Skip to content
2000
image of Synthesis of 2-(Bis(Phosphonomethyl)Amino)Ethane-1-sulfonic Acid Intercalated ZnAl Layered Double Hydroxide as an Efficient Adsorbent for Hg2+ Ions and Antimicrobial Agent

Abstract

Mercury is a pollutant of concern due to its negative influence on the environment and human health. Hydrotalcites, also known as layered double hydroxides, have attracted tremendous attention over the last few years in several fields such as healthcare and environmental remediation. Herein, a novel hybrid ZnAlLDH was synthesized to test its effect on mercury adsorption capacity. ZnAl-CO/LDH synthesized using the co-precipitation method is grafted with a new phosphonic acid named2-(bis(phosphonomethyl)amino)ethane-1-sulfonic acid synthesized in our laboratory. Materials were characterized using textural, structural and morphological analysis. Mercury removal is measured by adsorption tests under relevant conditions. Parameters affecting the extraction process such as stirring speed, adsorbent dose, Hg2+ concentration, pH, ionic strength and temperature were fully studied and discussed. In effect, LDH intercalation with phosphonic acid and the optimization of mercury adsorption conditions improved the adsorption capacity of the prepared material by ca. 40%.87% of Hg2+ was successfully removed from aqueous solution. The hybrid LDH was also investigated in antibacterial and antifungal activities against Gram-negative ( (ATCC 25922), (A22), (ATCC27853) and (ATCC17978)), Gram-positive ( (ATCC11778), (ATCC25922), (ATCC43300) and (ATCC25923)) bacteria and (ATCC26790) fungus.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461361984250414155355
2025-04-24
2025-09-10
Loading full text...

Full text loading...

References

  1. Yang J. Hou B. Wang J. Tian B. Bi J. Wang N. Li X. Huang X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019 9 3 424 10.3390/nano9030424 30871096
    [Google Scholar]
  2. Rehman K. Fatima F. Waheed I. Akash M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018 119 1 157 184 10.1002/jcb.26234 28643849
    [Google Scholar]
  3. Murata K. Karita K. Minamata disease. Overcoming Environmental Risks to Achieve Sustainable Development Goals. Springer 2022 9 19 10.1007/978‑981‑16‑6249‑2_2
    [Google Scholar]
  4. Albatrni H. Qiblawey H. El-Naas M.H. Comparative study between adsorption and membrane technologies for the removal of mercury. Separ. Purif. Tech. 2021 257 117833 10.1016/j.seppur.2020.117833
    [Google Scholar]
  5. Yu J.G. Yue B.Y. Wu X.W. Liu Q. Jiao F.P. Jiang X.Y. Chen X.Q. Removal of mercury by adsorption: A review. Environ. Sci. Pollut. Res. Int. 2016 23 6 5056 5076 10.1007/s11356‑015‑5880‑x 26620868
    [Google Scholar]
  6. Donia A.M. Atia A.A. Abouzayed F.I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012 191 22 30 10.1016/j.cej.2011.08.034
    [Google Scholar]
  7. Tadesse A. Hagos M. RamaDevi D. Basavaiah K. Belachew N. Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: Green synthesis, mercury (II) ion sensing, and live cell imaging. ACS Omega 2020 5 8 3889 3898 10.1021/acsomega.9b03175 32149215
    [Google Scholar]
  8. Rahman Z. Singh V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019 191 7 419 10.1007/s10661‑019‑7528‑7 31177337
    [Google Scholar]
