Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

In recent years, the pursuit of sustainable and efficient methods for organic synthesis has gained significant momentum. Among the emerging strategies, vacuum-assisted organic synthesis is a promising approach, offering the potential to expedite reactions, boost yields, and minimize waste generation. This review delves into the innovative utilization of rotary evaporators as a reactor for vacuum-assisted organic synthesis, showcasing their unique advantages and potential. The advantages of this approach and the recent examples of vacuum-accelerated reactions carried out in rotary evaporators are discussed, demonstrating their versatility and potential for green catalysis. By exploring the untapped potential of rotary evaporators as reactors, we aim to stimulate further research in this burgeoning field and contribute to the ongoing endeavour to transform organic synthesis into a more sustainable and efficient practice.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461354115241224052415
2025-01-07
2025-10-08
Loading full text...

Full text loading...

References

  1. WentrupC. Origins of organic chemistry and organic synthesis.Eur. J. Org. Chem.2022202225e20210149210.1002/ejoc.202101492
    [Google Scholar]
  2. NicolaouK.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory.Proc.- Royal Soc., Math. Phys. Eng. Sci.201447021632013069010.1098/rspa.2013.0690 24611027
    [Google Scholar]
  3. SmitW.A. BochkovA.F.e. CapleR. Organic synthesis: The Science Behind the Art.Royal Society of Chemistry200710.1039/9781847551573‑00001
    [Google Scholar]
  4. AnanikovV.P. KhemchyanL.L. IvanovaY.V. BukhtiyarovV.I. SorokinA.M. ProsvirinI.P. VatsadzeS.Z. Medved’koA.V. NurievV.N. DilmanA.D. LevinV.V. KoptyugI.V. KovtunovK.V. ZhivonitkoV.V. LikholobovV.A. RomanenkoA.V. SimonovP.A. NenajdenkoV.G. ShmatovaO.I. MuzalevskiyV.M. NechaevM.S. AsachenkoA.F. MorozovO.S. DzhevakovP.B. OsipovS.N. VorobyevaD.V. TopchiyM.A. ZotovaM.A. PonomarenkoS.A. BorshchevO.V. LuponosovY.N. RempelA.A. ValeevaA.A. StakheevA.Y. TurovaO.V. MashkovskyI.S. SysolyatinS.V. MalykhinV.V. BukhtiyarovaG.A. Terent’evA.O. KrylovI.B. Development of new methods in modern selective organic synthesis: Preparation of functionalized molecules with atomic precision.Russ. Chem. Rev.2014831088598510.1070/RC2014v83n10ABEH004471
    [Google Scholar]
  5. PasiniD. TakeuchiD. Cyclopolymerizations: Synthetic tools for the precision synthesis of macromolecular architectures.Chem. Rev.2018118188983905710.1021/acs.chemrev.8b00286 30146875
    [Google Scholar]
  6. Pyzer-KnappE.O. SuhC. Gómez-BombarelliR. Aguilera-IparraguirreJ. Aspuru-GuzikA. What is high-throughput virtual screening? A perspective from organic materials discovery.Annu. Rev. Mater. Res.201545119521610.1146/annurev‑matsci‑070214‑020823
    [Google Scholar]
  7. IsbrandtE.S. SullivanR.J. NewmanS.G. High throughput strategies for the discovery and optimization of catalytic reactions.Angew. Chem. Int. Ed.201958227180719110.1002/anie.201812534 30576045
    [Google Scholar]
