Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Clean and safe drinking water is one of the most important basic needs of human beings. The modern lifestyle and vast industrial evolution caused freshwater pollution. To purify and supply clean water, research on wastewater treatment is a high priority. Various types of carbon materials such as activated carbon, mesoporous carbon, carbon nanotubes, graphene and graphene oxide materials are widely elaborated as the adsorbents for the purification of the water. The activated carbon-based nanostructures are ideal for this goal. These materials are highly capable of adsorbing the poisonous heavy metals and organic dyes from the wastewater. Herein, we have summarized the last six-year total of thirty literature reports focusing on the applications of biowaste-based activated carbon nanomaterials in the field of water and wastewater treatment. We strongly believe that this review will help the new researchers in this field to get detailed insights into the recent advances in biowaste-based activated carbon nanomaterials for water treatment.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461364956250228111545
2025-04-09
2025-09-28
Loading full text...

Full text loading...

References

  1. MkilimaT. ZharkenovY. AbduovaA. SarypbekovaN. KudaibergenovN. SakanovK. ZhukenovaG. OmarovZ. SultanbekovaP. KenzhaliyevaG. Utilization of banana peel-derived activated carbon for the removal of heavy metals from industrial wastewater.Case Studies Chem. Environ. Eng.20241010079110.1016/j.cscee.2024.100791
    [Google Scholar]
  2. AdeyW.H. LovelandK. Chapter 25 -Large scale: Water quality management with solar energy capture.In: Dynamic Aquaria.3rd edAcademic Press London2007465489
    [Google Scholar]
  3. NatrayanL. Arul KumarP.V. DhanrajJ.A. KaliappanS. SivakumarN.S. PatilP.P. SekarS. ParamasivamP. Synthesis and analysis of impregnation on activated carbon in multiwalled carbon nanotube for Cu adsorption from wastewater.Bioinorg. Chem. Appl.202220221747026310.1155/2022/7470263 35959227
    [Google Scholar]
  4. PinheiroJ.P.S. WindsorF.M. WilsonR.W. TylerC.R. Global variation in freshwater physico-chemistry and its influence on chemical toxicity in aquatic wildlife.Biol. Rev. Camb. Philos. Soc.20219641528154610.1111/brv.12711 33942490
    [Google Scholar]
  5. SujionoE.H. ZabrianD. ZharvanV. HumairahN.A. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application.Results Chemistry,2022410029110.1016/j.rechem.2022.100291
    [Google Scholar]
  6. ReddyS. OsborneW.J. Chapter 1 - Effect of pollution on sediments and their impact on the aquatic ecosystem. In: Relationship Between Microbes and the Environment for Sustainable Ecosystem Services; Samuel, J.; Kumar, A.; Singh, J., Eds.; Elsevier20222116
    [Google Scholar]
  7. AklM.A. MostafaA.G. Al-AwadhiM. Al-HarwiW.S. El-ZenyA.S. Zinc chloride activated carbon derived from date pits for efficient biosorption of brilliant green: Adsorption characteristics and mechanism study.Appl. Water Sci.2023131222610.1007/s13201‑023‑02034‑w
    [Google Scholar]
  8. Al JeburL.A. AlwanL.H. Development of nano-activated carbon and apply it for dyes removal from water.Water Practice and Technology202217129731010.2166/wpt.2021.105
    [Google Scholar]
  9. AskariR. MohammadiF. MoharramiA. AfshinS. RashtbariY. VosoughiM. DargahiA. Synthesis of activated carbon from cherry tree waste and its application in removing cationic red 14 dye from aqueous environments.Appl. Water Sci.20231349010.1007/s13201‑023‑01899‑1
