Skip to content
2000
image of Exploring Nature's Pharmacy: A Comprehensive Review of Herbal Plants with Neuroprotective Properties

Abstract

Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's, are an increasing health concern worldwide due to their progressive nature and limited therapeutic choices. In search of innovative treatment techniques, herbal plants have received considerable attention due to their possible neuroprotective characteristics. For the literature review, several databases are used like Science Direct, PubMed, Springer, Frontiers, MDPI, Wiley, and Elsevier. This article offers a complete assessment of the neuroprotective properties of several herbal plants in preclinical and clinical research. This article discussed the active components, modes of action, and therapeutic potential of selected medicinal plants, including , , and . These plants have a variety of neuroprotective properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neurogenesis-promoting properties. Additionally, this review emphasizes the synergistic benefits reported when employing mixtures of these plants or combining them with conventional therapies. Despite encouraging results, existing research is sometimes restricted by small sample numbers, diversity in study designs, and lack of uniform dosing. Future studies should overcome these limitations through well-designed clinical studies and standardized extraction processes to fully understand the neuroprotective potential of these herbal plants. This review emphasizes the importance of incorporating herbal medicines into the development of novel treatments for neurodegenerative illnesses.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461358521250526080620
2025-06-19
2025-09-28
Loading full text...

Full text loading...

References

  1. Niedzielska E. Smaga I. Gawlik M. Moniczewski A. Stankowicz P. Pera J. Filip M. Oxidative stress in neurodegenerative diseases. Mol. Neurobiol. 2016 53 6 4094 4125 10.1007/s12035‑015‑9337‑5 26198567
    [Google Scholar]
  2. Hebert L.E. Weuve J. Scherr P.A. Evans D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 2013 80 19 1778 1783 10.1212/WNL.0b013e31828726f5 23390181
    [Google Scholar]
  3. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019 5 1 272 293 10.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  4. Kalia L.V. Lang A.E. Parkinson’s disease. Lancet 2015 386 9996 896 912 10.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  5. Cragg G.M. Newman D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 6 3670 3695 10.1016/j.bbagen.2013.02.008
    [Google Scholar]
  6. Ali D. Verma S. Malviya R. Mishra S. Sundram S. Implications of herbal components in the treatment of neurological disorders. Curr. Nutr. Food Sci. 2024 20 6 677 686 10.2174/1573401319666230821102546
    [Google Scholar]
  7. Debnath A. Majumder R. Singh M.K. Saha R.P. Das A. Elucidating the potential of natural bioactive compounds in neuroprotection. In: A Review on Diverse Neurological Disorders Pathophysiology, Molecular Mechanisms, and Therapeutics. Academic Press 2024 573 584 10.1016/B978‑0‑323‑95735‑9.00032‑2
    [Google Scholar]
  8. Mhalhel K. Sicari M. Pansera L. Chen J. Levanti M. Diotel N. Rastegar S. Germanà A. Montalbano G. Zebrafish: A model deciphering the impact of flavonoids on neurodegenerative disorders. Cells 2023 12 2 252 10.3390/cells12020252 36672187
    [Google Scholar]
  9. Shahrajabian M.H. Sun W. Cheng Q. Ginkgo biloba: A famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr. Nutr. Food Sci. 2022 18 3 259 264 10.2174/1573401317666210910120735
    [Google Scholar]
  10. Akaberi M. Baharara H. Amiri M.S. Moghadam A.T. Sahebkar A. Emami S.A. Ginkgo biloba: An updated review on pharmacological, ethnobotanical, and phytochemical studies. Pharmacol. Res. -. Mod Chin Med. 2023 9 100331 10.1016/j.prmcm.2023.100331
    [Google Scholar]