  8. SeebachD. Organic synthesis—where now?Angew. Chem. Int. Ed. Engl.199029111320136710.1002/anie.199013201
    [Google Scholar]
  9. SheldonR.A. BradyD. Broadening the scope of biocatalysis in sustainable organic synthesis.ChemSusChem201912132859288110.1002/cssc.201900351 30938093
    [Google Scholar]
  10. OlivoG. CapocasaG. Del GiudiceD. LanzalungaO. Di StefanoS. New horizons for catalysis disclosed by supramolecular chemistry.Chem. Soc. Rev.202150137681772410.1039/D1CS00175B 34008654
    [Google Scholar]
  11. ReischauerS. PieberB. Emerging concepts in photocatalytic organic synthesis.iScience202124310220910.1016/j.isci.2021.102209 33733069
    [Google Scholar]
  12. SheldonR.A. Green solvents for sustainable organic synthesis: State of the art.Green Chem.20057526727810.1039/b418069k
    [Google Scholar]
  13. BrahmachariG. BanerjeeB. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability.Curr. Green Chem.20152327430510.2174/2213346102666150218195142
    [Google Scholar]
  14. CembellínS. BataneroB. Organic electrosynthesis towards sustainability: Fundamentals and greener methodologies.Chem. Rec.20212192453247110.1002/tcr.202100128 33955158
    [Google Scholar]
  15. KongD. DolzhenkoA.V. Cyrene: A bio-based sustainable solvent for organic synthesis.Sustain. Chem. Pharm.20222510059110.1016/j.scp.2021.100591
    [Google Scholar]
  16. ChandaA. FokinV.V. Organic synthesis “on water”.Chem. Rev.2009109272574810.1021/cr800448q 19209944
    [Google Scholar]
  17. SimonM.O. LiC.J. Green chemistry oriented organic synthesis in water.Chem. Soc. Rev.20124141415142710.1039/C1CS15222J 22048162
    [Google Scholar]
  18. GawandeM.B. BonifácioV.D.B. LuqueR. BrancoP.S. VarmaR.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis.Chem. Soc. Rev.201342125522555110.1039/c3cs60025d 23529409
    [Google Scholar]
  19. BlakemoreD.C. CastroL. ChurcherI. ReesD.C. ThomasA.W. WilsonD.M. WoodA. Organic synthesis provides opportunities to transform drug discovery.Nat. Chem.201810438339410.1038/s41557‑018‑0021‑z 29568051
    [Google Scholar]
  20. SchreiberS.L. Target-oriented and diversity-oriented organic synthesis in drug discovery.Science200028754601964196910.1126/science.287.5460.1964 10720315
    [Google Scholar]
  21. GordonE.M. GallopM.A. PatelD.V. Strategy and tactics in combinatorial organic synthesis. Applications to drug discovery.Acc. Chem. Res.199629314415410.1021/ar950170u
    [Google Scholar]
  22. GrygorenkoO.O. VolochnyukD.M. RyabukhinS.V. JuddD.B. The symbiotic relationship between drug discovery and organic chemistry.Chemistry20202661196123710.1002/chem.201903232 31429510
    [Google Scholar]
  23. ReganoldJ.P. WachterJ.M. Organic agriculture in the twenty-first century.Nat. Plants2016221522110.1038/nplants.2015.221 27249193
    [Google Scholar]
  24. JampilekJ. Potential of Agricultural Fungicides for Antifungal Drug Discovery; Taylor & Francis20161119
    [Google Scholar]
  25. PrakashA. RaoJ. Botanical pesticides in agriculture.CRC press201810.1201/9781315138572
    [Google Scholar]