  9. Cai F. Zhu Q. Zhao K. Deng A. Li J. Multiple signal amplified electrochemiluminescent immunoassay for Hg2+ using graphene-coupled quantum dots and gold nanoparticles-labeled horseradish peroxidase. Environ. Sci. Technol. 2015 49 8 5013 5020 10.1021/acs.est.5b00690 25799039
    [Google Scholar]
  10. Chai W.S. Cheun J.Y. Kumar P.S. Mubashir M. Majeed Z. Banat F. Ho S-H. Show P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021 296 126589 10.1016/j.jclepro.2021.126589
    [Google Scholar]
  11. Kaykhaii M. Sasani M. Marghzari S. Removal of dyes from the environment by adsorption process. Chem. Mater. Eng. 2018 6 2 31 35 10.13189/cme.2018.060201
    [Google Scholar]
  12. Hanane Z. Preparation, characterization and antibacterial applications of ZnAl-LDH with the diaminododecylphosphonic acid intercalation. South Asian J. Exp. Biol. 2021 11 5 600 604 10.38150/sajeb.11(5).p600‑604
    [Google Scholar]
  13. Abderrazek K. Najoua F.S. Srasra E. Synthesis and characterization of [Zn–Al] LDH: Study of the effect of calcination on the photocatalytic activity. Appl. Clay Sci. 2016 119 229 235 10.1016/j.clay.2015.10.014
    [Google Scholar]
  14. Jadhav A.L. Yadav G.D. A Green process for selective hydrolysis of cinnamaldehyde in water to natural benzaldehyde by using Ti and Zn modified hydrotalcites as catalysts. Curr. Green Chem. 2019 6 3 242 254 10.2174/2213346106666191021105244
    [Google Scholar]
  15. Tran H.N. Nguyen D.T. Le G.T. Tomul F. Lima E.C. Woo S.H. Sarmah A.K. Nguyen H.Q. Nguyen P.T. Nguyen D.D. Nguyen T.V. Vigneswaran S. Vo D.V.N. Chao H.P. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. J. Hazard. Mater. 2019 373 258 270 10.1016/j.jhazmat.2019.03.018 30925385
    [Google Scholar]
  16. Chmielewská E. Current progress in designing environmental adsorbents. Curr. Green Chem. 2019 6 1 3 8 10.2174/221334610601190329164505
    [Google Scholar]
  17. Yang Z. Zhang C. Zeng G. Tan X. Wang H. Huang D. Yang K. Wei J. Ma C. Nie K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 8 4141 4173 10.1039/C9TA13522G
    [Google Scholar]
  18. Le K. Wang Z. Wang F. Wang Q. Shao Q. Murugadoss V. Wu S. Liu W. Liu J. Gao Q. Guo Z. Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 2019 48 16 5193 5202 10.1039/C9DT00615J 30896012
    [Google Scholar]
  19. Xiang X. Pan F. Li Y. A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Adv. Compos. Hybrid Mater. 2018 1 1 6 31 10.1007/s42114‑017‑0001‑6
    [Google Scholar]
  20. Pan D. Ge S. Zhao J. Tian J. Shao Q. Guo L. Mai X. Wu T. Murugadoss V. Liu H. Ding T. Angaiah S. Guo Z. Synthesis and characterization of ZnNiIn layered double hydroxides derived mixed metal oxides with highly efficient photoelectrocatalytic activities. Ind. Eng. Chem. Res. 2019 58 2 836 848 10.1021/acs.iecr.8b04829
    [Google Scholar]
  21. Taviot-Guého C. Prévot V. Forano C. Renaudin G. Mousty C. Leroux F. Tailoring hybrid layered double hydroxides for the development of innovative applications. Adv. Funct. Mater. 2018 28 27 1703868 10.1002/adfm.201703868
    [Google Scholar]
  22. Cui J. Li Z. Wang G. Guo J. Shao M. Layered double hydroxides and their derivatives for lithium–sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 45 23738 23755 10.1039/D0TA08573A
    [Google Scholar]