    [Google Scholar]
  10. Ramutshatsha-MakhwedzhaD. MavhunguA. MoropengM.L. MbayaR. Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater.Heliyon202288e0993010.1016/j.heliyon.2022.e09930 35965978
    [Google Scholar]
  11. ThabedeP.M. ShootoN.D. NaidooE.B. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds.S. Afr. J. Chem. Eng.202033395010.1016/j.sajce.2020.04.002
    [Google Scholar]
  12. OniB.A. SanniS.E. DahunsiS.O. EgereB.C. Decaffeination of wastewater using activated carbon produced from velvet tamarind-pericarp (Dialium Guineense).Int. J. Phytoremediation202224439440810.1080/15226514.2021.1950118 34282953
    [Google Scholar]
  13. RagothamanA. AndersonW. Air quality impacts of petroleum refining and petrochemical industries.Environments2017436610.3390/environments4030066
    [Google Scholar]
  14. NadewT.T. KeanaM. SisayT. GetyeB. HabtuN.G. Synthesis of activated carbon from banana peels for dye removal of an aqueous solution in textile industries: Optimization, kinetics, and isotherm aspects.Water Pract. Technol.202318494796610.2166/wpt.2023.042
    [Google Scholar]
  15. ChengS. ZhaoS. XingB. LiuY. ZhangC. XiaH. Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis.J. Clean. Prod.202234813130110.1016/j.jclepro.2022.131301
    [Google Scholar]
  16. ParlayıcıŞ. PehlivanE. Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: Modeling and equilibrium study.Int. J. Phytoremediation2021231264010.1080/15226514.2020.1788502 32715734
    [Google Scholar]
  17. HijabM. ParthasarathyP. MackeyH.R. Al-AnsariT. McKayG. Minimizing adsorbent requirements using multi-stage batch adsorption for malachite green removal using microwave date-stone activated carbons.Chem. Eng. Process.202116710831810.1016/j.cep.2021.108318
    [Google Scholar]
  18. KooravandM. AsadpourS. HaddadiH. FarhadianS. An insight into the interaction between malachite green oxalate with human serum albumin: Molecular dynamic simulation and spectroscopic approaches.J. Hazard. Mater.202140712487810.1016/j.jhazmat.2020.124878 33360194
    [Google Scholar]
  19. AhmadiS. GanjidoustH. Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies.J. Environ. Chem. Eng.20219510601010.1016/j.jece.2021.106010
    [Google Scholar]
  20. ÇatlıoğluF. AkayS. TurunçE. GözmenB. AnastopoulosI. KayanB. KalderisD. Preparation and application of Fe-modified banana peel in the adsorption of methylene blue: Process optimization using response surface methodology.Environ. Nanotechnol. Monit. Manag.20211610051710.1016/j.enmm.2021.100517
    [Google Scholar]
  21. QasemN.A.A. MohammedR.H. LawalD.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review.npj Clean Water202143610.1038/s41545‑021‑00127‑0
    [Google Scholar]
  22. HuangZ. HuangJ. LiuT. WenY. WuH. YangS. LiH. Full carbon upcycling of organophosphorus wastewater enabled by interface photolysis.Chem. Eng. J.202448514998710.1016/j.cej.2024.149987
    [Google Scholar]
  23. LiuT. HuangJ. HuangZ. LuoQ. WuH. MengY. HeC. LiH. Full-spectrum photocatalytic treatment and in situ upcycling of organophosphorus wastewater enabled by biomimetic urchin-like Bi2S3/CdS.Chem. Eng. J.202448615020910.1016/j.cej.2024.150209
    [Google Scholar]
  24. AllahkaramiE. Dehghan MonfaredA. SilvaL.F.O. DottoG.L. Application of Pb–Fe spinel-activated carbon for phenol removal from aqueous solutions: Fixed-bed adsorption studies.Environ. Sci. Pollut. Res. Int.2022309238702388610.1007/s11356‑022‑23891‑z 36331730
    [Google Scholar]