  26. BinderW. KlugerC. Azide/alkyne-“click” reactions: Applications in material science and organic synthesis.Curr. Org. Chem.200610141791181510.2174/138527206778249838
    [Google Scholar]
  27. HawkerC.J. WooleyK.L. The convergence of synthetic organic and polymer chemistries.Science200530957381200120510.1126/science.1109778 16109874
    [Google Scholar]
  28. TzirakisM.D. OrfanopoulosM. Radical reactions of fullerenes: From synthetic organic chemistry to materials science and biology.Chem. Rev.201311375262532110.1021/cr300475r 23570603
    [Google Scholar]
  29. LeyS.V. FitzpatrickD.E. InghamR.J. MyersR.M. Organic synthesis: March of the machines.Angew. Chem. Int. Ed.201554113449346410.1002/anie.201410744 25586940
    [Google Scholar]
  30. TrostB.M. FlemingI. Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry.Elsevier1991
    [Google Scholar]
  31. CastielloC. JunghannsP. MergelA. JacobC. DuchoC. ValenteS. RotiliD. FioravantiR. ZwergelC. MaiA. GreenMedChem: The challenge in the next decade toward eco-friendly compounds and processes in drug design.Green Chem.20232562109216910.1039/D2GC03772F
    [Google Scholar]
  32. SinghM.S. ChowdhuryS. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis.RSC Advances20122114547459210.1039/c2ra01056a
    [Google Scholar]
  33. TrostB.M. The atom economy-a search for synthetic efficiency.Science199125450371471147710.1126/science.1962206 1962206
    [Google Scholar]
  34. TrostB.M. On inventing reactions for atom economy.Acc. Chem. Res.200235969570510.1021/ar010068z 12234199
    [Google Scholar]
  35. TrostB.M. Atom economy—a challenge for organic synthesis: Homogeneous catalysis leads the way.Angew. Chem. Int. Ed. Engl.199534325928110.1002/anie.199502591
    [Google Scholar]
  36. TrostB.M. Atom economy: A challenge for enhanced synthetic efficiency.In:Handbook of Green ChemistryWiley20127135
    [Google Scholar]
  37. SheldonR.A. Fundamentals of green chemistry: Efficiency in reaction design.Chem. Soc. Rev.20124141437145110.1039/C1CS15219J 22033698
    [Google Scholar]
  38. SheldonR.A. E factors, green chemistry and catalysis: An odyssey.Chem. Commun.2008293352336510.1039/b803584a 18633490
    [Google Scholar]
  39. SheldonR.A. The E Factor: Fifteen years on.Green Chem.20079121273128310.1039/b713736m
    [Google Scholar]
  40. Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability.Green Chem.2017191184310.1039/C6GC02157C
    [Google Scholar]
  41. SheldonR.A. The E factor at 30: A passion for pollution prevention.Green Chem.20232551704172810.1039/D2GC04747K
    [Google Scholar]
  42. TanakaK. TodaF. Solvent-free organic synthesis.Chem. Rev.200010031025107410.1021/cr940089p 11749257
    [Google Scholar]
  43. NakhosteenC.B. JoustenK. Handbook of Vacuum Technology.John Wiley & Sons2016
    [Google Scholar]
  44. ChambersA. Basic Vacuum Technology.CRC Press1998
    [Google Scholar]
  45. YoshimuraN. Vacuum technology: practice for scientific instruments.Springer Science & Business Media2007
    [Google Scholar]
  46. MorseR.S. High vacuum technology.Ind. Eng. Chem.19473991064107110.1021/ie50453a002
    [Google Scholar]