  23. Liu X. Hu T. Lin G. Wang X. Zhu Y. Liang R. Duan W. Wei M. The synthesis of a DHAD/ZnAlTi-LDH composite with advanced UV blocking and antibacterial activity for skin protection. RSC Advances 2020 10 17 9786 9790 10.1039/D0RA00572J 35498563
    [Google Scholar]
  24. Xie P. Li Y. Hou Q. Sui K. Liu C. Fu X. Zhang J. Murugadoss V. Fan J. Wang Y. Fan R. Guo Z. Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J. Mater. Chem. C Mater. Opt. Electron. Devices 2020 8 9 3029 3039 10.1039/C9TC06378A
    [Google Scholar]
  25. Zhu S. Asim Khan M. Wang F. Bano Z. Xia M. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study. Chem. Eng. J. 2020 392 123711 10.1016/j.cej.2019.123711
    [Google Scholar]
  26. Asiabi H. Yamini Y. Shamsayei M. Using cobalt/chromium layered double hydroxide nano-sheets as a novel packed in-tube solid phase microextraction sorbent for facile extraction of acidic pesticides from water samples. New J. Chem. 2018 42 12 9935 9944 10.1039/C8NJ00372F
    [Google Scholar]
  27. Yu S. Liu Y. Ai Y. Wang X. Zhang R. Chen Z. Chen Z. Zhao G. Wang X. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environ. Pollut. 2018 242 Pt A 1 11 10.1016/j.envpol.2018.06.031 29957540
    [Google Scholar]
  28. Seftel E.M. Popovici E. Mertens M. Witte K.D. Tendeloo G.V. Cool P. Vansant E.F. Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 2008 113 1-3 296 304 10.1016/j.micromeso.2007.11.029
    [Google Scholar]
  29. Salak A.N. Lisenkov A.D. Zheludkevich M.L. Ferreira M.G.S. Carbonate-free Zn-Al (1: 1) layered double hydroxide film directly grown on zinc-aluminum alloy coating. ECS Electrochemistry Letters 2013 3 1 C9 C11 10.1149/2.008401eel
    [Google Scholar]
  30. Wei M. Shi S. Wang J. Li Y. Duan X. Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD. J. Solid State Chem. 2004 177 7 2534 2541 10.1016/j.jssc.2004.03.041
    [Google Scholar]
  31. Chakraborty M. Dasgupta S. Soundrapandian C. Chakraborty J. Ghosh S. Mitra M.K. Basu D. Methotrexate intercalated ZnAl-layered double hydroxide. J. Solid State Chem. 2011 184 9 2439 2445 10.1016/j.jssc.2011.07.015
    [Google Scholar]
  32. Qi F. Zhang X. Li S. A novel method to get methotrexatum/layered double hydroxides intercalation compounds and their release properties. J. Phys. Chem. Solids 2013 74 8 1101 1108 10.1016/j.jpcs.2013.03.005
    [Google Scholar]
  33. Gao X. Lei L. O’Hare D. Xie J. Gao P. Chang T. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide. J. Solid State Chem. 2013 203 174 180 10.1016/j.jssc.2013.04.028
    [Google Scholar]
  34. Kuehn T. Poellmann H. Synthesis and characterization of Zn-Al layered double hydroxides intercalated with 1-to 19-carbon carboxylic acid anions. Clays Clay Miner. 2010 58 5 596 605 10.1346/CCMN.2010.0580502
    [Google Scholar]
  35. Khan A.I. O’Hare D. Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mater. Chem. 2002 12 11 3191 3198 10.1039/B204076J
    [Google Scholar]
  36. Taviot-Gueho C. Illaik A. Vuillermoz C. Commereuc S. Verney V. Leroux F. LDH–dye hybrid material as coloured filler into polystyrene: Structural characterization and rheological properties. J. Phys. Chem. Solids 2007 68 5-6 1140 1146 10.1016/j.jpcs.2007.03.003
    [Google Scholar]
