Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Biological evolution has omitted organic silicon from the Earth's scab, which forms approximately 28% of the Earth's crust. However, there is a growing interest in organosilicon compounds due to their widespread use in organic synthesis, material science, agrochemistry, and medical research. Recently, there have been many applications of silicon-stereogenic organosilanes in syntheses, medicinal chemistry, and functional materials, making them an important topic for research. However, in silicon, it is possible for the stereogenic center to be racemized as it can form more than four covalent bonds. By overcoming this issue, transition-metal-catalyzed transformations have achieved significant progress in the synthesis of silicon-stereogenic silanes over the last decade. However, transition metal-free approaches are quite challenging with respect to the stability of the chiral centers. This study will comprehensively summarize the advances in the transition-metal-free asymmetric synthesis of chiral silicon-containing molecules. The mild reaction conditions and environmentally friendly reagents that are used in these organocatalytic methods make the process significant for the advancement of green chemistry.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461352292241122194003
2025-02-04
2025-09-28
Loading full text...

Full text loading...

References

  1. Silicon. Available from: https://www.rsc.org/periodic-table/element/14/silicon (accessed on 4-11-2024)
  2. BrookM. Silicon in Organic, Organometallic and Polymer Chemistry.New YorkWiley2000
    [Google Scholar]
  3. RappoportZ. ApeloigY. The Chemistry of Organic Silicon Compounds.ChichesterWiley2003
    [Google Scholar]
  4. HiyamaT. OestreichM. Organosilicon Chemistry: Novel Approaches and Reactions.Weinheim, GermanyWiley201910.1002/9783527814787
    [Google Scholar]
  5. HisslerM. DyerP.W. RéauR. Linear organic π-conjugated systems featuring the heavy Group 14 and 15 elements.Coord. Chem. Rev.20032441-214410.1016/S0010‑8545(03)00098‑5
    [Google Scholar]
  6. ChenJ. CaoY. Silole-containing polymers: Chemistry and optoelectronic properties.Macromol. Rapid Commun.200728171714174210.1002/marc.200700326
    [Google Scholar]
  7. OhshitaJ. Conjugated oligomers and polymers containing dithienosilole units.Macromol. Chem. Phys.2009210171360137010.1002/macp.200900180
    [Google Scholar]
  8. WongW.W.H. HooperJ.F. HolmesA.B. Silicon analogues of polyfluorene as materials for organic electronics.Aust. J. Chem.200962539340110.1071/CH08497
    [Google Scholar]
  9. CoreyJ.Y. Siloles.Adv. Organomet. Chem.20115918132810.1016/B978‑0‑12‑378649‑4.00002‑2
    [Google Scholar]
  10. FuH. ChengY. Electroluminescent and photovoltaic properties of silolebased materials.Curr. Org. Chem.201216111423144610.2174/138527212800672637
    [Google Scholar]
  11. ZhaoZ. HeB. TangB.Z. Aggregation-induced emission of siloles.Chem. Sci. (Camb.)20156105347536510.1039/C5SC01946J 28717442
    [Google Scholar]
  12. XuL.W. LiL. LaiG.Q. JiangJ.X. The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis.Chem. Soc. Rev.20114031777179010.1039/C0CS00037J 21088772
    [Google Scholar]
  13. ShintaniR. Recent advances in the transition‐metal‐catalyzed enantioselective synthesis of silicon‐stereogenic organosilanes.Asian J. Org. Chem.20154651051410.1002/ajoc.201500066
    [Google Scholar]
  14. LiL. ZhangY. GaoL. SongZ. Recent advances in C–Si bond activation via a direct transition metal insertion.Tetrahedron Lett.201556121466147310.1016/j.tetlet.2015.01.184
    [Google Scholar]
