1016/j.microc.2023.109432
    [Google Scholar]
  65. Soltani-Shahrivar M. Afkhami A. Madrakian T. Design and optimization of a cost-effective paper-based voltammetric sensor for the determination of trinitrotoluene (TNT) utilizing cysteamine-linked Fe3O4 @Au nanocomposite. Talanta 2024 274 126041 10.1016/j.talanta.2024.126041 38581854
    [Google Scholar]
  66. Bystrzanowska M. Tobiszewski M. Chemometrics for selection, prediction, and classification of sustainable solutions for green chemistry—A review. Symmetry 2020 12 12 2055 10.3390/sym12122055
    [Google Scholar]
  67. Kalinowska K. Bystrzanowska M. Tobiszewski M. Chemometrics approaches to green analytical chemistry procedure development. Curr. Opin. Green Sustain. Chem. 2021 30 100498 10.1016/j.cogsc.2021.100498
    [Google Scholar]
  68. Taraji M. Haddad P.R. Amos R.I.J. Talebi M. Szucs R. Dolan J.W. Pohl C.A. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal. Chim. Acta 2018 1000 20 40 10.1016/j.aca.2017.09.041 29289311
    [Google Scholar]
  69. Kokosa J.M. Selecting an extraction solvent for a greener liquid phase microextraction (LPME) mode-based analytical method. Trends Analyt. Chem. 2019 118 238 247 10.1016/j.trac.2019.05.012
    [Google Scholar]
  70. Yu D. Xue Z. Mu T. Deep eutectic solvents as a green toolbox for synthesis. Cell. Rep. Phys. Sci. 2022 3 4 1 9
    [Google Scholar]
  71. Yabré M. Ferey L. Somé I.T. Gaudin K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 2018 23 5 1065 10.3390/molecules23051065 29724076
    [Google Scholar]
  72. Mandal S. Jain A. Panda T.K. Green synthesis of thioamide derivatives in an environmentally benign deep eutectic solvent (DES). RSC Sustainab. 2024 2 8 2249 2255 10.1039/D4SU00206G
    [Google Scholar]
  73. Liu Y. Cao S. Tian J. You J. Liu Z. Chen Z. A magnetic solid phase extraction based on DES/ZIF-MGO coupled with UPLC-MS/MS for the simultaneous detection and consumption evaluation of four illicit drugs. Microchem. J. 2024 200 110448 10.1016/j.microc.2024.110448
    [Google Scholar]
  74. Godunov P. Shishov A. Bochko T. Bulatov A. Three-component deep eutectic solvent for revered-phase air-assisted liquid–liquid microextraction for the determination of furanic compounds in transformer oil by HPLC-UV. Microchem. J. 2024 201 110594 10.1016/j.microc.2024.110594
    [Google Scholar]
  75. Monem A. Habibi D. Goudarzi H. Mahmoudiani-Glian M. Benrashid A. Alshablawi Z. The choline chloride-based DES as a capable and new catalyst for the synthesis of benzopyranophenazinecarbonitriles. Catal. Commun. 2024 187 106913 10.1016/j.catcom.2024.106913
    [Google Scholar]
  76. Kilinç Y. Zaman B.T. Bakirdere S. Özdoğan N. Dual techniques for trace copper determination: DES/Dithizone based liquid phase microextraction-flame atomic absorption spectrophotometry and digital image based colorimetric probe. Food Chem. 2024 432 137244 10.1016/j.foodchem.2023.137244 37659325
    [Google Scholar]
  77. Sagandira C.R. Nguyen R. Liu Q. Len C. Green and efficient deep eutectic solvent mediated one-step synthesis of suxamethonium chloride as active pharmaceutical ingredient. Sustain. Chem. Pharm. 2024 39 101617 10.1016/j.scp.2024.101617
    [Google Scholar]
  78. Alqarni A.M. Shaaban H. Mostafa A. AlKahlah S. AlQahtani S.S. Alqarni A.M. Almutairi N.S. Khalid O. Ahmed Z. Anisaldehyde-based deep eutectic solvent dispersive liquid–liquid microextraction (DES-DLLME) followed by UPLC–MS/MS for simultaneous determination of selected parabens and bisphenols in food products: Method development and assessment of the ecological implications. Microchem. J. 2024 204 110981 10.1016/j.microc.2024.110981
    [Google Scholar]