  11. Liu L. Wang Y. Zhang J. Wang S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021 193 113704 10.1016/j.jpba.2020.113704 33157480
    [Google Scholar]
  12. Biernacka P. Adamska I. Felisiak K. The potential of Ginkgo biloba as a source of biologically active compounds—A review of the recent literature and patents. Molecules 2023 28 10 3993 10.3390/molecules28103993 37241734
    [Google Scholar]
  13. Wang F. Ye S. Ding Y. Ma Z. Zhao Q. Zang M. Li Y. Research on structure and antioxidant activity of polysaccharides from Ginkgo biloba leaves. J. Mol. Struct. 2022 1252 132185 10.1016/j.molstruc.2021.132185
    [Google Scholar]
  14. Liu Q. Wang J. Gu Z. Ouyang T. Gao H. Kan H. Yang Y. Comprehensive exploration of the neuroprotective mechanisms of Ginkgo biloba leaves in treating neurological disorders. Am. J. Chin. Med. 2024 52 4 1053 1086 10.1142/S0192415X24500435 38904550
    [Google Scholar]
  15. Hamdan Y.A. Oudadesse H. Jawad L. Smimih K. Kabdy H. Elouali S. Eladlani N. Rhazi M. Chitosan-based biomaterials for tissue engineering of glial cells. In: Physiology and Function of Glial Cells in Health. and Disease. IGI Global 2024 416 441
    [Google Scholar]
  16. Eckert A. Grimm A. Müller W.E. Anti-dementia Medications: Pharmacology and Biochemistry. In: NeuroPsychopharmacotherapy. Cham Springer International Publishing 2022 2649 2664 10.1007/978‑3‑030‑62059‑2_192
    [Google Scholar]
  17. Pany S. Pal A. Sahu P.K. Neuroprotective effect of quercetin in neurotoxicity induced rats: Role of neuroinflammation in neurodegeneration. Asian J. Pharm. Clin. Res. 2014 7 4 152 156
    [Google Scholar]
  18. Gawlik M. Gawlik M.B. Smaga I. Filip M. Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol. Rep. 2017 69 2 322 330 10.1016/j.pharep.2016.11.011 28183032
    [Google Scholar]
  19. Kaur S. Singla N. Dhawan D.K. Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem. Toxicol. 2019 42 2 220 230 10.1080/01480545.2019.1569022 30747009
    [Google Scholar]
  20. Peth-Nui T. Wattanathorn J. Muchimapura S. Tong-Un T. Piyavhatkul N. Rangseekajee P. Ingkaninan K. Vittaya-areekul S. Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid. Based Complement. Alternat. Med. 2012 2012 1 10 10.1155/2012/606424 23320031
    [Google Scholar]
  21. Patel A. Jaiswal N. Srivastava P.K. Patra D.D. Enhancing secondary metabolite production and antioxidants in Bacopa monnieri grown on tannery sludge contaminated soil. Ind. Crops Prod. 2022 187 115365 10.1016/j.indcrop.2022.115365
    [Google Scholar]
  22. Kumari S. Sharma H.P. Mahato D. Sahu A.P. Phytochemical analysis, estimation and antioxidant activity in Bacopa monnieri (L.) IJRESM 2021 4 7 32 35
    [Google Scholar]
  23. Aguiar S. Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013 16 4 313 326 10.1089/rej.2013.1431 23772955
    [Google Scholar]
  24. Gopathy S. Seshadri S. Amudha P. Vidya R. Jayalakshmi M. Kulanthaivel L. Raju M. Subbaraj G.K. Phytochemicals and natural extracts, secondary metabolites of plants and improvement of brain function. In: Neuroprotective Effects of Phytochemicals in Brain Ageing. Singapore Springer 2024 199 219
    [Google Scholar]
  25. Valotto Neto L.J. Investigating the neuroprotective and cognitive-enhancing effects of Bacopa monnieri: A systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Antioxidants 2024 13 4 393 10.3390/antiox13040393 38671841
    [Google Scholar]
  26. Bhardwaj P. Jain C.K. Mathur A. Comparative evaluation of four triterpenoid glycoside saponins of bacoside A in alleviating sub-cellular oxidative stress of N2a neuroblastoma cells. J. Pharm. Pharmacol. 2018 70 11 1531 1540 10.1111/jphp.12993 30073654
    [Google Scholar]
  27. Banerjee S. Anand U. Ghosh S. Ray D. Ray P. Nandy S. Deshmukh G.D. Tripathi V. Dey A. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders. Phytother. Res. 2021 35 10 5668 5679 10.1002/ptr.7203 34254371
    [Google Scholar]
