Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Heterocycles are of much importance as the majority of the existing drugs contain one or more heterocyclic units in their structures. Among all the heterocycles, nitrogen, and sulphur-containing ones occupy major space, and they have special properties which make them suitable for the textile, cosmetic, and paint industries other than pharmaceutical. Recently, visible light has emerged as a powerful tool for performing various reactions at ambient temperatures and mild conditions and thus it has been used for the key step in the synthesis of many molecules. In addition, visible light assisted methods are usually cost and time effective. Thus, this review highlighted the recent developments in visible light induced methods for the synthesis of some selected biologically active - and - containing heterocycles such as benzothiazoles, indoles and triazoles and their functionalization. The advantages, green aspects and limitations of these methods have also been discussed.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461344399241001071524
2024-10-17
2025-10-09
Loading full text...

Full text loading...

References

  1. TalleyJ.J. BertenshawS.R. BrownD.L. CarterJ.S. GranetoM.J. KoboldtC.M. MasferrerJ.L. NormanB.H. RogierD.J. ZweifelB.S. SeibertK. 4,5-Diaryloxazole inhibitors of cyclooxygenase-2 (COX-2).Med. Res. Rev.1999193199208 10232649
    [Google Scholar]
  2. AlmansaC. AlfónJ. de ArribaA.F. CavalcantiF.L. EscamillaI. GómezL.A. MirallesA. SolivaR. BartrolíJ. CarcellerE. MerlosM. García-RafanellJ. Synthesis and structure-activity relationship of a new series of COX-2 selective inhibitors: 1,5-diarylimidazoles.J. Med. Chem.200346163463347510.1021/jm030765s 12877584
    [Google Scholar]
  3. QadirT. AminA. SharmaP.K. JeelaniI. AbeH. A review on medicinally important heterocyclic compounds.Open J. Med. Chem.202216134
    [Google Scholar]
  4. AroraP. AroraV. LambaH.S. WadhwaD. Importance of heterocyclic chemistry: A review.Int. J. Pharma Sci.2012329472954
    [Google Scholar]
  5. SharmaP.K. SinghP. Antibacterial and antifungal activity of piperazinylbenzothiazine.Der. Pharma Chem.20168191193
    [Google Scholar]
  6. MakkarR. SharmaP.K. Antibacterial, antifungal and antioxidant activities of substituted 4H-1, 4-benzothiazines.Der Pharma Chem.20168156159
    [Google Scholar]
  7. JeelaniI. ItayaK. AbeH. Total synthesis of hyalodendriol C.Heterocycles202110281570157810.3987/COM‑21‑14480
    [Google Scholar]
  8. SharmaP.K. Antifungal, antibacterial and antioxidant activities of substituted morpholinylbenzothiazine.Pharm. Lett.20168140142
    [Google Scholar]
  9. AhmedK. JeelaniI. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones.Int. J. Pharm. Biol. Sci.2019910001005
    [Google Scholar]
  10. KhanA. JasinskiJ.P. SmolenskiV.A. HotchkissE.P. KelleyP.T. ShalitZ.A. KaurM. PaulK. SharmaR. Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: Structure elucidation, evaluation and molecular modelling.Bioorg. Chem.20188030331810.1016/j.bioorg.2018.06.027 29986180
    [Google Scholar]
  11. QadirT. AminA. SarkarD. SharmaP.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis.Curr. Org. Chem.202125161868189310.2174/1385272825666210728100022
    [Google Scholar]
  12. SharmaP.K. KumarM. Antimicrobial and antioxidant activities of substituted 4H-1, 4-benzothiazines.Med. Chem. Res.2012212072207810.1007/s00044‑011‑9732‑z
    [Google Scholar]
  13. SapraR. PatelD. MeshramD. A mini-review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis.J. Med. Chem. Sci.202037178
    [Google Scholar]
  14. MahmoodR.M.U. AljamaliN.M. Synthesis, spectral investigation, and microbial studying of pyridine-heterocyclic compounds.Eur. J. Mol. Clin. Med.2020744444453
    [Google Scholar]
  15. PanchalN.B. PatelP.H. ChhipaN.M. ParmarR.S. Acridine a versatile heterocyclic moiety as anticancer agent.Int. J. Pharm. Sci. Res.20201147394748
    [Google Scholar]
  16. ThigullaY. KumarT.U. TrivediP. GhoshB. BhattacharyaA. One-step synthesis of fused chromeno[4,3-b]pyrrolo[3,2-h]quinolin-7(1H)-one compounds and their anticancer activity evaluation.ChemistrySelect2017292718272110.1002/slct.201700129
    [Google Scholar]
  17. WangM. GaoM. MockB.H. MillerK.D. SledgeG.W. HutchinsG.D. ZhengQ.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents.Bioorg. Med. Chem.200614248599860710.1016/j.bmc.2006.08.026 16962783