  37. Botan R. de Bona Sartor S. X-ray diffraction analysis of layered double hydroxide polymer nanocomposites. Layered Double Hydroxide Polymer Nanocomposites. Elsevier 2020 205 229 10.1016/B978‑0‑08‑101903‑0.00005‑2
    [Google Scholar]
  38. Starukh H. Levytska S. The simultaneous anionic and cationic dyes removal with Zn Al layered double hydroxides. Appl. Clay Sci. 2019 180 105183 10.1016/j.clay.2019.105183
    [Google Scholar]
  39. Li J. Yan L. Yang Y. Zhang X. Zhu R. Yu H. Insight into the adsorption mechanisms of aqueous hexavalent chromium by EDTA intercalated layered double hydroxides: XRD, FTIR, XPS, and zeta potential studies. New J. Chem. 2019 43 40 15915 15923 10.1039/C9NJ03479J
    [Google Scholar]
  40. Huang Q. Wang Y. Zhou B. Wei Y. Gao F. Fujita T. The effect of ZnAl-LDHs-CO3 on the corrosion behaviour of Zn-5Al alloys in 3.5wt.% NaCl solution. Corros. Sci. 2021 179 109165 10.1016/j.corsci.2020.109165
    [Google Scholar]
  41. Zhou J. Yang S. Yu J. Shu Z. Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J. Hazard. Mater. 2011 192 3 1114 1121 10.1016/j.jhazmat.2011.06.013 21719194
    [Google Scholar]
  42. Iyi N. Ebina Y. Sasaki T. Synthesis and characterization of water-swellable LDH (layered double hydroxide) hybrids containing sulfonate-type intercalant. J. Mater. Chem. 2011 21 22 8085 8095 10.1039/c1jm10733j
    [Google Scholar]
  43. Prevot V. Tokudome Y. 3D hierarchical and porous layered double hydroxide structures: An overview of synthesis methods and applications. J. Mater. Sci. 2017 52 19 11229 11250 10.1007/s10853‑017‑1067‑9
    [Google Scholar]
  44. Santos R.M.M. Tronto J. Briois V. Santilli C.V. Thermal decomposition and recovery properties of ZnAl–CO 3 layered double hydroxide for anionic dye adsorption: Insight into the aggregative nucleation and growth mechanism of the LDH memory effect. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 20 9998 10009 10.1039/C7TA00834A
    [Google Scholar]
  45. Mourid E.H. Lakraimi M. Benaziz L. Cherkaoui M. Removal efficiency of lipid-regulating drug clofibric acid from the aquatic environment by calcined anionic clay ZnAl-CO3. Chem. Biochem. Eng. Q. 2020 34 2 79 92 10.15255/CABEQ.2020.1797
    [Google Scholar]
  46. Kang G.H. Park I.K. Reconstruction and intercalating anion exchange of ZnAl-layered double hydroxide. Ceram. Int. 2022 48 3 3030 3036 10.1016/j.ceramint.2021.10.078
    [Google Scholar]
  47. Jeon C.W. Lee S.S. Park I.K. Abnormal temperature-dependent electrical conduction in ZnAl-layered double hydroxide nanostructures. Appl. Surf. Sci. 2021 538 148122 10.1016/j.apsusc.2020.148122
    [Google Scholar]
  48. Zhu S. Chen Y. Khan M.A. Xu H. Wang F. Xia M. In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide. ACS Appl. Mater. Interfaces 2022 14 5 7450 7463 10.1021/acsami.1c22035 35077125
    [Google Scholar]
  49. Zhu S. Khan M.A. Kameda T. Xu H. Wang F. Xia M. Yoshioka T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022 426 128062 10.1016/j.jhazmat.2021.128062 34929593
    [Google Scholar]
  50. Naushad M. Vasudevan S. Sharma G. Kumar A. ALOthman Z.A. Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalination Water Treat. 2016 57 39 18551 18559 10.1080/19443994.2015.1090914
    [Google Scholar]