  47. HickmanK.C.D. High-vacuum distillation of the steroids.Ind. Eng. Chem.194032111451145310.1021/ie50371a011
    [Google Scholar]
  48. KraftW.W. Vacuum distillation of petroleum residues.Ind. Eng. Chem.194840580781910.1021/ie50461a010
    [Google Scholar]
  49. SvarovskyL. Solid-Liquid Separation.Elsevier2000
    [Google Scholar]
  50. BandiniS. GostoliC. SartiG.C. Separation efficiency in vacuum membrane distillation.J. Membr. Sci.1992732-321722910.1016/0376‑7388(92)80131‑3
    [Google Scholar]
  51. CriscuoliA. DrioliE. Vacuum membrane distillation for the treatment of coffee products.Separ. Purif. Tech.20192093199099610.1016/j.seppur.2018.09.058
    [Google Scholar]
  52. EmrichT. StrackeJ.O. GuoX. DamhjellK. MoellekenJ. VogelR. StubenrauchK.G. StaackR.F. Increasing robustness, reliability and storage stability of critical reagents by freeze-drying.Bioanalysis2021131082984010.4155/bio‑2020‑0299 33890493
    [Google Scholar]
  53. MullerR. BetsouF. BarnesM.G. HardingK. BonnetJ. KofanovaO. CroweJ.H. Preservation of biospecimens at ambient temperature: Special focus on nucleic acids and opportunities for the biobanking community.Biopreserv. Biobank.2016142899810.1089/bio.2015.0022 26886348
    [Google Scholar]
  54. KomorekR. XuB. YaoJ. AblikimU. TroyT.P. KostkoO. AhmedM. YuX.Y. Enabling liquid vapor analysis using synchrotron VUV single photon ionization mass spectrometry with a microfluidic interface.Rev. Sci. Instrum.2018891111510510.1063/1.5048315 30501361
    [Google Scholar]
  55. McNabH. Synthetic applications of flash vacuum pyrolysis.Contemp. Org. Synth.19963537339610.1039/co9960300373
    [Google Scholar]
  56. WentrupC. Flash vacuum pyrolysis: Techniques and reactions.Angew. Chem. Int. Ed.20175647148081483510.1002/anie.201705118 28675675
    [Google Scholar]
  57. UhrigD. MaysJ.W. Experimental techniques in high-vacuum anionic polymerization.J. Polym. Sci. A Polym. Chem.200543246179622210.1002/pola.21016
    [Google Scholar]
  58. MattoxD.M. MattoxV. Vacuum Coating Technology.Springer200310.1007/978‑3‑662‑10329‑6
    [Google Scholar]
  59. BishopC. Vacuum Deposition Onto Webs, Films and Foils.William Andrew2011
    [Google Scholar]
  60. BoxmanR.L. ZhitomirskyV. AlterkopB. GidalevichE. BeilisI. KeidarM. GoldsmithS. Recent progress in filtered vacuum arc deposition.Surf. Coat. Tech.199686-8724325310.1016/S0257‑8972(96)03023‑X
    [Google Scholar]
  61. BoxmanR.L. ZhitomirskyV.N. Vacuum arc deposition devices.Rev. Sci. Instrum.200677202110110.1063/1.2169539
    [Google Scholar]
  62. YangP. YinZ. CaoL. YouX. FanC. WangX. WuH. JiangZ. Synergism of orderly intrinsic and extrinsic proton-conducting sites in covalent organic framework membranes.Chem. Eng. Res. Des.202217948449210.1016/j.cherd.2022.02.003
    [Google Scholar]
  63. SunX. SongJ.H. RenH. LiuX. QuX. FengY. JiangZ.Q. DingH. Phosphoric acid-loaded covalent triazine framework for enhanced the proton conductivity of the proton exchange membrane.Electrochim. Acta20203312013523510.1016/j.electacta.2019.135235
    [Google Scholar]