    [Google Scholar]
  18. SondhiS.M. GoyalR.N. LahotiA.M. SinghN. ShuklaR. RaghubirR. Synthesis and biological evaluation of 2-thiopyrimidine derivatives.Bioorg. Med. Chem.20051393185319510.1016/j.bmc.2005.02.047 15809154
    [Google Scholar]
  19. AmirM. KhanM.S.Y. ZamanM.S. Synthesis, characterization, and biological activities of substituted oxadiazole, triazole, thiadiazole, and 4-thiazolidinone derivatives.Indian J. Chem.20044321892194
    [Google Scholar]
  20. KumarD. KumarR.R. PathaniaS. SinghP.K. KalraS. KumarB. Investigation of indole functionalized pyrazoles and oxadiazoles as anti-inflammatory agents: Synthesis, in-vivo, in-vitro and in-silico analysis.Bioorg. Chem.202111410506810507810.1016/j.bioorg.2021.105068 34130110
    [Google Scholar]
  21. HeldF.E. GuryevA.A. FröhlichT. HampelF. KahntA. HuttererC. SteingruberM. BahsiH. von Bojničić-KninskiC. MattesD.S. FoertschT.C. Nesterov-MuellerA. MarschallM. TsogoevaS.B. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions.Nat. Commun.201781150711507910.1038/ncomms15071 28462939
    [Google Scholar]
  22. XuY.B. YangL. WangG.F. TongX.K. WangY.J. YuY. JingJ.F. FengC.L. HeP.L. LuW. TangW. ZuoJ.P. Benzimidazole derivative, BM601, a novel inhibitor of hepatitis B virus and HBsAg secretion.Antiviral Res.201410761510.1016/j.antiviral.2014.04.002 24746457
    [Google Scholar]
  23. ShinY.S. JarhadD.B. JangM.H. KovacikovaK. KimG. YoonJ. KimH.R. HyunY.E. TipnisA.S. ChangT.S. van HemertM.J. JeongL.S. Identification of 6′-β-fluoro-homoaristeromycin as a potent inhibitor of chikungunya virus replication.Eur. J. Med. Chem.202018711195611196510.1016/j.ejmech.2019.111956 31841728
    [Google Scholar]
  24. SantoshR. SelvamM.K. KanekarS.U. NagarajaG.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives.ChemistrySelect20183236338634310.1002/slct.201800905
    [Google Scholar]
  25. RastegariA. NadriH. MahdaviM. MoradiA. MirfazliS.S. EdrakiN. MoghadamF.H. LarijaniB. AkbarzadehT. SaeediM. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives.Bioorg. Chem.20198339140110.1016/j.bioorg.2018.10.065 30412794
    [Google Scholar]
  26. HamedA.A. AbdelhamidI.A. SaadG.R. ElkadyN.A. ElsabeeM.Z. Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties.Int. J. Biol. Macromol.202015349250110.1016/j.ijbiomac.2020.02.302 32112843
    [Google Scholar]
  27. ZhaoS. ZhangX. WeiP. SuX. ZhaoL. WuM. HaoC. LiuC. ZhaoD. ChengM. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents.Eur. J. Med. Chem.20171379610710.1016/j.ejmech.2017.05.043 28558334
    [Google Scholar]
  28. ZhouQ.L. Transition‐metal catalysis and organocatalysis: Where can progress be expected?Angew. Chem. Int. Ed.201655185352535310.1002/anie.201509164 26662619
    [Google Scholar]
  29. ChenJ.R. HuX.Q. LuL.Q. XiaoW.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: Reaction design and beyond.Acc. Chem. Res.20164991911192310.1021/acs.accounts.6b00254 27551740
    [Google Scholar]
  30. HuX.Q. LiuZ.K. XiaoW.J. Radical carbonylative synthesis of heterocycles by visible light photoredox catalysis.Catalysts20201091054107910.3390/catal10091054
    [Google Scholar]
  31. FestaA.A. VoskressenskyL.G. Van der EyckenE.V. Visible light-mediated chemistry of indoles and related heterocycles.Chem. Soc. Rev.20194864401442310.1039/C8CS00790J 31268435
    [Google Scholar]
  32. DhiyaA.K. MongaA. SharmaA. Visible-light-mediated synthesis of quinolines.Org. Chem. Front.2021871657167610.1039/D0QO01387K
    [Google Scholar]
  33. CastroK.A.D.F.L. LourençoM.O. da SilvaR.S. ToméJ.P.C. Photocatalytic synthesis of nitrogen-containing heterocycles.Synthetic Approaches to Nonaromatic Nitrogen Heterocycles. PhillipsA.M.M.M.F. John Wiley & Sons Ltd.202169972810.1002/9781119708841.ch22
    [Google Scholar]
  34. CastroK.A.D.F.L. LourençoM.O. da SilvaR.S. ToméJ.P.C. Synthesis of nonaromatic nitrogen heterocycles via singlet oxygen.More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles. PhillipsA.M.M.M.F. John Wiley & Sons Ltd.202233335510.1002/9781119757153.ch9
    [Google Scholar]
  35. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.20158920725110.1016/j.ejmech.2014.10.059 25462241
    [Google Scholar]
  36. ChengY. YangJ. QuY. LiP. Aerobic visible-light photoredox radical C-H functionalization: Catalytic synthesis of 2-substituted benzothiazoles.Org. Lett.20121419810110.1021/ol2028866 22146071