  51. Ganzagh M.A.A. Yousefpour M. Taherian Z. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J. Chem. Biol. 2016 9 4 127 142 10.1007/s12154‑016‑0157‑5 27698950
    [Google Scholar]
  52. Hadi P. To M.H. Hui C.W. Lin C.S.K. McKay G. Aqueous mercury adsorption by activated carbons. Water Res. 2015 73 37 55 10.1016/j.watres.2015.01.018 25644627
    [Google Scholar]
  53. Awes H. Zaki Z. Abbas S. Dessoukii H. Zaher A. Abd-El Moaty S.A. Shehata N. Farghali A. Mahmoud R.K. Removal of Cu2+ metal ions from water using Mg-Fe layered double hydroxide and Mg-Fe LDH/5-(3-nitrophenyllazo)-6-aminouracil nanocomposite for enhancing adsorption properties. Environ. Sci. Pollut. Res. Int. 2021 28 34 47651 47667 10.1007/s11356‑021‑13685‑0 33895951
    [Google Scholar]
  54. Feng X. Long R. Wang L. Liu C. Bai Z. Liu X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Separ. Purif. Tech. 2022 284 120099 10.1016/j.seppur.2021.120099
    [Google Scholar]
  55. Mondal D.K. Nandi B.K. Purkait M.K. Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 2013 1 4 891 898 10.1016/j.jece.2013.07.034
    [Google Scholar]
  56. Zubair M. Daud M. McKay G. Shehzad F. Al-Harthi M.A. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 2017 143 279 292 10.1016/j.clay.2017.04.002
    [Google Scholar]
  57. Moghaddam H.K. Pakizeh M. Experimental study on mercury ions removal from aqueous solution by MnO 2 /CNTs nanocomposite adsorbent. J. Ind. Eng. Chem. 2015 21 221 229 10.1016/j.jiec.2014.02.028
    [Google Scholar]
  58. Sun Y. Lou Z. Yu J. Zhou X. Lv D. Zhou J. Baig S.A. Xu X. Immobilization of mercury (II) from aqueous solution using Al 2 O 3 -supported nanoscale FeS. Chem. Eng. J. 2017 323 483 491 10.1016/j.cej.2017.04.095
    [Google Scholar]
  59. Park J.H. Wang J.J. Xiao R. Pensky S.M. Kongchum M. DeLaune R.D. Seo D.C. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands. Chemosphere 2018 195 455 462 10.1016/j.chemosphere.2017.12.104 29274991
    [Google Scholar]
  60. Arshadi M. Mousavinia F. Khalafi-Nezhad A. Firouzabadi H. Abbaspourrad A. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. J. Colloid Interface Sci. 2017 505 293 306 10.1016/j.jcis.2017.05.052 28582722
    [Google Scholar]
  61. Li Z. Wu L. Liu H. Lan H. Qu J. Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chem. Eng. J. 2013 228 925 934 10.1016/j.cej.2013.05.063
    [Google Scholar]
  62. Chen P.H. Hsu C.F. Tsai D.D.W. Lu Y.M. Huang W.J. Adsorption of mercury from water by modified multi-walled carbon nanotubes: Adsorption behaviour and interference resistance by coexisting anions. Environ. Technol. 2014 35 15 1935 1944 10.1080/09593330.2014.886627 24956787
    [Google Scholar]
  63. Arshadi M. Amiri M.J. Mousavi S. Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash. Water Resour. Ind. 2014 6 1 17 10.1016/j.wri.2014.06.001
    [Google Scholar]
  64. Giles C. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids. J Chem Soc. 1960 3973 3993
    [Google Scholar]
  65. Bao W. Zou H. Gan S. Xu X. Ji G. Zheng K. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies. Chem. Res. Chin. Univ. 2013 29 1 126 131 10.1007/s40242‑013‑2139‑2
    [Google Scholar]
  66. Girish C. Various isotherm models for multicomponent adsorption: A review. Int. J. Civ. Eng. Technol 2017 8 10 80 86
    [Google Scholar]