  79. Pettinari C. Marchetti F. Mosca N. Tosi G. Drozdov A. Application of metal − organic frameworks. Polym. Int. 2017 66 6 731 744 10.1002/pi.5315
    [Google Scholar]
  80. Reinsch H. “Green” synthesis of metal‐organic frameworks. Eur. J. Inorg. Chem. 2016 2016 27 4290 4299 10.1002/ejic.201600286
    [Google Scholar]
  81. Cheng W. Tang X. Zhang Y. Wu D. Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci. Technol. 2021 112 268 282 10.1016/j.tifs.2021.04.004
    [Google Scholar]
  82. Mirzajani R. Kha J.B. Electrospun nanofiber composite based on bimetallic metal–organic framework/halloysite nanotubes/deep eutectic solvents/molecularly imprinted polymers for thin film microextraction of sulfonamides in milk, eggs and chicken meat by HPLC analysis. Microchem. J. 2024 203 110950 10.1016/j.microc.2024.110950
    [Google Scholar]
  83. Pham H.K. Sim Y. Carboni M. Meyer D. Mathews N. Generating metal-organic frameworks (MOFs) from photovoltaic modules for wastewater remediation. J. Environ. Chem. Eng. 2022 10 5 108346 10.1016/j.jece.2022.108346
    [Google Scholar]
  84. Zhou D.D. Cao Y.W. Chen M. Zhuang L.Y. Lv D.Z. Wang M.Y. Yang Z.H. Zeng Y.L. Determination of azole fungicide residues in fruits and vegetables by magnetic solid phase extraction based on magnetic MOF sorbent in combination with high performance liquid chromatography. Microchem. J. 2023 187 108459 10.1016/j.microc.2023.108459
    [Google Scholar]
  85. Chen Y. Ni D. Yang X. Liu C. Yin J. Cai K. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta 2018 278 114 123 10.1016/j.electacta.2018.05.024
    [Google Scholar]
  86. Yu H. Zhou F. Xie H. Yang X. Qiu B. Xu X. One-pot synthesis of two novel Ce-MOFs for the detection of tetracyclic antibiotics and Fe3+. J. Mol. Struct. 2024 1307 138023 10.1016/j.molstruc.2024.138023
    [Google Scholar]
  87. Afsordeh A. Arbabsadeghi A. Javanmardi H. Bagheri H. Incorporation of Cu-TATAB metal-organic framework within polyurethane nanocomposite for enhanced thin film microextraction of some chlorinated pesticides. J. Chromatogr. A 2024 1730 465061 10.1016/j.chroma.2024.465061 38909520
    [Google Scholar]
  88. Ismail K.M. Hassan S.S. Medany S.S. Hefnawy M.A. A facile sonochemical synthesis of the Zn-based metal–organic framework for electrochemical sensing of paracetamol. Materials Advances 2024 5 14 5870 5884 10.1039/D4MA00061G
    [Google Scholar]
  89. Ukwo S.P. Udo I.I. Ndaeyo N. Food additives: Overview of related safety concerns. Food Sci. Nutrit. Res. 2022 5 1 1 10 10.33425/2641‑4295.1052
    [Google Scholar]
  90. Rather I.A. Koh W.Y. Paek W.K. Lim J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017 8 830 10.3389/fphar.2017.00830 29204118
    [Google Scholar]
  91. Pallone J.A.L. Caramês E.T.S. Alamar P.D. Green analytical chemistry applied in food analysis: Alternative techniques. Curr. Opin. Food Sci. 2018 22 115 121 10.1016/j.cofs.2018.01.009
    [Google Scholar]
  92. Sharkawi M.M.Z. Safwat M.T. Abdelwahab N.S. Ecofriendly UPLC-MS/MS method for simultaneous assay of veterinary drugs residues; erythromycin, sulfadiazine and trimethoprim in edible chicken tissues, evaluation of method greenness and whiteness. Microchem. J. 2024 204 111060 10.1016/j.microc.2024.111060
    [Google Scholar]
  93. Chen X. Zhou M. Wang Y. Zhang J. Tian W. A rapid and green method for the simultaneous extraction and determination of copper, arsenic and lead in edible oil. Food Chem. Adv. 2023 3 100495 10.1016/j.focha.2023.100495
    [Google Scholar]
  94. Arena K. Martín-Pozo L. Vinci L.R. Cacciola F. Dugo P. Mondello L. Determination of pesticide residues in five different corn-based products using a single and simple solid–liquid extraction without clean-up steps followed by comprehensive two-dimensional liquid chromatography coupled to tandem mass spectrometry. Microchem. J. 2024 205 111298 10.1016/j.microc.2024.111298