  15. BauerJ.O. StrohmannC. Recent progress in asymmetric synthesis and application of difunctionalized silicon‐stereogenic silanes.Eur. J. Inorg. Chem.20162016182868288110.1002/ejic.201600100
    [Google Scholar]
  16. CuiY.M. LinY. XuL.W. Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C–H functionalization.Coord. Chem. Rev.2017330375210.1016/j.ccr.2016.09.011
    [Google Scholar]
  17. ShintaniR. Recent progress in catalytic enantioselective desymmetrization of prochiral organosilanes for the synthesis of silicon-stereogenic compounds.Synlett201829438839610.1055/s‑0036‑1591839
    [Google Scholar]
  18. HeC. YuanW. Enantioselective C–H functionalization toward silicon-stereogenic silanes.Synthesis20225481939195010.1055/a‑1729‑9664
    [Google Scholar]
  19. XuL.W. HuangW.S. WangQ. YangH. State-of-the-art advances in enantioselective transition-metal-mediated reactions of silacyclobutanes.Synthesis202254245400540810.1055/a‑1929‑4890
    [Google Scholar]
  20. WuY. WangP. Silicon‐stereogenic monohydrosilane: Synthesis and applications.Angew. Chem. Int. Ed.20226136e20220538210.1002/anie.202205382 35594056
    [Google Scholar]
  21. YeZ.T. WuZ.W. ZhangX.X. ZhouJ. YuJ.S. Organocatalytic enantioselective construction of Si-stereocenters: Recent advances and perspectives.Chem. Soc. Rev.202453178546856210.1039/D4CS00417E 39091219
    [Google Scholar]
  22. PanayidesJ.L. RileyD.L. HasenmaileF. van OtterloW.A.L. The role of silicon in drug discovery: A review.RSC Med. Chem.2024153286334410.1039/D4MD00169A
    [Google Scholar]
  23. FranzA.K. WilsonS.O. Organosilicon molecules with medicinal applications.J. Med. Chem.201356238840510.1021/jm3010114 23061607
    [Google Scholar]
  24. RémondE. MartinC. MartinezJ. CavelierF. Silicon-containing amino acids: Synthetic aspects, conformational studies, and applications to bioactive peptides.Chem. Rev.201611619116541168410.1021/acs.chemrev.6b00122 27529497
    [Google Scholar]
  25. TackeR. KornekT. HeinrichT. BurschkaC. PenkaM. PülmM. KeimC. MutschlerE. LambrechtG. Syntheses and pharmacological characterization of achiral and chiral enantiopure C/Si/Ge-analogous derivatives of the muscarinic antagonist cycrimine: A study on C/Si/Ge bioisosterism.J. Organomet. Chem.20016401-214016510.1016/S0022‑328X(01)01179‑2
    [Google Scholar]
  26. MutahiM. NittoliT. GuoL. SieburthS.M. Silicon-based metalloprotease inhibitors: synthesis and evaluation of silanol and silanediol peptide analogues as inhibitors of angiotensin-converting enzyme.J. Am. Chem. Soc.2002124257363737510.1021/ja026158w 12071745
    [Google Scholar]
  27. KawakamiY. KakihanaY. OoiO. OishiM. SuzukiK. ShinkeS. UenishiK. Control of stereochemical structures of silicon‐containing polymeric systems.Polym. Int.200958327928410.1002/pi.2524
    [Google Scholar]
  28. KogaS. UekiS. ShimadaM. IshiiR. KuriharaY. YamanoiY. YuasaJ. KawaiT. UchidaT. IwamuraM. NozakiK. NishiharaH. Access to chiral silicon centers for application to circularly polarized luminescence materials.J. Org. Chem.201782126108611710.1021/acs.joc.7b00583 28494580
    [Google Scholar]
  29. StrohmannC. HörnigJ. AuerD. Synthesis of a highly enantiomerically enriched silyllithium compound.Chem. Commun. (Camb.)2002776676710.1039/b111687h 12119713
    [Google Scholar]
  30. ChangX. MaP.L. ChenH.C. LiC.Y. WangP. Asymmetric synthesis and application of chiral spirosilabiindanes.Angew. Chem. Int. Ed.202059238937894010.1002/anie.202002289 32141185
    [Google Scholar]
  31. YangB. GaoJ. TanX. GeY. HeC. Chiral psisi‐ligand enabled iridium‐catalyzed atroposelective intermolecular C−H silylation.Angew. Chem. Int. Ed.20236236e20230781210.1002/anie.202307812 37462125
    [Google Scholar]
  32. BrookA.G. GajewskiJ.J. sp2 ‐Hybridized silicon: Parameters for molecular modeling.Heteroatom Chem.199011576310.1002/hc.520010109