  67. Yang S.C. Liao Y. Karthikeyan K.G. Pan X.J. Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals. Environ. Pollut. 2021 286 117324 10.1016/j.envpol.2021.117324 33990049
    [Google Scholar]
  68. Chen Z. Wang Y-F. Zeng J. Zhang Y. Zhang Z-B. Zhang Z-J. Ma S. Tang C-M. Xu J-Q. Chitosan/polyethyleneimine magnetic hydrogels for adsorption of heavy metal ions. Iran. Polym. J. 2022 31 10 1273 1282 10.1007/s13726‑022‑01075‑3
    [Google Scholar]
  69. Sahmoune M.N. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ. Chem. Lett. 2019 17 2 697 704 10.1007/s10311‑018‑00819‑z
    [Google Scholar]
  70. Zhao J. Huang Q. Liu M. Dai Y. Chen J. Huang H. Wen Y. Zhu X. Zhang X. Wei Y. Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. J. Colloid Interface Sci. 2017 505 168 177 10.1016/j.jcis.2017.05.087 28577466
    [Google Scholar]
  71. Saleh T.A. Sarı A. Tuzen M. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. J. Environ. Chem. Eng. 2017 5 1 1079 1088 10.1016/j.jece.2017.01.032
    [Google Scholar]
  72. Nasirimoghaddam S. Zeinali S. Sabbaghi S. Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. J. Ind. Eng. Chem. 2015 27 79 87 10.1016/j.jiec.2014.12.020
    [Google Scholar]
  73. Sarkar D. Essington M.E. Misra K.C. Adsorption of Mercury(II) by Kaolinite. Soil Sci. Soc. Am. J. 2000 64 6 1968 1975 10.2136/sssaj2000.6461968x
    [Google Scholar]
  74. Kadari M. Makhlouf M. Graphene oxide (GO): Synthesis, characterization and application to the retention of mercuric ions in aqueous solutions. Mater. Today Proc. 2022 49 1093 1104 10.1016/j.matpr.2021.09.426
    [Google Scholar]
  75. Rihab R. Hamza S. Mohamed K. Synthesis of hybrid materials and application to the retention of some effluents. Mater. Today Proc. 2022 49 1003 1007 10.1016/j.matpr.2021.08.116
    [Google Scholar]
  76. Asasian N. Kaghazchi T. Faramarzi A. Hakimi-Siboni A. Asadi-Kesheh R. Kavand M. Mohtashami S-A. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. J. Taiwan Inst. Chem. Eng. 2014 45 4 1588 1596 10.1016/j.jtice.2013.10.012
    [Google Scholar]
  77. Shadbad M.J. Mohebbi A. Soltani A. Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean J. Chem. Eng. 2011 28 4 1029 1034 10.1007/s11814‑010‑0463‑5
    [Google Scholar]
  78. Zhang Y. Yan L. Xu W. Guo X. Cui L. Gao L. Wei Q. Du B. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J. Mol. Liq. 2014 191 177 182 10.1016/j.molliq.2013.12.015
    [Google Scholar]
  79. Nakayama H. Hirami S. Tsuhako M. Selective adsorption of mercury ion by mercaptocarboxylic acid intercalated Mg–Al layered double hydroxide. J. Colloid Interface Sci. 2007 315 1 177 183 10.1016/j.jcis.2007.06.036 17631306
    [Google Scholar]
  80. Shamsayei M. Yamini Y. Asiabi H. Evaluation of reusable organic-inorganic nafion/layered double hydroxide nanohybrids for highly efficient uptake of mercury ions from aqueous solution. Appl. Clay Sci. 2018 162 534 542 10.1016/j.clay.2018.05.022
    [Google Scholar]
  81. Wang L. Wang M. Li Z. Gong Y. Enhanced removal of trace mercury from surface water using a novel Mg2Al layered double hydroxide supported iron sulfide composite. Chem. Eng. J. 2020 393 124635 10.1016/j.cej.2020.124635
    [Google Scholar]