  64. YangS.H. ParkS-K. KangY.C. YangS.H. ParkS-K. KangY.C. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries.Nano-Micro Lett.2020131115
    [Google Scholar]
  65. XinQ. OuyangJ. LiuT. LiZ. LiZ. LiuY. WangS. WuH. JiangZ. CaoX. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks.ACS Appl. Mater. Interfaces2015721065107710.1021/am504742q 25525969
    [Google Scholar]
  66. FalcutilaC.R.G. GallardoM.R. CiouJ.X. HuangS.H. TayoL.L. LeeK.R. Enhancing isopropanol/water separation efficiency through integration of zwitterionic UiO-66 (UiO-66-Z) in thin-film composite membranes.J. Taiwan Inst. Chem. Eng.202415910547110.1016/j.jtice.2024.105471
    [Google Scholar]
  67. ShenS. LiH. ShenY. BaiR. ZhangG. Modification of PVDF membrane by post-modified NH2-MIL-88B(Fe) showing improved permeability and oil/water separation performance.J. Environ. Chem. Eng.202311310962110.1016/j.jece.2023.109621
    [Google Scholar]
  68. HuangJ.N. DongY-J. ZhaoH-B. ChenH-Y. KuangD-B. SuC-Y. ChenH-Y. ChenH-Y. KuangD-B. KuangD-B. Efficient encapsulation of CsPbBr3 and Au nanocrystals in mesoporous metal–organic frameworks towards synergetic photocatalytic CO2 reduction.J. Mater. Chem. A Mater. Energy Sustain.20221047252122521910.1039/D2TA06561D
    [Google Scholar]
  69. WangY. ZhaoJ. ZhangS. ZhangZ. ZhuZ. WangM. LyuB. HeG. PanF. JiangZ. Two-step fabrication of COF membranes for efficient carbon capture.Mater. Horiz.202310115016502110.1039/D3MH00981E 37642511
    [Google Scholar]
  70. CraigL.C. GregoryJ.D. HausmannW. Versatile laboratory concentration device.Anal. Chem.195022111462146210.1021/ac60047a601
    [Google Scholar]
  71. ZhangQ. ChenY. WangW. Investigation of factors affecting the rate of high-boiling-point solvent removal using a rotary evaporator.Synlett202435559860210.1055/s‑0042‑1751532
    [Google Scholar]
  72. KangH.J. KimJ.H. Removal of residual toluene and methyl tertiary butyl ether from amorphous paclitaxel by simple rotary evaporation with alcohol pretreatment.Biotechnol. Bioprocess Eng.2020251869310.1007/s12257‑019‑0337‑6
    [Google Scholar]
  73. SeidelV. Initial and bulk extraction of natural products isolation.Methods Mol. Biol.20128642741
    [Google Scholar]
  74. DutyR.G. Solvent removal with a glass and metal rotary evaporator.J. Chem. Educ.197552748310.1021/ed052p483
    [Google Scholar]
  75. SuttaphakdeeP. NeramittagapongS. TheerakulpisutS. NeramittagapongA. KumsaenT. JinaP. SaengkhamsukN. Comparison of dehydration methods for untreated lignin resole by hot air oven and vacuum rotary evaporator to synthesize lignin-based phenolic foam.Heliyon202281e0876910.1016/j.heliyon.2022.e08769 35079652
    [Google Scholar]
  76. WongY. Ahmad-MudzaqqirM. Wan-NurdiyanaW. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum).Orient. J. Chem.2014301374710.13005/ojc/300105
    [Google Scholar]
  77. YerizamM. PurnamasariI. SapianS. HasanA. MeidinariastyA. NurmahdaniE. SyambudiP. Dragon fruit peel extract as antioxdant natural cosmetic using rotary evaporator. 5th FIRST T1 T2 2021 International Conference, Atlantis Press, January 2022, Vol. 9, pp. 387-391.