    [Google Scholar]
  33. LinD. WeiY. PengA. ZhangH. ZhongC. LuD. ZhangH. ZhengX. YangL. FengQ. XieL. HuangW. Stereoselective gridization and polygridization with centrosymmetric molecular packing.Nat. Commun.2020111175610.1038/s41467‑020‑15401‑x 32273512
    [Google Scholar]
  34. ZhuJ. ChenS. HeC. Catalytic enantioselective dehydrogenative Si–O coupling to access chiroptical silicon-stereogenic siloxanes and alkoxysilanes.J. Am. Chem. Soc.2021143145301530710.1021/jacs.1c01106 33792300
    [Google Scholar]
  35. ChenS. MuD. MaiP.L. KeJ. LiY. HeC. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles.Nat. Commun.2021121124910.1038/s41467‑021‑21489‑6 33623025
    [Google Scholar]
  36. ZhaoJ.H. ZhengL. ZouJ.Y. ZhangS.Y. ShenH.C. WuY. WangP. Construction of Si‐stereogenic silanols by palladium‐catalyzed enantioselective C−H alkenylation.Angew. Chem. Int. Ed.20246320e20240261210.1002/anie.202402612 38410071
    [Google Scholar]
  37. GuoY. LiuM.M. ZhuX. ZhuL. HeC. Catalytic asymmetric synthesis of silicon‐stereogenic dihydrodibenzosilines: Silicon central‐to‐axial chirality relay.Angew. Chem. Int. Ed.20216025138871389110.1002/anie.202103748 33830619
    [Google Scholar]
  38. ZhangJ. YanN. JuC.W. ZhaoD. Nickel(0)‐catalyzed asymmetric ring expansion toward enantioenriched silicon‐stereogenic benzosiloles.Angew. Chem. Int. Ed.20216049257232572810.1002/anie.202111025 34590411
    [Google Scholar]
  39. ZhangH. ZhaoD. Synthesis of silicon-stereogenic silanols involving iridium-catalyzed enantioselective C–H silylation leading to a new ligand scaffold.ACS Catal.20211117107481075310.1021/acscatal.1c03112
    [Google Scholar]
  40. GaoJ. MaiP.L. GeY. YuanW. LiY. HeC. Copper-catalyzed desymmetrization of prochiral silanediols to silicon-stereogenic silanols.ACS Catal.202212148476848310.1021/acscatal.2c02482
    [Google Scholar]
  41. YinK.L. ZhaoS. QinY. ChenS.H. LiB. ZhaoD. Enantioselective construction of sila-bicyclo[3.2.1] scaffolds bearing both carbon- and silicon-stereocenters.ACS Catal.20221222139991400510.1021/acscatal.2c04441
    [Google Scholar]
  42. ChenS. ZhuJ. KeJ. LiY. HeC. Enantioselective intermolecular C−H silylation of heteroarenes for the synthesis of acyclic Si‐stereogenic silanes.Angew. Chem. Int. Ed.20226121e20211782010.1002/anie.202117820 35263001
    [Google Scholar]
  43. WangL. LuW. ZhangJ. ChongQ. MengF. Cobalt‐catalyzed regio‐, diastereo‐ and enantioselective intermolecular hydrosilylation of 1,3‐dienes with prochiral silanes.Angew. Chem. Int. Ed.20226130e20220562410.1002/anie.202205624 35606326
    [Google Scholar]
  44. YuanW. ZhuX. XuY. HeC. Synthesis of Si‐stereogenic silanols by catalytic asymmetric hydrolytic oxidation.Angew. Chem. Int. Ed.20226131e20220491210.1002/anie.202204912 35614025
    [Google Scholar]
  45. ZengY. FangX.J. TangR.H. XieJ.Y. ZhangF.J. XuZ. NieY.X. XuL.W. Rhodium‐catalyzed dynamic kinetic asymmetric hydrosilylation to access silicon‐stereogenic center.Angew. Chem. Int. Ed.20226151e20221414710.1002/anie.202214147
    [Google Scholar]
  46. MukherjeeS. YangJ.W. HoffmannS. ListB. Asymmetric enamine catalysis.Chem. Rev.2007107125471556910.1021/cr0684016 18072803
    [Google Scholar]
  47. MacMillanD.W.C. The advent and development of organocatalysis.Nature2008455721130430810.1038/nature07367 18800128
    [Google Scholar]
  48. NicewiczD.A. MacMillanD.W.C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes.Science20083225898778010.1126/science.1161976 18772399
    [Google Scholar]
  49. SilviM. MelchiorreP. Enhancing the potential of enantioselective organocatalysis with light.Nature20185547690414910.1038/nature25175 29388950
    [Google Scholar]