  25. da SilvaM.C.F. SchnorrC. LütkeS.F. KnaniS. NascimentoV.X. LimaÉ.C. ThueP.S. VieillardJ. SilvaL.F.O. DottoG.L. KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption.Chem. Eng. Res. Des.202218738739610.1016/j.cherd.2022.09.012
    [Google Scholar]
  26. NajiS.Z. TyeC.T. A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification. Energy Conversion and Management: X,20221310015210.1016/j.ecmx.2021.100152
    [Google Scholar]
  27. de SouzaC.C. de SouzaL.Z.M. YılmazM. de OliveiraM.A. da Silva BezerraA.C. da SilvaE.F. DumontM.R. MachadoA.R.T. Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling.Cleaner Materials2022310005210.1016/j.clema.2022.100052
    [Google Scholar]
  28. GayathiriM. PulingamT. LeeK.T. Mohd DinA.T. KosugiA. SudeshK. Sustainable oil palm trunk fibre based activated carbon for the adsorption of methylene blue.Sci. Rep.20231312213710.1038/s41598‑023‑49079‑0 38092816
    [Google Scholar]
  29. LiY. LiY. ZangH. ChenL. MengZ. LiH. CiL. DuQ. WangD. WangC. LiH. XiaY. ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: Isotherm, kinetic, and thermodynamic studies.Environ. Technol.202041152013202310.1080/09593330.2018.1554006 30500300
    [Google Scholar]
  30. LuoL. WuX. LiZ. ZhouY. ChenT. FanM. ZhaoW. Synthesis of activated carbon from biowaste of fir bark for methylene blue removal.R. Soc. Open Sci.20196919052310.1098/rsos.190523 31598293
    [Google Scholar]
  31. MohammadS.G. AbulyaziedD.E. AhmedS.M. Application of polyaniline/activated carbon nanocomposites derived from different agriculture wastes for the removal of Pb(II) from aqueous media.Desalination Water Treat.201917019921010.5004/dwt.2019.24694
    [Google Scholar]
  32. Kimbi YaahV.B. OjalaS. KhallokH. LaitinenT. Botelho de OliveiraS. Hybrid carbon materials: Synthesis, characterization, and application in the removal of pharmaceuticals from water.J. Water Process Eng.20214310227910.1016/j.jwpe.2021.102279
    [Google Scholar]
  33. ZielińskiB. MiądlickiP. PrzepiórskiJ. Development of activated carbon for removal of pesticides from water: Case study.Sci. Rep.20221212086910.1038/s41598‑022‑25247‑6 36460673
    [Google Scholar]
  34. WangJ. KaskelS. KOH activation of carbon-based materials for energy storage.J. Mater. Chem.20122245237102372510.1039/c2jm34066f
    [Google Scholar]
  35. GayathiriM. PulingamT. LeeK.T. SudeshK. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism.Chemosphere202229413376410.1016/j.chemosphere.2022.133764 35093418
    [Google Scholar]
  36. VilénA. LaurellP. VahalaR. Comparative life cycle assessment of activated carbon production from various raw materials.J. Environ. Manage.202232411635610.1016/j.jenvman.2022.116356 36208520
    [Google Scholar]
  37. AzeezR.A. KhazalS.B. Al-ZuhairiF.K. HasanM.M. ShakorZ.M. Green synthesis of nano-activated carbon from reed stalk – characterization and evaluation performance in phenolic water treatment.Ecol. Eng. Environ. Technol.2024251030632310.12912/27197050/191952
    [Google Scholar]
  38. SiddiqueA. NayakA.K. SinghJ. Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively.Groundw. Sustain. Dev.20201010033910.1016/j.gsd.2020.100339
    [Google Scholar]
  39. SainiS. ChandP. JoshiA. Biomass derived carbon for supercapacitor applications.Review J. Energy Storage20213910264610.1016/j.est.2021.102646
    [Google Scholar]
  40. SanthoshA. DawnS.S. Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water.Water Sci. Technol.20218451170118110.2166/wst.2021.303 34534114
    [Google Scholar]
  41. ShokryH. ElkadyM. SalamaE. Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation.Sci. Rep.20201011026510.1038/s41598‑020‑67231‑y 32581282