  28. Abbas S. Latif M.S. Shafie N.S. Ghazali M.I. Kormin F. Neuroprotective expression of turmeric and curcumin. Food Res. 2020 4 6 2366 2381 10.26656/fr.2017.4(6).363
    [Google Scholar]
  29. Bássoli R.M.F. Audi D. Ramalho B.J. Audi M. Quesada K.R. Barbalho S.M. The effects of curcumin on neurodegenerative diseases: A systematic review. J. Herb. Med. 2023 42 100771 10.1016/j.hermed.2023.100771
    [Google Scholar]
  30. Namgyal D. Ali S. Hussain M.D. Kazi M. Ahmad A. Sarwat M. Curcumin ameliorates the Cd-induced anxiety-like behavior in mice by regulating oxidative stress and neuro-inflammatory proteins in the prefrontal cortex region of the brain. Antioxidants 2021 10 11 1710 10.3390/antiox10111710 34829581
    [Google Scholar]
  31. Grover M. Behl T. Sehgal A. Singh S. Sharma N. Virmani T. Rachamalla M. Farasani A. Chigurupati S. Alsubayiel A.M. Felemban S.G. Sanduja M. Bungau S. In vitro phytochemical screening, cytotoxicity studies of Curcuma longa extracts with isolation and characterisation of their isolated compounds. Molecules 2021 26 24 7509 10.3390/molecules26247509 34946592
    [Google Scholar]
  32. Jin T. Zhang Y. Botchway B.O.A. Zhang J. Fan R. Zhang Y. Liu X. Curcumin can improve Parkinson’s disease via activating BDNF/PI3k/Akt signaling pathways. Food Chem. Toxicol. 2022 164 113091 10.1016/j.fct.2022.113091 35526734
    [Google Scholar]
  33. Small G.W. Siddarth P. Li Z. Miller K.J. Ercoli L. Emerson N.D. Martinez J. Wong K.P. Liu J. Merrill D.A. Chen S.T. Henning S.M. Satyamurthy N. Huang S.C. Heber D. Barrio J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 2018 26 3 266 277 10.1016/j.jagp.2017.10.010 29246725
    [Google Scholar]
  34. Elisha R. Tanko M. Sadeeq A. Evaluation of ethanol extract of Curcuma longa in lead-induced hippocampal neurotoxicity. J. Neurobehav Sci. 2023 10 1 13 21 10.4103/jnbs.jnbs_36_22
    [Google Scholar]
  35. Abah E.D. Abu S. Ayogbo B. Curcumin-enriched Curcuma longa extract in aluminum-induced neurotoxicity: Impact on oxidative stress, inflammatory response, and neural health. Biological Sciences 2024 4 4 802 809 10.55006/biolsciences.2024.4406
    [Google Scholar]
  36. Akinyemi A.J. Adeniyi P.A. Effect of essential oils from ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on some inflammatory biomarkers in cadmium induced neurotoxicity in rats. J. Toxicol. 2018 2018 1 1 7 10.1155/2018/4109491 30402094
    [Google Scholar]
  37. Kim K.H. Lee D. Lee H.L. Kim C.E. Jung K. Kang K.S. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: Past findings and future directions. J. Ginseng Res. 2018 42 3 239 247 10.1016/j.jgr.2017.03.011 29989012
    [Google Scholar]
  38. Li J. Huang Q. Chen J. Qi H. Liu J. Chen Z. Zhao D. Wang Z. Li X. Neuroprotective potentials of Panax ginseng against Alzheimer’s disease: A review of preclinical and clinical evidences. Front. Pharmacol. 2021 12 688490 10.3389/fphar.2021.688490 34149431
    [Google Scholar]
  39. Jin S. Eom S.H. Kim J.S. Jo I.H. Hyun T.K. Influence of ripening stages on phytochemical composition and bioavailability of ginseng berry (Panax ginseng CA Meyer). J. Appl. Bot. Food Qual. 2019 92
    [Google Scholar]
  40. Abuhamdah S. Abuhamdah R. Howes M.J.R. Al-Olimat S. Ennaceur A. Chazot P.L. Pharmacological and neuroprotective profile of an essential oil derived from leaves of A loysia citrodora Palau. J. Pharm. Pharmacol. 2015 67 9 1306 1315 10.1111/jphp.12424 25877296
    [Google Scholar]
  41. Wang Z. Zhang Z. Liu J. Guo M. Li H. Panax Ginseng in the treatment of Alzheimer’s disease and vascular dementia. J. Ginseng Res. 2023 47 4 506 514 10.1016/j.jgr.2023.03.001 37397417
    [Google Scholar]
  42. Oliver L.S. Sullivan J.P. Russell S. Peake J.M. Nicholson M. McNulty C. Kelly V.G. Effects of nutritional interventions on accuracy and reaction time with relevance to mental fatigue in sporting, military, and aerospace populations: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021 19 1 307 10.3390/ijerph19010307 35010566