    [Google Scholar]
  37. YuC. LeeK. YouY. ChoE.J. Synthesis of 2‐substituted benzothiazoles by visible light‐driven photoredox catalysis.Adv. Synth. Catal.201335581471147610.1002/adsc.201300376
    [Google Scholar]
  38. SrivastavaV. SinghP.K. SinghP.P. EosinY. Eosin Y catalyzed visible-light-promoted aerobic oxidative cyclization of 2-aminobenzothiazole.Croat. Chem. Acta201588322723310.5562/cca2632
    [Google Scholar]
  39. BouchetL.M. HerediaA.A. ArgüelloJ.E. SchmidtL.C. Riboflavin as photoredox catalyst in the cyclization of thiobenzanilides: Synthesis of 2-substituted benzothiazoles.Org. Lett.202022261061410.1021/acs.orglett.9b04384 31887062
    [Google Scholar]
  40. MongaA. BagchiS. SoniR.K. SharmaA. Synthesis of benzothiazoles via photooxidative decarboxylation of α‐keto acids.Adv. Synth. Catal.2020362112232223710.1002/adsc.201901617
    [Google Scholar]
  41. SinghP.K. BhardiyaS.R. AsatiA. RaiV.K. SinghM. RaiA. Cu/Cu2O@g‐C3N4: Recyclable photocatalyst under visible light to access 2‐aryl‐/benzimidazoles/benzothiazoles in water.ChemistrySelect2020545142701427510.1002/slct.202003812
    [Google Scholar]
  42. (a KawasakiT. HiguchiK. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit.Nat. Prod. Rep.200522676179310.1039/b502162f 16311634
    [Google Scholar]
  43. (b d’IschiaM. NapolitanoA. PezzellaA. Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K., Eds.; Elsevier: Oxford,20083353388
    [Google Scholar]
  44. (c BandiniM. EichholzerA. Catalytic functionalization of indoles in a new dimension.Angew Chem. Int. Ed. Engl.200948519786982410.1002/ange.200901843
    [Google Scholar]
  45. (dKochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety.Chem. Rev.,201011084489449710.1021/cr900211p 20380420
    [Google Scholar]
  46. eZhuo, C.X.; Wu, Q.F.; Zhao, Q.; Xu, Q.L.; You, S.L. Enantioselective functionalization of indoles and pyrroles via an in situformed spiro intermediate.J. Am. Chem. Soc.2013135228169817210.1021/ja403535a 23672506
    [Google Scholar]
  47. ZhongJ.J. MengQ.Y. WangG.X. LiuQ. ChenB. FengK. TungC.H. WuL.Z. A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex.Chemistry201319206443645010.1002/chem.201204572 23504986
    [Google Scholar]
  48. LiX. GuX. LiY. LiP. Aerobic transition-metal-free visible-light photoredox indole C-3 formylation reaction.ACS Catal.2014461897190010.1021/cs5005129
    [Google Scholar]
  49. YangQ.Q. MarchiniM. XiaoW.J. CeroniP. BandiniM. Visible‐light‐induced direct photocatalytic carboxylation of indoles with CBr4/MeOH.Chemistry20152150180521805610.1002/chem.201503787 26509744
    [Google Scholar]
  50. a FrancG. KakkarA.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev.,20103951536154410.1039/b913281n 20419208
    [Google Scholar]
  51. b GolasP.L. MatyjaszewskiK. Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chem. Soc. Rev.,20103941338135410.1039/B901978M 20309490
    [Google Scholar]
  52. c LauY.H. RutledgeP.J. WatkinsonM. ToddM.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev.,20114052848286610.1039/c0cs00143k 21380414
    [Google Scholar]
  53. d SchulzeB. SchubertU.S. Beyond click chemistry – Supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev.,20144382522257110.1039/c3cs60386e 24492745
    [Google Scholar]
  54. e KukwikilaM. GaleN. El-SagheerA.H. BrownT. TavassoliA. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat. Chem.,20179111089109810.1038/nchem.2850 29064492
    [Google Scholar]
  55. ArslanM. YilmazG. YagciY. Dibenzoyldiethylgermane as a visible light photo-reducing agent for CuAAC click reactions.Polym. Chem.20156478168817510.1039/C5PY01465D
    [Google Scholar]
  56. YangJ. DuanJ. WangG. ZhouH. MaB. WuC. XiaoJ. Visible-light-promoted site-selective N1-alkylation of benzotriazoles with α-diazoacetates.Org. Lett.202022187284728910.1021/acs.orglett.0c02619 32902300
    [Google Scholar]
  57. WuZ.G. LiaoX.J. YuanL. WangY. ZhengY.X. ZuoJ.L. PanY. Visible‐light‐mediated click chemistry for highly regioselective azide–alkyne cycloaddition by a photoredox electron‐transfer strategy.Chemistry202026255694570010.1002/chem.202000252 31953964
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461344399241001071524
Loading
/content/journals/cgc/10.2174/0122133461344399241001071524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test