  50. XiangS.H. TanB. Advances in asymmetric organocatalysis over the last 10 years.Nat. Commun.2020111378610.1038/s41467‑020‑17580‑z 32728115
    [Google Scholar]
  51. HanB. HeX.H. LiuY.Q. HeG. PengC. LiJ.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry.Chem. Soc. Rev.20215031522158610.1039/D0CS00196A 33496291
    [Google Scholar]
  52. SusamZ.D. TanyeliC. Recyclable organocatalysts in asymmetric synthesis.Asian J. Org. Chem.20211061251126610.1002/ajoc.202100165
    [Google Scholar]
  53. JanaB. MondalM. HalderS. MahataA. SauravS. PaladhiS. Recent advancement on the organocatalyzed asymmetric conjugate addition using maleimide as a potential substrate.Asian J. Org. Chem.20231210e20230038710.1002/ajoc.202300387
    [Google Scholar]
  54. García MancheñoO. WaserM. Recent developments and trends in asymmetric organocatalysis.Eur. J. Org. Chem.2023261e20220095010.1002/ejoc.202200950 37065706
    [Google Scholar]
  55. PaladhiS. ParkS.J. HwangI.S. ParkJ.H. BaeH.Y. JadhavA.P. SongC.E. Biomimetic catalytic retro-aldol reaction using a cation-binding catalyst: A promising route to axially chiral biaryl aldehydes.Org. Lett.202325152713271710.1021/acs.orglett.3c00825 37052359
    [Google Scholar]
  56. JungM.J. PaladhiS. SongC.E. Enantioselective protonation of monofluorinated silyl enol ethers by cooperative cation‐binding catalysis.Bull. Korean Chem. Soc.202344542042410.1002/bkcs.12675
    [Google Scholar]
  57. ParkJ.H. MaityP. PaladhiS. BaeH.Y. SongC.E. Enantioselective synthesis of chiral 2‐nitroallylic amines via cooperative cation‐binding catalysis.Chemistry20232952e20230178710.1002/chem.202301787 37370249
    [Google Scholar]
  58. PaladhiS. HwangI.S. YooE.J. RyuD.H. SongC.E. Kinetic resolution of β-hydroxy carbonyl compounds via enantioselective dehydration using a cation-binding catalyst: Facile access to enantiopure chiral aldols.Org. Lett.20182072003200610.1021/acs.orglett.8b00547 29537279
    [Google Scholar]
  59. PaladhiS. LiuY. KumarB.S. JungM.J. ParkS.Y. YanH. SongC.E. Fluoride anions in self-assembled chiral cage for the enantioselective protonation of silyl enol ethers.Org. Lett.201719123279328210.1021/acs.orglett.7b01429 28574270
    [Google Scholar]
  60. LiuY. AoJ. PaladhiS. SongC.E. YanH. Organocatalytic asymmetric synthesis of chiral dioxazinanes and dioxazepanes with in situ generated nitrones via a tandem reaction pathway using a cooperative cation binding catalyst.J. Am. Chem. Soc.201613850164861649210.1021/jacs.6b10660 27936631
    [Google Scholar]
  61. PaladhiS. DasJ. SamantaM. DashJ. Asymmetric aldol reaction of thiazole‐carbaldehydes: Regio‐ and stereoselective synthesis of tubuvalin analogues.Adv. Synth. Catal.2014356163370337610.1002/adsc.201400640
    [Google Scholar]
  62. PaladhiS. DasJ. MishraP.K. DashJ. Multifunctional “click” prolinamides: A new platform for asymmetric aldol reactions in the presence of water with catalyst recycling.Adv. Synth. Catal.20133552-327428010.1002/adsc.201200856
    [Google Scholar]
  63. MurataR. MatsumotoA. AsanoK. MatsubaraS. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification.Chem. Commun. (Camb.)20205682123351233810.1039/D0CC05509C 32896841
    [Google Scholar]
  64. LiaoX. ZhouH. ChenX. XuJ. Isothiourea-catalyzed acylative desymmetrization of silicon-centered bisphenols.Org. Lett.202325173099310310.1021/acs.orglett.3c00946 37129310
    [Google Scholar]
  65. DaltonJ.J. Bernal SánchezA. KellyA.T. FettingerJ.C. FranzA.K. Organocatalytic asymmetric synthesis of Si-stereogenic siloxanols.ACS Catal.20241421005101210.1021/acscatal.3c03932 38269039
    [Google Scholar]