  78. LuquerodríguezJ. LuquedecastroM. PérezjuanP. Extraction of fatty acids from grape seed by superheated hexane.Talanta200568112613010.1016/j.talanta.2005.04.054 18970294
    [Google Scholar]
  79. YateemH. AfanehI. Al-RimawiF. Optimum conditions for oleuropein extraction from olive leaves.Int. J. Appl. Sci. Technol.201445153157
    [Google Scholar]
  80. SarkerS.D. NaharL. An Introduction to Natural Products Isolation.Springer201210.1007/978‑1‑61779‑624‑1_1
    [Google Scholar]
  81. BennourN. MighriH. EljaniH. ZammouriT. AkroutA. Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia.S. Afr. J. Bot.202012918119010.1016/j.sajb.2019.05.005
    [Google Scholar]
  82. AsgharM.T. YusofY.A. MokhtarM.N. YaacobM.E. GhazaliH.M. VarithJ. ChangL.S. ManafY.N. Processing of coconut sap into sugar syrup using rotary evaporation, microwave, and open-heat evaporation techniques.J. Sci. Food Agric.2020100104012401910.1002/jsfa.10446 32337729
    [Google Scholar]
  83. YuwonoS.S. IstianahN. AliD.Y. AghataR.J.A. The properties of sweet sorghum syrup produced by combined vacuum falling film and rotary evaporation.Int. J. Adv. Trop. Food.20202110.26877/ijatf.v2i1.5811
    [Google Scholar]
  84. SunS. ShanL. JinQ. LiuY. WangX. Solvent-free synthesis of glyceryl ferulate using a commercial microbial lipase.Biotechnol. Lett.200729694594910.1007/s10529‑007‑9338‑1 17351716
    [Google Scholar]
  85. SunS. ShanL. LiuY. JinQ. WangX. WangZ. A novel, two consecutive enzyme synthesis of feruloylated monoacyl- and diacyl-glycerols in a solvent-free system.Biotechnol. Lett.200729121947195010.1007/s10529‑007‑9486‑3 17657410
    [Google Scholar]
  86. XinJ. ZhangL. ChenL. ZhengY. WuX. XiaC. Lipase-catalyzed synthesis of ferulyl oleins in solvent-free medium.Food Chem.2009112364064510.1016/j.foodchem.2008.06.024
    [Google Scholar]
  87. SunS. ShanL. LiuY. JinQ. SongY. WangX. Solvent-free enzymatic synthesis of feruloylated diacylglycerols and kinetic study.J. Mol. Catal., B Enzym.2009571-410410810.1016/j.molcatb.2008.07.010
    [Google Scholar]
  88. TsaiM.F. HuangS.M. HuangH.Y. TsaiS.W. KuoC.H. ShiehC.J. Ultrasound plus vacuum-system-assisted biocatalytic synthesis of octyl cinnamate and response surface methodology optimization.Molecules20222721714810.3390/molecules27217148 36363974
    [Google Scholar]
  89. PukinA.V. BoeriuC.G. ScottE.L. SandersJ.P.M. FranssenM.C.R. An efficient enzymatic synthesis of 5-aminovaleric acid.J. Mol. Catal., B Enzym.2010651-4586210.1016/j.molcatb.2009.12.006
    [Google Scholar]
  90. WagstaffB.A. RejzekM. PesnotT. TedaldiL.M. CaputiL. O’NeillE.C. BeniniS. WagnerG.K. FieldR.A. Enzymatic synthesis of nucleobase-modified UDP-sugars: Scope and limitations.Carbohydr. Res.2015404172510.1016/j.carres.2014.12.005 25662737
    [Google Scholar]
  91. WuS. SnajdrovaR. MooreJ.C. BaldeniusK. BornscheuerU.T. Biocatalysis: Enzymatic synthesis for industrial applications.Angew. Chem. Int. Ed.20216018811910.1002/anie.202006648 32558088
    [Google Scholar]
  92. KumtaP.N. GalletD. WaghrayA. BlomgrenG.E. SetterM.P. Synthesis of LiCoO2 powders for lithium-ion batteries from precursors derived by rotary evaporation.J. Power Sources1998721919810.1016/S0378‑7753(97)02680‑3
    [Google Scholar]
  93. MkawiE.M. IbrahimK. AliM.K.M. SaronK.A.M. FarrukhM.A. MohamedA.S. AllamN.K. Aqueous synthesis of visible-light photoactive cuboid Cu2ZnSnS4 nanocrystals using rotary evaporation.Mater. Lett.201412519519710.1016/j.matlet.2014.03.179