    [Google Scholar]
  43. Zheng M. Xin Y. Li Y. Xu F. Xi X. Guo H. Cui X. Cao H. Zhang X. Han C. Ginsenosides: A potential neuroprotective agent. BioMed Res. Int. 2018 2018 1 8174345 10.1155/2018/8174345 29854792
    [Google Scholar]
  44. Li J. Gao W. Zhao Z. Li Y. Yang L. Wei W. Ren F. Li Y. Yu Y. Duan W. Li J. Dai B. Guo R. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol. Neurobiol. 2022 59 5 2855 2873 10.1007/s12035‑022‑02740‑7 35230663
    [Google Scholar]
  45. Arya P. Chauhan R.S. Phytochemical evaluation of Withania somnifera extracts. J. Pharmacogn. Phytochem. 2019 8 5 2422 2424
    [Google Scholar]
  46. Syed A.A. Reza M.I. Singh P. Thombre G.K. Gayen J.R. Withania somnifera in neurological disorders: Ethnopharmacological evidence, mechanism of action and its progress in delivery systems. Curr. Drug Metab. 2021 22 7 561 571 10.2174/1389200222666210203182716 33538666
    [Google Scholar]
  47. Duyu T. Khanal P. Dey Y.N. Jha S.K. Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases. Adv. Tradit Med. 2021 21 3 565 578 10.1007/s13596‑020‑00530‑x
    [Google Scholar]
  48. D’Cruz M. Andrade C. Potential clinical applications of Ashwagandha (Withania somnifera) in medicine and neuropsychiatry. Expert Rev. Clin. Pharmacol. 2022 15 9 1067 1080 10.1080/17512433.2022.2121699 36062480
    [Google Scholar]
  49. Leonard M. Dickerson B. Estes L. Gonzalez D.E. Jenkins V. Johnson S. Xing D. Yoo C. Ko J. Purpura M. Jäger R. Faries M. Kephart W. Sowinski R. Rasmussen C.J. Kreider R.B. Acute and repeated ashwagandha supplementation improves markers of cognitive function and mood. Nutrients 2024 16 12 1813 10.3390/nu16121813 38931168
    [Google Scholar]
  50. Zhu J. Park S. Jeong K.H. Kim W.J. Withanolide-A treatment exerts a neuroprotective effect via inhibiting neuroinflammation in the hippocampus after pilocarpine-induced status epilepticus. Epilepsy Res. 2020 165 106394 10.1016/j.eplepsyres.2020.106394 32540785
    [Google Scholar]
  51. Anju T.R. Smijin S. Jobin M. Paulose C.S. Altered muscarinic receptor expression in the cerebral cortex of epileptic rats: Restorative role of Withania somnifera. Biochem. Cell Biol. 2018 96 4 433 440 10.1139/bcb‑2017‑0198 29216436
    [Google Scholar]
  52. Gray N.E. Alcazar Magana A. Lak P. Wright K.M. Quinn J. Stevens J.F. Maier C.S. Soumyanath A. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018 17 1 161 194 10.1007/s11101‑017‑9528‑y 31736679
    [Google Scholar]
  53. Choudhary D. Bhattacharyya S. Bose S. Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J. Diet. Suppl. 2017 14 6 599 612 10.1080/19390211.2017.1284970 28471731
    [Google Scholar]
  54. Thakurdesai P.A. Centella asiatica (Gotu kola) leaves: Potential in neuropsychiatric conditions. Nutraceuticals in Brain Health and Beyond. Academic Press 2021 307 328 10.1080/19390211.2017.1284970 28471731
    [Google Scholar]
  55. Srivastava V. Mathur D. Rout S. Mishra B.K. Pannu V. Anand A. Ayurvedic herbal therapies: A review of treatment and management of dementia. Curr. Alzheimer Res. 2022 19 8 568 584 10.2174/1567205019666220805100008 35929620
    [Google Scholar]
  56. Gregory J. Vengalasetti Y.V. Bredesen D.E. Rao R.V. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules 2021 11 4 543 10.3390/biom11040543 33917843
    [Google Scholar]
  57. He Z. Hu Y. Zhang Y. Xie J. Niu Z. Yang G. Zhang J. Zhao Z. Wei S. Wu H. Hu W. Asiaticoside exerts neuroprotection through targeting NLRP3 inflammasome activation. Phytomedicine 2024 127 155494 10.1016/j.phymed.2024.155494 38471370
    [Google Scholar]
  58. Liu S. An J. Qi F. Yang L. Tian Z. Zhao M. Neuroprotective effects of Asiaticoside. Neural Regen. Res. 2014 9 13 1275 1282 10.4103/1673‑5374.137574 25221579
    [Google Scholar]
  59. Marchev A.S. Koycheva I.K. Aneva I.Y. Georgiev M.I. Authenticity and quality evaluation of different Rhodiola species and commercial products based on NMR‐spectroscopy and HPLC. Phytochem. Anal. 2020 31 6 756 769 10.1002/pca.2940 32311178