  66. ZhangD. ShaoY.B. XieW. ChenY. LiuW. BaoH. HeF. XueX.S. YangX. Remote enantioselective desymmetrization of 9,9-disubstituted 9,10-dihydroacridines through asymmetric aromatic aminations.ACS Catal.20221223146091461810.1021/acscatal.2c04975
    [Google Scholar]
  67. GuoW. LiQ. LiuY. LiC. One-pot remote desymmetrization/peterson-olefination for the construction of silicon-stereogenic silyl ethers.Sci. China Chem.202366102797280210.1007/s11426‑023‑1643‑7
    [Google Scholar]
  68. ZhouH. HanJ.T. NöthlingN. LindnerM.M. JennichesJ. KühnC. TsujiN. ZhangL. ListB. Organocatalytic asymmetric synthesis of Si-stereogenic silyl ethers.J. Am. Chem. Soc.202214423101561016110.1021/jacs.2c04261 35649270
    [Google Scholar]
  69. ZhouH. ProperziR. LeutzschM. BelanzoniP. BistoniG. TsujiN. HanJ.T. ZhuC. ListB. Organocatalytic DYKAT of Si-stereogenic silanes.J. Am. Chem. Soc.202314594994500010.1021/jacs.3c00858 36826435
    [Google Scholar]
  70. HanJ.T. TsujiN. ZhouH. LeutzschM. ListB. Organocatalytic asymmetric synthesis of Si-stereogenic silacycles.Nat. Commun.2024151584610.1038/s41467‑024‑49988‑2 38992000
    [Google Scholar]
  71. ZhangX.X. GaoY. ZhangY.X. ZhouJ. YuJ.S. Highly enantioselective construction of multifunctional silicon‐stereogenic silacycles by asymmetric enamine catalysis.Angew. Chem. Int. Ed.2023629e20221772410.1002/anie.202217724 36625565
    [Google Scholar]
  72. ZhouM. LiuJ. DengR. WangQ. WuS. ZhengP. ChiY.R. Construction of tetrasubstituted silicon-stereogenic silanes via conformational isomerization and n-heterocyclic carbene-catalyzed desymmetrization.ACS Catal.202212137781778810.1021/acscatal.2c01082
    [Google Scholar]
  73. LiuH. HeP. LiaoX. ZhouY. ChenX. OuW. WuZ. LuoC. YangL. XuJ. Stereoselective access to silicon-stereogenic silacycles via the carbene-catalyzed desymmetric benzoin reaction of siladials.ACS Catal.202212169864987110.1021/acscatal.2c02805
    [Google Scholar]
  74. PalomoC. OiarbideM. LópezR. Asymmetric organocatalysis by chiral Brønsted bases: Implications and applications.Chem. Soc. Rev.200938263265310.1039/B708453F 19169469
    [Google Scholar]
  75. MarcelliT. HiemstraH. Cinchona alkaloids in asymmetric organocatalysis.Synthesis2010201081229127910.1055/s‑0029‑1218699
    [Google Scholar]
  76. MaruokaK. Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysis and Additional Topics.StuttgartThieme2012
    [Google Scholar]
  77. FangX. WangC.J. Recent advances in asymmetric organocatalysis mediated by bifunctional amine–thioureas bearing multiple hydrogen-bonding donors.Chem. Commun. (Camb.)20155171185119710.1039/C4CC07909D 25364797
    [Google Scholar]
  78. TanC-H. TengB. LimW. Recent advances in enantioselective brønsted base organocatalytic reactions.Synlett201728111272127710.1055/s‑0036‑1588847
    [Google Scholar]
  79. DongS. FengX. LiuX. Chiral guanidines and their derivatives in asymmetric synthesis.Chem. Soc. Rev.201847238525854010.1039/C7CS00792B 30375584
    [Google Scholar]
  80. VeraS. García-UrricelquiA. MielgoA. OiarbideM. Progress in (thio)urea‐ and squaramide‐based brønsted base catalysts with multiple H‐bond donors.Eur. J. Org. Chem.2023267e20220125410.1002/ejoc.202201254
    [Google Scholar]
  81. GauntM.J. JohanssonC.C.C. Recent developments in the use of catalytic asymmetric ammonium enolates in chemical synthesis.Chem. Rev.2007107125596560510.1021/cr0683764 18072805
    [Google Scholar]
  82. DenmarkS.E. BeutnerG.L. Lewis base catalysis in organic synthesis.Angew. Chem. Int. Ed.20084791560163810.1002/anie.200604943 18236505
    [Google Scholar]
  83. GawronskiJ. WascinskaN. GajewyJ. Recent progress in Lewis base activation and control of stereoselectivity in the additions of trimethylsilyl nucleophiles.Chem. Rev.2008108125227525210.1021/cr800421c 18850749
    [Google Scholar]