    [Google Scholar]
  95. Petrarca M.H. Cunha S.C. Fernandes J.O. Determination of pesticide residues in soybeans using QuEChERS followed by deep eutectic solvent-based DLLME preconcentration prior to gas chromatography-mass spectrometry analysis. J. Chromatogr. A 2024 1727 464999 10.1016/j.chroma.2024.464999 38788403
    [Google Scholar]
  96. Fuente-Ballesteros A. Bernal J. Ares A.M. Valverde S. Development and validation of a green analytical method for simultaneously determining plasticizers residues in honeys from different botanical origins. Food Chem. 2024 455 139888 10.1016/j.foodchem.2024.139888 38843712
    [Google Scholar]
  97. Wang J. Zhou Z. Li Q. Zhang T. Fu Y. Nitrogen-doped carbon quantum dots as dual mode fluorescence sensors for the determination of food colorant quinoline yellow. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 315 124285 10.1016/j.saa.2024.124285 38615416
    [Google Scholar]
  98. Yuan Y. Zhang Y. Wang M. Cao J. Yan H. Green synthesis of superhydrophilic resin/graphene oxide for efficient analysis of multiple pesticide residues in fruits and vegetables. Food Chem. 2024 450 139341 10.1016/j.foodchem.2024.139341 38631206
    [Google Scholar]
  99. Shi Y. Jin H.F. Ma X.R. Cao J. Highly sensitive determination of multiple pesticide residues in foods by supercritical fluid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Food Res. Int. 2024 175 113769 10.1016/j.foodres.2023.113769 38129060
    [Google Scholar]
  100. Shirani M. Ansari F. Shabanian M. Wagenknecht U. Salamat Q. Faraji M. Basij M. Adeli M. NiFe2O4 nanoparticles grafted sulfonated melamine for rapid magnetic dispersive µ-solid phase extraction of pesticides in apple and pear samples: Greenness evaluation. Microchem. J. 2024 205 111254 10.1016/j.microc.2024.111254
    [Google Scholar]
  101. Tippannanavar M. Banerjee T. Shekhar S. Sahu S.R. Rudra S.G. Eco-scale based greenness assessment of a validated multi-residue method for the quantification of 103 pesticides in cookies sample. J. Food Compos. Anal. 2024 134 106474 10.1016/j.jfca.2024.106474
    [Google Scholar]
  102. Qi G. Wang Y. Liu T. Sun D. “On-site” analysis of pesticide residues in complex sample matrix by plasmonic SERS nanostructure hybridized hydrogel. Anal. Chim. Acta 2023 1282 341903 10.1016/j.aca.2023.341903 37923404
    [Google Scholar]
  103. Mohamed D. ELbalkiny H.T. Application of solidified floating organic droplet dispersive liquid–liquid microextraction for determination of veterinary antibiotic residues in milk samples with greenness assessment. Microchem. J. 2023 193 109153 10.1016/j.microc.2023.109153
    [Google Scholar]
  104. Landarani M. Nojavan S. Synthesis of green nanosorbent from bovine serum albumin and curcumin for magnetic solid phase extraction of pesticides from food samples. Food Chem. 2024 457 140116 10.1016/j.foodchem.2024.140116 38924914
    [Google Scholar]
  105. Soylak M. Uzcan F. Goktas O. Ultrasound-assisted quasi-hydrophobic deep eutectic solvent-based determination of trace Rhodamine B in water and food samples: A simple and green approach. J. Food Compos. Anal. 2023 120 105287 10.1016/j.jfca.2023.105287
    [Google Scholar]
  106. Puig M. Darbra R.M. Innovations and insights in environmental monitoring and assessment in port areas. Curr. Opin. Environ. Sustain. 2024 70 101472 10.1016/j.cosust.2024.101472
    [Google Scholar]
  107. Zare-Shehneh N. Mollarasouli F. Ghaedi M. Recent advances in carbon nanostructure-based electrochemical biosensors for environmental monitoring. Crit. Rev. Anal. Chem. 2023 53 3 520 536 10.1080/10408347.2021.1967719 34569383