    [Google Scholar]
  42. HashemA.H. SaiedE. HasaninM.S. Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste.Sustain. Chem. Pharm.20201810033310.1016/j.scp.2020.100333
    [Google Scholar]
  43. WongS. NgadiN. InuwaI.M. HassanO. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review.J. Clean. Prod.201817536137510.1016/j.jclepro.2017.12.059
    [Google Scholar]
  44. JiangY. QinZ. LiangF. LiJ. SunY. WangX. MaP. SongD. Vortex-assisted solid-phase extraction based on metal-organic framework/chitosan-functionalized hydrophilic sponge column for determination of triazine herbicides in environmental water by liquid chromatography-tandem mass spectrometry.J. Chromatogr. A2021163846188710.1016/j.chroma.2021.461887 33477026
    [Google Scholar]
  45. GhoshS. BarronA.R. The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide uptake and carbon dioxide–methane selectivity: The relative formation of micro- (<2 nm) versus meso- (>2 nm) porosity.Sustain. Energy Fuels20171480681310.1039/C6SE00102E
    [Google Scholar]
  46. NandiR. JhaM.K. GuchhaitS.K. SutradharD. YadavS. Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity.ACS Omega2023854802481210.1021/acsomega.2c06955 36777600
    [Google Scholar]
  47. AbatanO.G. OniB.A. AgboolaO. EfevbokhanV. AbiodunO.O. Production of activated carbon from African star apple seed husks, oil seed and whole seed for wastewater treatment.J. Clean. Prod.201923244145010.1016/j.jclepro.2019.05.378
    [Google Scholar]
  48. CaturlaF. Molina-SabioM. Rodríguez-ReinosoF. Preparation of activated carbon by chemical activation with ZnCl2.Carbon1991297999100710.1016/0008‑6223(91)90179‑M
    [Google Scholar]
  49. BudinovaT. EkinciE. YardimF. GrimmA. BjörnbomE. MinkovaV. GoranovaM. Characterization and application of activated carbon produced by H3PO4 and water vapor activation.Fuel Process. Technol.2006871089990510.1016/j.fuproc.2006.06.005
    [Google Scholar]
  50. LiY. ZhangX. YangR. LiG. HuC. The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue.RSC Advances2015541326263263610.1039/C5RA04634C
    [Google Scholar]
  51. OginniO. SinghK. OportoG. Dawson-AndohB. McDonaldL. SabolskyE. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics.Bioresour. Technol. Rep.2019810030710.1016/j.biteb.2019.100307
    [Google Scholar]
  52. Lurdhrani MercileenO. Khan PatanA. LakshmiM.V.V.C. Selection of chemical activating agent for the synthesis of activated carbon from coconut shell for enhanced dye treatment - its kinetics and equilibrium study.Mater. Today Proc.20237227428510.1016/j.matpr.2022.07.290
    [Google Scholar]
  53. AmeenF. Karimi-MalehH. DarabiR. AkinM. AyatiA. AyyildizS. BekmezciM. BayatR. SenF. Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation.Environ. Res.202322111528710.1016/j.envres.2023.115287 36640937
    [Google Scholar]
  54. LiuY. MengL. HanK. SunS. Synthesis of nano-zirconium-iron oxide supported by activated carbon composite for the removal of Sb(V) in aqueous solution.RSC Advances20211149311313114110.1039/D1RA06117H 35498936
    [Google Scholar]
  55. NakroV. LothaT.N. AoK. AoI. RitseV. RudithongruL. PongenerC. AierM. SinhaD. JamirL. Recent advances in applications of animal biowaste-based activated carbon as biosorbents of water pollutants: A mini-review.Environ. Monit. Assess.20241961097410.1007/s10661‑024‑13123‑x 39312095
    [Google Scholar]
  56. ManiarasuR. RathoreS.K. MuruganS. Biomass-based activated carbon for CO2 adsorption–A review.Energy Environ.20233451674172110.1177/0958305X221093465