  84. TaylorJ.E. BullS.D. WilliamsJ.M.J. Amidines, isothioureas, and guanidines as nucleophilic catalysts.Chem. Soc. Rev.20124162109212110.1039/c2cs15288f 22234578
    [Google Scholar]
  85. MorrillL.C. SmithA.D. Organocatalytic Lewis base functionalisation of carboxylic acids, esters and anhydrides via C1-ammonium or azolium enolates.Chem. Soc. Rev.201443176214622610.1039/C4CS00042K 24867308
    [Google Scholar]
  86. HuyP.H. Lewis base catalysis promoted nucleophilic substitutions – recent advances and future directions.Eur. J. Org. Chem.202020201102710.1002/ejoc.201901495
    [Google Scholar]
  87. ShaoY.D. ChengD.J. Chiral phosphoric acid: A powerful organocatalyst for the asymmetric synthesis of heterocycles with chiral atropisomerism.ChemCatChem20211351271128910.1002/cctc.202001750
    [Google Scholar]
  88. WoldegiorgisA.G. LinX. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds.Beilstein J. Org. Chem.2021172729276410.3762/bjoc.17.185 34876929
    [Google Scholar]
  89. PálvölgyiÁ.M. ScharingerF. SchnürchM. Bica-SchröderK. Chiral phosphoric acids as versatile tools for organocatalytic asymmetric transfer hydrogenations.Eur. J. Org. Chem.20212021385367538110.1002/ejoc.202100894 34819797
    [Google Scholar]
  90. JiménezE.I. An update on chiral phosphoric acid organocatalyzed stereoselective reactions.Org. Biomol. Chem.202321173477350210.1039/D3OB00212H 37057412
    [Google Scholar]
  91. CaoY. LiuG. Asymmetric catalytic synthesis by synergistic chiral phosphoric acid photoredox catalyzed reactions.Adv. Synth. Catal.2023365183044306210.1002/adsc.202300503
    [Google Scholar]
  92. WoldegiorgisA.G. HanZ. LinX. Recent advances in chiral phosphoric acid catalyzed asymmetric organic reactions: An overview.J. Mol. Struct.2024129713691910.1016/j.molstruc.2023.136919
    [Google Scholar]
  93. SchreyerL. ProperziR. ListB. IDPi Catalysis.Angew. Chem. Int. Ed.20195837127611277710.1002/anie.201900932 30840780
    [Google Scholar]
  94. ErkkiläA. MajanderI. PihkoP.M. Iminium catalysis.Chem. Rev.2007107125416547010.1021/cr068388p 18072802
    [Google Scholar]
  95. DengY. KumarS. WangH. Synergistic–cooperative combination of enamine catalysis with transition metal catalysis.Chem. Commun. (Camb.)201450334272428410.1039/C4CC00072B 24637566
    [Google Scholar]
  96. ZouY.Q. HörmannF.M. BachT. Iminium and enamine catalysis in enantioselective photochemical reactions.Chem. Soc. Rev.201847227829010.1039/C7CS00509A 29155908
    [Google Scholar]
  97. GambhirD. SinghS. SinghR.P. Enamine/iminium‐based dual organocatalytic systems for asymmetric catalysis and synthesis.Chem. Asian J.20231824e20230062710.1002/asia.202300627 37910066
    [Google Scholar]
  98. ReyesE. PrietoL. UriaU. CarrilloL. VicarioJ.L. Asymmetric dual enamine catalysis/hydrogen bonding activation.Catalysts2023137109110.3390/catal13071091
    [Google Scholar]
  99. CésarV. Bellemin-LaponnazS. GadeL.H. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis.Chem. Soc. Rev.200433961963610.1039/B406802P 15592627
    [Google Scholar]
  100. WangF. LiuL. WangW. LiS. ShiM. Chiral NHC–metal-based asymmetric catalysis.Coord. Chem. Rev.20122569-1080485310.1016/j.ccr.2011.11.013
    [Google Scholar]
  101. ZhaoD. CandishL. PaulD. GloriusF. N-heterocyclic carbenes in asymmetric hydrogenation.ACS Catal.2016695978598810.1021/acscatal.6b01736
    [Google Scholar]
  102. Janssen-MüllerD. SchlepphorstC. GloriusF. Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis.Chem. Soc. Rev.201746164845485410.1039/C7CS00200A 28660958
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461352292241122194003
Loading
/content/journals/cgc/10.2174/0122133461352292241122194003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test