  82. Mishra G. Dash B. Sethi D. Pandey S. Mishra B.K. Orientation of organic anions in Zn-Al layered double hydroxides with enhanced antibacterial property. Environ. Eng. Sci. 2017 34 7 516 527 10.1089/ees.2016.0531
    [Google Scholar]
  83. Naik M.M. Naik H.S.B. Nagaraju G. Vinuth M. Vinu K. Rashmi S.K. Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J. Mater. Sci. Mater. Electron. 2018 29 23 20395 20414 10.1007/s10854‑018‑0174‑y
    [Google Scholar]
  84. Karthik K. Dhanuskodi S. Prabu Kumar S. Gobinath C. Sivaramakrishnan S. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater. Lett. 2017 206 217 220 10.1016/j.matlet.2017.07.004
    [Google Scholar]
  85. Stanić V. Dimitrijević S. Antić-Stanković J. Mitrić M. Jokić B. Plećaš I.B. Raičević S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010 256 20 6083 6089 10.1016/j.apsusc.2010.03.124
    [Google Scholar]
  86. Yu Y. Jin G. Xue Y. Wang D. Liu X. Sun J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater. 2017 49 590 603 10.1016/j.actbio.2016.11.067 27915020
    [Google Scholar]
  87. Lotz A. Heller M. Dohm N. Cierniak P. Bender K. Jansen B. Förch R. Antimicrobial efficacy and optimized cell adhesion from defined plasma polymerised multilayer structures involving zinc acetylacetonate and allylamine. J. Mater. Chem. 2012 22 37 19455 19461 10.1039/c2jm30344b
    [Google Scholar]
  88. Schwartz V.B. Thétiot F. Ritz S. Pütz S. Choritz L. Lappas A. Förch R. Landfester K. Jonas U. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (n‐isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. 2012 22 11 2376 2386 10.1002/adfm.201102980
    [Google Scholar]
  89. Liu P. Zhao Y. Yuan Z. Ding H. Hu Y. Yang W. Cai K. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion. Mater. Sci. Eng. C 2017 75 998 1005 10.1016/j.msec.2017.03.020 28415556
    [Google Scholar]
  90. Peng F. Wang D. Zhang D. Cao H. Liu X. The prospect of layered double hydroxide as bone implants: A study of mechanical properties, cytocompatibility and antibacterial activity. Appl. Clay Sci. 2018 165 179 187 10.1016/j.clay.2018.08.020
    [Google Scholar]
  91. Mishra G. Dash B. Pandey S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 2018 153 172 186 10.1016/j.clay.2017.12.021
    [Google Scholar]
  92. Goda E.S. Abu Elella M.H. Sohail M. Singu B.S. Pandit B. El Shafey A.M. Aboraia A.M. Gamal H. Hong S.E. Yoon K.R. N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int. J. Biol. Macromol. 2021 182 680 688 10.1016/j.ijbiomac.2021.04.024 33838196
    [Google Scholar]
  93. Zhang X. Li Y. Guo M. Jin T.Z. Arabi S.A. He Q. Ismail B.B. Hu Y. Liu D. Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocoll. 2021 112 106337 10.1016/j.foodhyd.2020.106337
    [Google Scholar]
  94. Miyata S. The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties—I: The systems Mg 2+ -Al 3+ -NO 3 −, Mg 2+ -Al 3+ -Cl −, Mg 2+ -Al 3+ -ClO 4 −, Ni 2+ -Al 3+ -Cl − and Zn 2+ -Al 3+ -Cl −. Clays Clay Miner. 1975 23 5 369 375 10.1346/CCMN.1975.0230508
    [Google Scholar]
  95. Theiss F.L. Ayoko G.A. Frost R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016 383 200 213 10.1016/j.apsusc.2016.04.150
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461361984250414155355
Loading
/content/journals/cgc/10.2174/0122133461361984250414155355
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test