    [Google Scholar]
  57. GhafarN.A. HarimisaG.E. JusohN.W.C. Biowaste-based porous adsorbent for carbon dioxide adsorption.IOP Conf. Series Mater. Sci. Eng.20211051101208110.1088/1757‑899X/1051/1/012081
    [Google Scholar]
  58. ZekenovaA. NazhipkyzyM. LiW. KalybayevaA. ZhumanovaG. ZubovaO. Advances of biowaste-derived porous carbon and carbon–manganese dioxide composite in supercapacitors: A review.Inorganics (Basel)2022101016010.3390/inorganics10100160
    [Google Scholar]
  59. KopacT. LinS.D. A review on the characterization of microwave-induced biowaste-derived activated carbons for dye adsorption.Int. J. Environ. Sci. Technol.202421138717874810.1007/s13762‑024‑05583‑y
    [Google Scholar]
  60. AoW. FuJ. MaoX. KangQ. RanC. LiuY. ZhangH. GaoZ. LiJ. LiuG. DaiJ. Microwave assisted preparation of activated carbon from biomass: A review.Renew. Sustain. Energy Rev.20189295897910.1016/j.rser.2018.04.051
    [Google Scholar]
  61. RostamiP. Momeni IsfahaniT. MaghazeiiF. Synthesis and characterization ZnS-Ni nanoparticles-loaded coconut shell activated carbon for removal of crystal violet: Experimental design and optimization.Journal of Nanostructures2022123529545
    [Google Scholar]
  62. BassarehH. KaramzadehM. MovahediradS. Synthesis and characterization of cost-effective and high-efficiency biochar for the adsorption of Pb2+ from wastewater.Sci. Rep.20231311560810.1038/s41598‑023‑42918‑0 37730745
    [Google Scholar]
  63. MahardianiL. SaputroS. BaskoroF. ZinkiN.M. TaufiqM. Facile synthesis of carboxylated activated carbon using green approach for water treatment.IOP Conf. Series Mater. Sci. Eng.2019578101200310.1088/1757‑899X/578/1/012003
    [Google Scholar]
  64. AhmadM.A. EusoffM.A. OladoyeP.O. AdegokeK.A. BelloO.S. Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel.Chemical Data Collections20202810042610.1016/j.cdc.2020.100426
    [Google Scholar]
  65. ShahbaziD. MousaviS.A. NayeriD. Low-cost activated carbon: Characterization, decolorization, modeling, optimization and kinetics.Int. J. Environ. Sci. Technol.20201793935394610.1007/s13762‑020‑02698‑w
    [Google Scholar]
  66. UtamiM. Zahra’H.A. Khoirunisa; Dewi, T.A. Green synthesis of magnetic activated carbon from peanut shells functionalized with TiO2 photocatalyst for Batik liquid waste treatment.Open Chem.20222011229123810.1515/chem‑2022‑0231
    [Google Scholar]
  67. NjewaJ.B. VunainE. BiswickT. Synthesis and characterization of activated carbons prepared from agro-wastes by chemical activation.J. Chem.20222022111310.1155/2022/9975444
    [Google Scholar]
  68. AnginD. IlciA. Investigation of the adsorption capacity of olive-waste cake activated carbon for removal of metribuzin from aqueous solutions.Int. J. Environ. Sci. Technol.20221953607362410.1007/s13762‑021‑03728‑x
    [Google Scholar]
  69. AkkariI. GrabaZ. BezziN. KaciM.M. MerzegF.A. BaitN. FerhatiA. DottoG.L. BenguerbaY. Effective removal of cationic dye on activated carbon made from cactus fruit peels: A combined experimental and theoretical study.Environ. Sci. Pollut. Res. Int.20233023027304410.1007/s11356‑022‑22402‑4 35941501
    [Google Scholar]
  70. AbdullahA.M. AlwanL.H. AbdulqaderA.M. Thermodynamic and kinetic studies of Eriochrome black adsorption on activated charcoal prepared from lemon leaves.Mater. Res.2019612ab6c0710.1088/2053‑1591/ab6c07
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461364956250228111545
Loading
/content/journals/cgc/10.2174/0122133461364956250228111545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test