    [Google Scholar]
  94. ZhangB. ZhuJ. LiuH. ShiP. WuW. WangF. LiuY. Rapid synthesis of hexagonal mesoporous structured NiCo2O4 via rotary evaporation for high performance supercapacitors.Ceram. Int.20184478695869910.1016/j.ceramint.2018.01.204
    [Google Scholar]
  95. ZhongR. PengL. IacobescuR.I. PontikesY. ShuR. MaL. SelsB.F. Scalable synthesis of acidic mesostructured silica–carbon nanocomposite catalysts by rotary evaporation.ChemCatChem201791656910.1002/cctc.201600939
    [Google Scholar]
  96. JiaZ. ZhangK. YangG. JiX. WangB. ChenJ. Enhancement of rotary evaporation on the purification of poplar prehydrolysis liquor and preparation of xylo-oligosaccharide.Ind. Crops Prod.2021171111380510.1016/j.indcrop.2021.113805
    [Google Scholar]
  97. MunandaZ. MahyiddinZ. MuhammadS. MachdarI. UlyaZ. The impact of redistillation temperature using rotary vacuum evaporator on the quality of Aceh patchouli oil.J. Patchouli Essent. Oil Prod.202212525510.24815/jpeop.v1i2.28817
    [Google Scholar]
  98. ZhengL. SunD.W. Vacuum cooling for the food industry—a review of recent research advances.Trends Food Sci. Technol.2004151255556810.1016/j.tifs.2004.09.002
    [Google Scholar]
  99. SuurmeijerB. MulderT. VerhoevenJ. Vacuum science and technology.High Tech Institute2016
    [Google Scholar]
  100. WeiY. BakthavatchalamR. Aldol addition reaction of a lithium ester enolate in the solid state.Tetrahedron Lett.199132121535153810.1016/S0040‑4039(00)74265‑1
    [Google Scholar]
  101. DenbighK.G. The principles of chemical equilibrium: With applications in chemistry and chemical engineering.Cambridge University Press198110.1017/CBO9781139167604
    [Google Scholar]
  102. AnastasP.T. WarnerJ.C. Principles of green chemistry.Green Chem. Theory Pract.1998291482114842
    [Google Scholar]
  103. HanJ.H. JiS-B. KimY-S. LeeS-H. ParkS-H. KimJ-H. Study on kinetics and thermodynamics of rotary evaporation of paclitaxel for removal of residual pentane.Korean Chem. Eng. Res.2017556807815
    [Google Scholar]
  104. LeeJ.Y. KimJ.H. Removal of residual methylene chloride from homoharringtonine by pre-treatment with ethanol.Process Biochem.201348111809181310.1016/j.procbio.2013.08.002
    [Google Scholar]
  105. HuangH. KajiuraH. YamadaA. AtaM. Purification and alignment of arc-synthesis single-walled carbon nanotube bundles.Chem. Phys. Lett.20023565-656757210.1016/S0009‑2614(02)00415‑3
    [Google Scholar]
  106. SmithI.C.P. A rotary film evaporator for solid concentrates.Chem. Ind.1964254
    [Google Scholar]
  107. JiangF. ChenY. ZhangQ. WangW. Rapid cyclic acetal and cyclic ketal synthesis assisted by a rotary evaporator.Synlett202435182138214210.1055/a‑2293‑3243
    [Google Scholar]
  108. WangW. PengY. Mechanochemical organic synthesis in a rotary evaporator beyond conventional application: Proof-of-concept reactions.Synth. Commun.202353962563910.1080/00397911.2023.2188463
    [Google Scholar]
  109. ChenY. WangW. QinH. LiuR. ZhangQ. Solvent-free and under vacuum O-benzylation of carboxylic acids by using a rotary evaporator.ChemistrySelect2023847e20230414510.1002/slct.202304145
    [Google Scholar]
  110. ManabeK. IimuraS. SunX.M. KobayashiS. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water.J. Am. Chem. Soc.200212440119711197810.1021/ja026241j 12358542
    [Google Scholar]
  111. HjerrildP. TørringT. PoulsenT.B. Dehydration reactions in polyfunctional natural products.Nat. Prod. Rep.20203781043106410.1039/D0NP00009D 32319503