    [Google Scholar]
  108. Chen T.L. Kim H. Pan S.Y. Tseng P.C. Lin Y.P. Chiang P.C. Implementation of green chemistry principles in circular economy system towards sustainable development goals: Challenges and perspectives. Sci. Total Environ. 2020 716 136998 10.1016/j.scitotenv.2020.136998 32044483
    [Google Scholar]
  109. Martins O.R. Souza G.G. Machado S.L. Lopes de Araújo G. Simas C.R. José Gonçalves da Silva B. Damin V. Chaves R.A. Hollow fiber liquid-phase microextraction of multiclass pesticides in soil samples: A green analytical approach for challenging environmental monitoring analysis. Microchem. J. 2023 193 109028 10.1016/j.microc.2023.109028
    [Google Scholar]
  110. Alqarni A.M. Mostafa A. Shaaban H. Mokhtar H.I. Aseeri A. Alkarshami B. Alonaizi S. Alrafidi R.D. Aseeri A.A. Alrofaidi M.A. Air-agitated liquid–liquid microextraction method based on solidification of a floating organic droplet (AALLME-SFO) followed by UPLC-MS/MS for trace analysis of steroids in water samples: Assessment of the method environmental impact using analytical eco-scale, green analytical procedure index and the analytical greenness metric. Microchem. J. 2024 200 110244 10.1016/j.microc.2024.110244
    [Google Scholar]
  111. Aghaziarati M. Sereshti H. A facile in-situ ultrasonic-assisted synthesis of terephthalic acid-layered double hydroxide/bacterial cellulose: Application for eco-friendly analysis of multi-residue pesticides in vineyard soils. Microchem. J. 2024 202 110761 10.1016/j.microc.2024.110761
    [Google Scholar]
  112. Gómez-Nieto B. Serna-Martín E. Gismera M.J. Sevilla M.T. Procopio J.R. Green dispersive liquid–liquid microextraction of copper and nickel using a dual-function hydrophobic natural deep eutectic solvent for the analysis of water samples. Green Analyt. Chem. 2024 10 100124 10.1016/j.greeac.2024.100124
    [Google Scholar]
  113. Shaghaleh H. Wang S. Xu X. Guo L. Dong F. Hamoud Y.A. Liu H. Li P. Zhang S. Innovative two-phase air plasma activation approach for green and efficient functionalization of nanofibrillated cellulose surfaces from wheat straw. J. Clean. Prod. 2021 297 126664 10.1016/j.jclepro.2021.126664
    [Google Scholar]
  114. Shaghaleh H. Hamoud A.Y. Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. Environ. Pollut. 2024 360 124623 10.1016/j.envpol.2024.124623 39069244
    [Google Scholar]
  115. Mostafa A. Shaaban H. Alqarni A.M. Alghamdi M. Alsultan S. Saleh Al-Saeed J. Alsaba S. AlMoslem A. Alshehry Y. Ahmad R. Vortex-assisted dispersive liquid–liquid microextraction using thymol based natural deep eutectic solvent for trace analysis of sulfonamides in water samples: Assessment of the greenness profile using AGREE metric, GAPI and analytical eco-scale. Microchem. J. 2022 183 107976 10.1016/j.microc.2022.107976
    [Google Scholar]
  116. Isabel García-Valcarcel A. Martín-Esteban A. Ultrasound-assisted extraction of sulfonamides from soil samples using natural deep eutectic solvents and their determination by liquid chromatography tandem mass spectrometry. Microchem. J. 2024 203 110850 10.1016/j.microc.2024.110850
    [Google Scholar]
  117. Nejabati F. Ebrahimzadeh H. Development of GLA/SO/FS/Ag NPs/AC electrospun composite nanofibers: A green and effective adsorbent for extracting trace quantities of five petroleum pollutants in water samples prior to GC-FID analysis. Microchem. J. 2024 203 110884 10.1016/j.microc.2024.110884
    [Google Scholar]
  118. Sankar R. Snehalatha K.S. Firdose S.T. Babu P.S. Applications in HPLC in pharmaceutical analysis. Int. J. Pharm. Sci. Rev. Res. 2019 59 117 124