    [Google Scholar]
  60. Zhong L. Peng L. Fu J. Zou L. Zhao G. Zhao J. Phytochemical, antibacterial and antioxidant activity evaluation of Rhodiolacrenulata. Molecules 2020 25 16 3664 10.3390/molecules25163664 32806502
    [Google Scholar]
  61. Bernatoniene J. Jakstas V. Kopustinskiene D.M. Phenolic compounds of Rhodiolarosea L. as the potential alternative therapy in the treatment of chronic diseases. Int. J. Mol. Sci. 2023 24 15 12293 10.3390/ijms241512293 37569669
    [Google Scholar]
  62. Xie N. Fan F. Jiang S. Hou Y. Zhang Y. Cairang N. Wang X. Meng X. Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation. Phytomedicine 2022 103 154240 10.1016/j.phymed.2022.154240 35691080
    [Google Scholar]
  63. Cordeiro M.L.S. Martins V.G.Q.A. Silva A.P. Rocha H.A.O. Rachetti V.P.S. Scortecci K.C. Phenolic acids as antidepressant agents. Nutrients 2022 14 20 4309 10.3390/nu14204309 36296993
    [Google Scholar]
  64. Crawford C. Boyd C. Deuster P.A. Dietary supplement ingredients for optimizing cognitive performance among healthy adults: A systematic review. J. Altern. Complement. Med. 2021 27 11 940 958 10.1089/acm.2021.0135 34370563
    [Google Scholar]
  65. Zhang N. Nao J. Dong X. Neuroprotective mechanisms of salidroside in Alzheimer’s disease: A systematic review and meta-analysis of preclinical studies. J. Agric. Food Chem. 2023 71 46 17597 17614 10.1021/acs.jafc.3c06672 37934032
    [Google Scholar]
  66. Kamli M.R. Sharaf A.A.M. Sabir J.S.M. Rather I.A. Phytochemical screening of Rosmarinus officinalis L. as a potential anticholinesterase and antioxidant–medicinal plant for cognitive decline disorders. Plants 2022 11 4 514 10.3390/plants11040514 35214846
    [Google Scholar]
  67. Darbinyan V. Aslanyan G. Amroyan E. Gabrielyan E. Malmström C. Panossian A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry 2007 61 5 343 348 10.1080/08039480701643290 17990195
    [Google Scholar]
  68. Kosmopoulou D. Lafara M.P. Adamantidi T. Ofrydopoulou A. Grabrucker A.M. Tsoupras A. Neuroprotective benefits of rosmarinus officinalis and its bioactives against Alzheimer’s and Parkinson’s diseases. Appl. Sci. (Basel) 2024 14 15 6417 10.3390/app14156417
    [Google Scholar]
  69. Nabavi S.F. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients 2015 7 9 7729 7748 10.3390/nu7095359 26378575
    [Google Scholar]
  70. Mohamed I.E. Osman E.E. Saeed A. Ming L.C. Goh K.W. Razi P. Abdullah A.D.I. Dahab M. Plant extracts as emerging modulators of neuroinflammation and immune receptors in Alzheimer’s pathogenesis. Heliyon 2024 10 16 e35943 10.1016/j.heliyon.2024.e35943 39229544
    [Google Scholar]
  71. Falcone P.H. Nieman K.M. Tribby A.C. Vogel R.M. Joy J.M. Moon J.R. Slayton C.A. Henigman M.M. Lasrado J.A. Lewis B.J. Fonseca B.A. Herrlinger K.A. The attention-enhancing effects of spearmint extract supplementation in healthy men and women: A randomized, double-blind, placebo-controlled, parallel trial. Nutr. Res. 2019 64 24 38 10.1016/j.nutres.2018.11.012 30802720
    [Google Scholar]
  72. Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol. Res. 2022 184 106421 10.1016/j.phrs.2022.106421 36096427
    [Google Scholar]
  73. Fonteles A.A. de Souza C.M. de Sousa Neves J.C. Menezes A.P.F. Santos do Carmo M.R. Fernandes F.D.P. de Araújo P.R. de Andrade G.M. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav. Brain Res. 2016 297 91 103 10.1016/j.bbr.2015.09.029 26456521
    [Google Scholar]
  74. Marmouzi I. Bouyahya A. Ezzat S.M. El Jemli M. Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. J. Ethnopharmacol. 2021 265 113303 10.1016/j.jep.2020.113303 32877720
    [Google Scholar]
  75. Ranjan S. Gautam A. Pharmaceutical prospects of Silymarin for the treatment of neurological patients: An updated insight. Front. Neurosci. 2023 17 1159806 10.3389/fnins.2023.1159806 37274201
