Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Heterocyclic chemistry is an essential area of study in organic chemistry, especially due to the biological and pharmacological importance of heterocyclic compounds. Developing sustainable, heterogeneous catalysts for the efficient, eco-friendly synthesis of pyrano[2,3-]pyrazole scaffolds is a key objective in modern synthesis. These -containing fused five-six membered rings have unique structures and bioactivities that make them promising candidates for use in antimicrobial and anticancer drug development. This review explores the role of heterogeneous catalysis in synthesizing bio-active pyrano[2,3-]pyrazoles through one-pot, cyclocondensation, and multi-component reactions, emphasizing their significance in drug development.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461353365241217064250
2025-01-28
2025-10-21
Loading full text...

Full text loading...

References

  1. OttoH.H. Synthesis of some 4H-pyrano(2.3-c)pyrazoles (author’s transl).Arch. Pharm.1974307644444710.1002/ardp.19743070609 4841522
    [Google Scholar]
  2. LeeY.J. WhittenD.G. PedersenL. Importance of 1n.pi.* states in N-heterocycles. Internal conversion, intersystem crossing, and isomerization in azastilbenes.J. Am. Chem. Soc.197193236330633210.1021/ja00752a090
    [Google Scholar]
  3. SikandarS. ZahoorA.F. AhmadS. AnjumM.N. AhmadM.N. ShahM.S.U. L-Cysteine catalyzed environmentally benign one-pot multicomponent approach towards the synthesis of dihydropyrano[2,3-c]pyrazole derivatives.Curr. Org. Synth.202017645746310.2174/1570179417666200511092332 32392115
    [Google Scholar]
  4. MaheswariC.S. TamilselviV. RameshR. LalithaA. An organocatalytic cascade synthesis of diverse 1 H-pyrazolo[1,2-b]phthalazine-2-carboxamide,1 H-pyrazolo[1,2-b]phthalazine, 4 H -pyrano[2,3-c]pyrazole and 4 H-benzo[g]chromenes via multicomponent reactions.Org. Prep. Proced. Int.2020521223610.1080/00304948.2019.1693241
    [Google Scholar]
  5. MejdoubiE.K. SallekB. DiguaK. ChaairH. OudadesseH. Natural phosphate K09 as a new reusable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives at room temperature.Kinet. Catal.201960453654210.1134/S0023158419040098
    [Google Scholar]
  6. AzarifarD. AbbasabadiK.M. Fe3O4-supported N-pyridin-4-amine-grafted graphene oxide as efficient and magnetically separable novel nanocatalyst for green synthesis of 4H-chromenes and dihydropyrano[2,3-c]pyrazole derivatives in water.Res. Chem. Intermed.201945219922210.1007/s11164‑018‑3597‑4
    [Google Scholar]
  7. MyrbohB. MecadonH. RohmanM.R. RajbangshiM. KharkongorI. LalooB.M. KharbangarI. KshiarB. Synthetic developments in functionalized pyrano[2,3-c]pyrazoles. A review.Org. Prep. Proced. Int.201345425330310.1080/00304948.2013.798566
    [Google Scholar]
  8. VasukiG. KumaravelK. Rapid four-component reactions in water: Synthesis of pyranopyrazoles.Tetrahedron Lett.200849395636563810.1016/j.tetlet.2008.07.055
    [Google Scholar]
  9. aReddy, M.B.M.; Jayashankara, V.P.; Pasha, M.A. Glycinecatalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth. Commun.,201040192930293410.1080/00397910903340686
    [Google Scholar]
  10. bMecadon, H.; Rohman, M.R.; Rajbangshi, M.; Myrboh, B. ã- Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole- 5-carbonitriles in aqueous medium. Tetrahedron Lett.,201152192523252510.1016/j.tetlet.2011.03.036
    [Google Scholar]
  11. cMecadon, H.; Rohman, M.R.; Kharbangar, I.; Laloo, B.M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. l-Proline as an efficicent catalyst for the multi-component synthesis of 6-amino-4- alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water. Tetrahedron Lett.,201152253228323110.1016/j.tetlet.2011.04.048