    [Google Scholar]
  119. Stojanović J. Krmar J. Otašević B. Protić A. Resource management in HPLC: Unveiling a green face of pharmaceutical analysis. Arch. Phar. 2023 73 2 146 171 10.5937/arhfarm73‑43479
    [Google Scholar]
  120. Si-Hung L. Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt. Chem. 2022 149 116550 10.1016/j.trac.2022.116550
    [Google Scholar]
  121. Elsheikh S.G. Hassan A.M.E. Fayez Y.M. El-Mosallamy S.S. Green analytical chemistry and experimental design: A combined approach for the analysis of zonisamide. BMC Chem. 2023 17 1 38 10.1186/s13065‑023‑00942‑1 37069703
    [Google Scholar]
  122. Kokilambigai K.S. Lakshmi K.S. Analytical quality by design assisted RP-HPLC method for quantifying atorvastatin with green analytical chemistry perspective. J. Chromatog. Open 2022 2 100052 10.1016/j.jcoa.2022.100052
    [Google Scholar]
  123. Dharuman N. Lakshmi K.S. Krishnan M. Environmental benign RP-HPLC method for the simultaneous estimation of anti-hypertensive drugs using analytical quality by design. Green Chem. Lett. Rev. 2023 16 1 2214176 10.1080/17518253.2023.2214176
    [Google Scholar]
  124. Fares M.Y. Hegazy M.A. El-Sayed G.M. Abdelrahman M.M. Abdelwahab N.S. Quality by design approach for green HPLC method development for simultaneous analysis of two thalassemia drugs in biological fluid with pharmacokinetic study. RSC Advances 2022 12 22 13896 13916 10.1039/D2RA00966H 35548387
    [Google Scholar]
  125. El-Maraghy C.M. Implementation of green chemistry to develop HPLC/UV and HPTLC methods for the quality control of Fluconazole in presence of two official impurities in drug substance and pharmaceutical formulations. Sustain. Chem. Pharm. 2023 33 101124 10.1016/j.scp.2023.101124
    [Google Scholar]
  126. Mostafa I.M. Omar M.A. Noureldeen D.A.M. Zeid A.M. Halawa M.I. Mohamed A.A. Green and sensitive detection of olopatadine in aqueous humor using a signal‐on fluorimetric approach: GREEnness assessment. Luminescence 2024 39 7 e4814 10.1002/bio.4814 39011865
    [Google Scholar]
  127. El-Maraghy C.M. Medhat P.M. Hathout R.M. Ayad M.F. Fares N.V. Implementation of green-assessed nanotechnology and quality by design approach for development of optical sensor for determination of tobramycin in ophthalmic formulations and spiked human plasma. BMC Chem. 2024 18 1 131 10.1186/s13065‑024‑01234‑y 39010206
    [Google Scholar]
  128. El-Maraghy C.M. Nour M.S. ELbalkiny H.T. Green and white-assessed validated chromatographic methods for Ondansetron purity testing in its pharmaceutical formulations; in silico toxicity profiling of impurities. Microchem. J. 2024 199 110104 10.1016/j.microc.2024.110104
    [Google Scholar]
  129. Habib N.M. Morcoss M.M. Various approaches for appraisal of the greenness profile and whiteness assessment of chromatographic methods for determination of spiramycin, metronidazole, and toxic impurity: Studying in-silico ADMET profile of drug impurity. Microchem. J. 2024 204 110980 10.1016/j.microc.2024.110980
    [Google Scholar]
  130. Sukumar V. Chinnusamy S. Chanduluru H.K. Rathinam S. Method development and validation of atorvastatin, ezetimibe and Fenofibrate using RP-HPLC along with their forced degradation studies and greenness profiling. Green Chem. Lett. Rev. 2023 16 1 2198651 10.1080/17518253.2023.2198651
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461364164250324051123
Loading
/content/journals/cgc/10.2174/0122133461364164250324051123
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: miniaturization ; sustainability ; food safety ; bioinformatics ; metal-organic frameworks ; GAC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test