    [Google Scholar]
  76. Pogačnik L. Ota A. Poklar Ulrih N. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells 2020 9 3 576 10.3390/cells9030576 32121302
    [Google Scholar]
  77. Haddadi R. Shahidi Z. Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. Phytomedicine 2020 79 153320 10.1016/j.phymed.2020.153320 32920285
    [Google Scholar]
  78. Almutary A.G. Begum M.Y. Siddiqua A. Gupta S. Chauhan P. Wadhwa K. Singh G. Iqbal D. Padmapriya G. Kumar S. Kedia N. Verma R. Kumar R. Sinha A. Dheepak B. Abomughaid M.M. Jha N.K. Unlocking the neuroprotective potential of silymarin: A promising ally in safeguarding the brain from Alzheimer’s disease and other neurological disorders. Mol. Neurobiol. 2025 1 23 10.1007/s12035‑024‑04654‑y 39956886
    [Google Scholar]
  79. Saddiqe Z. Naeem I. Hellio C. Patel A.V. Abbas G. Phytochemical profile, antioxidant and antibacterial activity of four Hypericum species from the UK. S. Afr. J. Bot. 2020 133 45 53 10.1016/j.sajb.2020.05.018
    [Google Scholar]
  80. Belwal T. Devkota H.P. Singh M.K. Sharma R. Upadhayay S. Joshi C. Bisht K. Gour J.K. Bhatt I.D. Rawal R.S. Pande V.St.St. John’s wort (Hypericumperforatum). In: Nonvitamin and Nonmineral Nutritional Supplements. Cambridge, Massachusetts Academic Press 2019 451 432
    [Google Scholar]
  81. Wu Q. Liu C. Zhang J. Xiao W. Yang F. Yu Y. Li T. Wang Y. Schisandra chinensis polysaccharide protects against cyclosporin A-induced liver injury by promoting hepatocyte proliferation. J. Funct. Foods 2021 87 104799 10.1016/j.jff.2021.104799
    [Google Scholar]
  82. Novelli M. Masiello P. Beffy P. Menegazzi M. Protective role of St. John’s wort and its components hyperforin and hypericin against diabetes through inhibition of inflammatory signaling: Evidence from in vitro and in vivo studies. Int. J. Mol. Sci. 2020 21 21 8108 10.3390/ijms21218108 33143088
    [Google Scholar]
  83. Wang H. Shao B. Yu H. Xu F. Wang P. Yu K. Han Y. Song M. Li Y. Cao Z. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem. Biol. Interact. 2019 299 15 26 10.1016/j.cbi.2018.11.016 30481499
    [Google Scholar]
  84. Jiang X. Kumar M. Zhu Y. Protective effect of hyperforin on β amyloid protein induced apoptosis in PC12 cells and colchicine induced Alzheimer’s disease: An anti-oxidant and anti-inflammatory therapy. J. Oleo Sci. 2018 67 11 1443 1453 10.5650/jos.ess18117 30404965
    [Google Scholar]
  85. Zhao T. Li C. Wang S. Song X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules 2022 27 12 3909 10.3390/molecules27123909 35745040
    [Google Scholar]
  86. Samarghandian S. Farkhondeh T. Pourbagher-Shahri A.M. Ashrafizadeh M. Folgado S.L. Rajabpour-Sanati A. Khazdair M.R. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen. Res. 2020 15 10 1792 1798 10.4103/1673‑5374.280300 32246619
    [Google Scholar]
  87. Zhang R. Zhang L. Li Z. Zhang P. Song H. Yao D. Cao J. Zhang J. Green tea improves cognitive function through reducing AD-pathology and improving anti-oxidative stress capacity in Chinese middle-aged and elderly people. Front. Aging Neurosci. 2022 14 919766 10.3389/fnagi.2022.919766 35992609
    [Google Scholar]
  88. Gonçalves P.B. Sodero A.C.R. Cordeiro Y. Green tea epigallocatechin-3-gallate (EGCG) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules 2021 11 5 767 10.3390/biom11050767 34065606
    [Google Scholar]
  89. Yang S. Yuan C. Schisandra chinensis: A comprehensive review on its phytochemicals and biological activities. Arab. J. Chem. 2021 14 9 103310 10.1016/j.arabjc.2021.103310
    [Google Scholar]
  90. Reznichenko L. Amit T. Youdim M.B.H. Mandel S. Green tea polyphenol (–)‐epigallocatechin‐3‐gallate induces neurorescue of long‐term serum‐deprived PC12 cells and promotes neurite outgrowth. J. Neurochem. 2005 93 5 1157 1167 10.1111/j.1471‑4159.2005.03085.x 15934936
    [Google Scholar]