    [Google Scholar]
  112. VarisliD. DoguT. DoguG. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts.Chem. Eng. Sci.20076218-205349535210.1016/j.ces.2007.01.017
    [Google Scholar]
  113. FeatherM.S. HarrisJ.F. Dehydration reactions of carbohydrates.Adv. Carbohydr. Chem. Biochem.19732816122410.1016/S0065‑2318(08)60383‑2
    [Google Scholar]
  114. EisenbraunE.J. PayneK.W. Dean−stark apparatus modified for use with molecular sieves.Ind. Eng. Chem. Res.199938124521452410.1021/ie9904044
    [Google Scholar]
  115. EisenbraunE.J. PayneK.W. BymasterJ.S. IobA. ApblettA. Improved method for dehydrating secondary alcohols using inorganic sulfates supported on silica in refluxing octane.Ind. Eng. Chem. Res.200241112611261610.1021/ie010549m
    [Google Scholar]
  116. De BruyneA. StuyckW. DeleuW. LeindersJ. MarquezC. JanssensK. SakellariouD. GhillebertR. De VosD.E. Efficient two-step production of biobased plasticizers: Dehydration-hydrogenation of citric acid followed by Fischer esterification.Green Chem.202325103896390810.1039/D2GC04678D
    [Google Scholar]
  117. BringuéR. FitéC. IborraM. TejeroJ. CunillF. Dehydration of 1-octanol to di-n-octyl ether in liquid phase with simultaneous water removal over ion exchange resins: Effect of working state morphologies.Appl. Catal. A Gen.201754551016
    [Google Scholar]
  118. XiangP. SunK. WangS. ChenX. QuL. YuB. Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis.Chin. Chem. Lett.202233125074507910.1016/j.cclet.2022.03.096
    [Google Scholar]
  119. BryantD.R. McKeonJ.E. ReamB.C. Palladium-catalyzed synthesis of benzyl esters from methyl-benzenes.J. Org. Chem.196833114123412710.1021/jo01275a024
    [Google Scholar]
  120. LiX. EliW. LiG. Solvent-free synthesis of benzoic esters and benzyl esters in novel Brønsted acidic ionic liquids under microwave irradiation.Catal. Commun.20089132264226810.1016/j.catcom.2008.05.015
    [Google Scholar]
  121. ZhangF. ShiJ. JinY. FuY. ZhongY. ZhuW. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols.Chem. Eng. J.201525918319010.1016/j.cej.2014.07.119
    [Google Scholar]
  122. SchraderR.L. FedickP.W. MehariT.F. CooksR.G. Accelerated chemical synthesis: Three ways of performing the katritzky transamination reaction.J. Chem. Educ.201996236036510.1021/acs.jchemed.8b00658
    [Google Scholar]
  123. BrownH.M. EstevezJ.E. BottaroJ.C. HarveyB.G. FedickP.W. Accelerated formation of trioximes through confined volume reactors and scale-up using thin film methods.React. Chem. Eng.2023871576158210.1039/D2RE00485B
    [Google Scholar]
  124. MutluH. CeperE.B. LiX. YangJ. DongW. OzmenM.M. TheatoP. Sulfur chemistry in polymer and materials science.Macromol. Rapid Commun.2019401180065010.1002/marc.201800650 30468540
    [Google Scholar]
  125. LeinoR. LönnqvistJ.E. A very simple method for the preparation of symmetrical disulfides.Tetrahedron Lett.200445468489849110.1016/j.tetlet.2004.09.100
    [Google Scholar]
  126. ClarkC.A. LeeD.S. PickeringS.J. PoliakoffM. GeorgeM.W. UV photovap: Demonstrating how a simple and versatile reactor based on a conventional rotary evaporator can be used for UV photochemistry.Org. Process Res. Dev.201822559559910.1021/acs.oprd.8b00037
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461354115241224052415
Loading
/content/journals/cgc/10.2174/0122133461354115241224052415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test