    [Google Scholar]
  12. KanagarajK. PitchumaniK. Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-amino-β-cyclodextrin as a remarkable catalyst and host.Tetrahedron Lett.201051253312331610.1016/j.tetlet.2010.04.087
    [Google Scholar]
  13. AminB.N. ParikhA.R. ParikhH. GudaparthiV. One-pot multicomponent synthesis, characterization and antimicrobial activity of some novel pyrano[2,3-c]pyrazoles.J. Pharm. Res.201435154
    [Google Scholar]
  14. MandhaS.R. SiliveriS. AllaM. BommenaV.R. BommineniM.R. BalasubramanianS. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles.Bioorg. Med. Chem. Lett.201222165272527810.1016/j.bmcl.2012.06.055 22818081
    [Google Scholar]
  15. SharmaA. ChowdhuryR. DashS. PallaviB. ShuklaP. Fast microwave assisted synthesis of pyranopyrazole derivatives as new anticancer agents.Curr. Microw. Chem.201531788410.2174/2213335602666150116233238
    [Google Scholar]
  16. ChougalaB.M. SamundeeswariS. HoliyachiM. ShastriL.A. DodamaniS. JalalpureS. DixitS.R. JoshiS.D. SunagarV.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents.Eur. J. Med. Chem.201712510111610.1016/j.ejmech.2016.09.021 27657808
    [Google Scholar]
  17. AbdelrazekF.M. MetzP. MetwallyN.H. MahroukyE.S.F. Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives.Arch. Pharm.2006339845646010.1002/ardp.200600057 16795107
    [Google Scholar]
  18. WangJ.L. LiuD. ZhangZ.J. ShanS. HanX. SrinivasulaS.M. CroceC.M. AlnemriE.S. HuangZ. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells.Proc. Natl. Acad. Sci.200097137124712910.1073/pnas.97.13.7124 10860979
    [Google Scholar]
  19. FoloppeN. FisherL.M. HowesR. PotterA. RobertsonA.G.S. SurgenorA.E. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening.Bioorg. Med. Chem.200614144792480210.1016/j.bmc.2006.03.021 16574416
    [Google Scholar]
  20. KroemerG. PouyssegurJ. Tumor cell metabolism: Cancer’s Achilles’ heel.Cancer Cell200813647248210.1016/j.ccr.2008.05.005 18538731
    [Google Scholar]
  21. BlackadarC.B. Historical review of the causes of cancer.World J. Clin. Oncol.201671548610.5306/wjco.v7.i1.54 26862491
    [Google Scholar]
  22. NassarI.F. RahmanA.A. Hamza; Salem, A.H.; Feky, E. Design, synthesis and biological evaluation of novel pyrano[2,3-c]pyrazoles and their sugar derivatives as antimicrobial, antioxidant and anticancer agents.Egypt. J. Chem.2022651489150510.21608/ejchem.2022.143253.6253
    [Google Scholar]
  23. GorleS. GanguK.K. MaddilaS. JonnalagaddaS.B. Synthesis and anticancer activity of novel pyrazolo[4′,3′:5,6]pyrano[2,3-d] pyrimidin-5(2H)-one derivatives.Chem. Data Coll.20202810047110.1016/j.cdc.2020.100471
    [Google Scholar]
  24. AdibiH. HosseinzadehL. FarhadiS. AhmadiF. Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile derivatives using borax with potential anticancer effects.J. Rep. Pharm. Sci.20132211612410.4103/2322‑1232.222528
    [Google Scholar]
  25. NimbalkarU. SeijasJ. TatoV.M. DamaleM. SangshettiJ. NikaljeA. Ionic liquid-catalyzed green protocol for multi-component synthesis of dihydropyrano[2,3-c]pyrazoles as potential anticancer scaffolds.Molecules20172210162810.3390/molecules22101628 28956863
    [Google Scholar]
  26. EruguY. SangepuB. VarreK. PamanjiR. BommaY. JanapalaV.R. SrinivasaraoV. TigullaP. JettiV.R. Design, an efficient ecofriendly synthesis of spirooxindole derivatives and their anticancer activity supported by molecular docking studies.World J. Pharm. Pharm. Sci.2014318951914
    [Google Scholar]
  27. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  28. FisherJ.F. MerouehS.O. MobasheryS. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity.Chem. Rev.2005105239542410.1021/cr030102i 15700950