  91. Szopa A. Current knowledge of Schisandrachinensis (Turcz.) Baill.(Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017 16 195 218 10.1007/s11101‑016‑9470‑4 28424569
    [Google Scholar]
  92. Wu Y. Li Z. Yao L. Li M. Tang M. Schisandrin B alleviates acute oxidative stress via modulation of the Nrf2/Keap1-mediated antioxidant pathway. Appl. Physiol. Nutr. Metab. 2019 44 1 1 6 10.1139/apnm‑2018‑0251 29742356
    [Google Scholar]
  93. Giridharan V.V. Thandavarayan R.A. Sato S. Ko K.M. Konishi T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic. Res. 2011 45 8 950 958 10.3109/10715762.2011.571682 21615274
    [Google Scholar]
  94. Al-Attraqchi O.H.A. Deb P.K. Al-Attraqchi N.H.A. Review of the phytochemistry and pharmacological properties of valeriana officinalis. Curr. Tradit. Med. 2020 6 4 260 277 10.2174/2215083805666190314112755
    [Google Scholar]
  95. Guo L.Y. Hung T.M. Bae K.H. Shin E.M. Zhou H.Y. Hong Y.N. Kang S.S. Kim H.P. Kim Y.S. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharmacol. 2008 591 1-3 293 299 10.1016/j.ejphar.2008.06.074 18625216
    [Google Scholar]
  96. Benke D. Barberis A. Kopp S. Altmann K.H. Schubiger M. Vogt K.E. Rudolph U. Möhler H. GABAA receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts. Neuropharmacology 2009 56 1 174 181 10.1016/j.neuropharm.2008.06.013 18602406
    [Google Scholar]
  97. Jayaraj R.L. Beiram R. Azimullah S. Mf N.M. Ojha S.K. Adem A. Jalal F.Y. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. Int. J. Mol. Sci. 2020 21 20 7670 10.3390/ijms21207670 33081327
    [Google Scholar]
  98. Dumitru M.G. Gănescu A. Phytochemical screening of the methanolic extract of passifloraincarnata L. Ann Univ Craiova Ser Chem. 2022 28 2 43 48
    [Google Scholar]
  99. Khan H. Nabavi S.M. Passiflora (Passifloraincarnata). In: Nonvitamin and nonmineral nutritional supplements. Cambridge, Massachusetts Academic Press 2019 361 366
    [Google Scholar]
  100. Jung H.Y. Valerenic acid protects against physical and psychological stress by reducing the turnover of serotonin and norepinephrine in mouse hippocampus-amygdala region. J. Med. Food 2015 18 12 1333 1339 10.1089/jmf.2014.3412 26177123
    [Google Scholar]
  101. Mohammad N.S. Habtemariam S. Daglia M. Fazel N.S. Apigenin and breast cancers: From chemistry to medicine. Anticancer. Agents Med. Chem. 2015 15 6 728 735 10.2174/1871520615666150304120643 25738871
    [Google Scholar]
  102. Rosero S. Del Pozo F. Simbaña W. Álvarez M. Quinteros M.F. Carrillo W. Morales D. Polyphenols and flavonoids composition, anti-inflammatory and antioxidant properties of Andean Baccharismacrantha extracts. Plants 2022 11 12 1555 10.3390/plants11121555 35736706
    [Google Scholar]
  103. da Silva T.G. da Silva J.C.P. Carneiro J.N.P. do Amaral W. Deschamps C. de Araújo J.P. da Costa J.G.M. de Oliveira Almeida W. da Silva L.E. Coutinho H.D.M. Filho J.R. Morais-Braga M.F.B. Phytochemical characterization and inhibition of Candida sp. by the essential oil of Baccharis trimera (Less.) DC. Arch. Microbiol. 2021 203 6 3077 3087 10.1007/s00203‑021‑02304‑8 33787988
    [Google Scholar]
  104. Akhondzadeh S. Naghavi H.R. Vazirian M. Shayeganpour A. Rashidi H. Khani M. Passionflower in the treatment of generalized anxiety: A pilot double-blind randomized controlled trial with oxazepam. J. Clin. Pharm. Ther. 2001 26 5 363 367 10.1046/j.1365‑2710.2001.00367.x 11679026
    [Google Scholar]
  105. Paiva F.A. Carqueja (Baccharis trimera) protects against oxidative stress and β-amyloid-induced toxicity in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2015 740162 10.1155/2015/740162 26236426
    [Google Scholar]
  106. Kempuraj D. Thangavel R. Kempuraj D.D. Ahmed M.E. Selvakumar G.P. Raikwar S.P. Zaheer S.A. Iyer S.S. Govindarajan R. Chandrasekaran P.N. Zaheer A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors 2021 47 2 190 197 10.1002/biof.1687 33098588
    [Google Scholar]
  107. Bahramsoltani R. Rostamiasrabadi P. Shahpiri Z. Marques A.M. Rahimi R. Farzaei M.H. Aloysia citrodora Paláu (Lemon verbena): A review of phytochemistry and pharmacology. J. Ethnopharmacol. 2018 222 34 51 10.1016/j.jep.2018.04.021 29698776
    [Google Scholar]
  108. de Araújo G.R. Rabelo A.C.S. Meira J.S. Rossoni-Júnior J.V. Castro-Borges W. Guerra-Sá R. Batista M.A. Silveira-Lemos D. Souza G.H.B. Brandão G.C. Chaves M.M. Costa D.C. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47phox phosphorylation of NADPH oxidase in SK Hep-1 cells. Exp. Biol. Med. 2017 242 3 333 343 10.1177/1535370216672749 28103717
    [Google Scholar]
  109. Wang Z.L. Wang S. Kuang Y. Hu Z.M. Qiao X. Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018 56 1 465 484 10.1080/13880209.2018.1492620 31070530
    [Google Scholar]
  110. Chanchal D.K. An updated review of chinese skullcap (Scutellaria baicalensis): Emphasis on phytochemical constituents and pharmacological attributes Pharmacol. Res. Mod Chin Med. 2023 100326
    [Google Scholar]
  111. Sowndhararajan K. Deepa P. Kim M. Park S. Kim S. Neuroprotective and cognitive enhancement potentials of baicalin: A review. Brain Sci. 2018 8 6 104 10.3390/brainsci8060104 29891783
    [Google Scholar]
  112. Fang J. Wang H. Zhou J. Dai W. Zhu Y. Zhou Y. Wang X. Zhou M. Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. Drug Des. Devel. Ther. 2018 12 2497 2508 10.2147/DDDT.S163951 30127597
    [Google Scholar]
  113. Jaradat N.A. Zaid A.N. Abuzant A. Khalaf S. Abu-Hassan N. Phytochemical and biological properties of four Astragalus species commonly used in traditional Palestinian medicine. Eur. J. Integr. Med. 2017 9 1 8 10.1016/j.eujim.2017.01.008
    [Google Scholar]
  114. Ikbal A.M.A. Rajkhowa A. Debnath B. Singh W.S. Manna K. Bhattacharjee B. Das T. Goswami S. Pharmacological review on astragalus membranaceus: Chinese traditional herb. Pharmacogn. Rev. 2022 16 32 90 94
    [Google Scholar]
  115. Durazzo A. Nazhand A. Lucarini M. Silva A.M. Souto S.B. Guerra F. Severino P. Zaccardelli M. Souto E.B. Santini A. Astragalus (Astragalus membranaceus Bunge): Botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. Rend. Lincei Sci. Fis. Nat. 2021 32 3 625 642 10.1007/s12210‑021‑01003‑2
    [Google Scholar]
  116. Yao M. Zhang L. Wang L. Astragaloside I.V. A promising natural neuroprotective agent for neurological disorders. Biomed. Pharmacother. 2023 159 114229 10.1016/j.biopha.2023.114229 36652731
    [Google Scholar]
  117. Gani I. Jameel S. Bhat S.A. Amin H. Bhat K.A. Prenylated flavonoids of genus Epimedium: Phytochemistry, estimation and synthesis. ChemistrySelect 2023 8 8 e202204263 10.1002/slct.202204263
    [Google Scholar]
  118. Ye L.C. Chen J.M. Advances in study on pharmacological effects of Epimedium. Zhongguo Zhongyao Zazhi 2001 26 5 293 295 12528515
    [Google Scholar]
  119. Wang S. Ma J. Zeng Y. Zhou G. Wang Y. Zhou W. Sun X. Wu M. Icariin, an up-and-coming bioactive compound against neurological diseases: Network pharmacology-based study and literature review. Drug Des. Devel. Ther. 2021 15 3619 3641 10.2147/DDDT.S310686 34447243
    [Google Scholar]
  120. Singh R. De S. Belkheir A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Crit. Rev. Food Sci. Nutr. 2013 53 2 126 144 10.1080/10408398.2010.526725 23072529
    [Google Scholar]
  121. Meydani M. Potential health benefits of avenanthramides of oats. Nutr. Rev. 2009 67 12 731 735 10.1111/j.1753‑4887.2009.00256.x 19941618
    [Google Scholar]
  122. Kennedy David O. Acute and chronic effects of green oat (Avena sativa) extract on cognitive function and mood during a laboratory stressor in healthy adults: A randomised, double-blind, placebo-controlled study in healthy humans. Nutrients 2020 12 6 1598 10.3390/nu12061598
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461358521250526080620
Loading
/content/journals/cgc/10.2174/0122133461358521250526080620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test