    [Google Scholar]
  29. KathrotiyaH. PatelR. PatelM. Microwave-assisted multi-component synthesis of 3′-indolyl substituted pyrano[2,3-c]pyrazoles and their antimicrobial activity.J. Serb. Chem. Soc.201277898399110.2298/JSC110805199K
    [Google Scholar]
  30. EmamiL. ZamaniL. SabetR. ZomorodianK. RezaeiZ. FaghihZ. ShahbaziY. KhabnadidehS. Molecular docking and antimicrobial evaluation of some novel pyrano[2,3-c] pyrazole derivatives.Trends Pharmacol. Sci.20206113120
    [Google Scholar]
  31. AmbethkarS. PadminiV. BhuvaneshN. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method.J. Adv. Res.20156697598510.1016/j.jare.2014.11.011 26644936
    [Google Scholar]
  32. ThumarN.J. PatelM.P. Synthesis and in vitro antimicrobial evaluation of 4H-pyrazolopyran, -benzopyran and naphthopyran derivatives of 1H-pyrazole.ARKIVOC200913363380
    [Google Scholar]
  33. KassemE.M. SawyE.E.R. AllaA.H.I. MandourA.H. MogeedA.D. SaftyE.M.M. Synthesis of certain new fused pyranopyrazole and pyranoimidazole incorporated into 8-hydroxyquinoline through a sulfonyl bridge at position 5 with evaluation of their in-vitro antimicrobial and antiviral activities.Egypt Pharm J.201211116123
    [Google Scholar]
  34. (a RuijterE. ScheffelaarR. OrruR.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity.Angew. Chem. Int. Ed.,201150286234624610.1002/anie.201006515 21710674
    [Google Scholar]
  35. b GanemB. Strategies for innovation in multicomponent reaction design.Acc. Chem. Res.,200942346347210.1021/ar800214s19175315
    [Google Scholar]
  36. c DömlingA. Recent developments in isocyanide based multicomponent reactions in applied chemistry.Chem. Rev.20061061178910.1021/cr0505728 16402771
    [Google Scholar]
  37. (aUgi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. Versuche mit Isonitrilen. Angew. Chem.,19597138610.1002/ange.19590711110
    [Google Scholar]
  38. (bBiginelli, P. Ueber aldehyduramide des acetessiga¨thers. Ber. Dtsch Chem. Ges.1891241317–13192962-296710.1002/cber.189102401228
    [Google Scholar]
  39. a YounusH.A. RashidaA.M. HameedA. UroosM. SalarU. RanaS. KhanK.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat.,202131326728910.1080/13543776.2021.1858797 33275061
    [Google Scholar]
  40. b KenariK.M. AsghariS. MalekiB. MohseniM. Preparation of nanomagnetic alginate modified by histidine as an antibacterial agent and a reusable green catalyst for the three-component synthesis of 2-amino-4H-chromenes and tetrahydropyrimidines. Res. Chem. Intermed.,202450290592410.1007/s11164‑023‑05165‑6
    [Google Scholar]
  41. cAtharifar, H.; Keivanloo, A.; Maleki, B.; Baghayeri, M.; Alinezhad, H. Magnetic nanoparticle supported choline chlorideglucose (deep eutectic solvent) for the one-pot synthesis of 3,4- disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed.,202450128129610.1007/s11164‑023‑05152‑x
    [Google Scholar]
  42. dPeiman, S.; Maleki, B. Fe3O4@SiO2@NTMPThio-Cu: A sustainable and eco-friendly approach for the synthesis of heterocycle derivatives using a novel dendrimer template nanocatalyst. Sci. Rep.,20241411740110.1038/s41598‑024‑68316‑8 39075155
    [Google Scholar]
  43. aKiyani, H.; Samimi, H.A.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett.,2013219720610.5267/j.ccl.2013.07.002
    [Google Scholar]
  44. bKiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4- carbonitriles and 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5- carbonitriles. Res. Chem. Intermed.,20184442761277810.1007/s11164‑018‑3260‑0
    [Google Scholar]
  45. AtarA.B. KimJ.T. LimK.T. JeongY.T. Synthesis of 6-Amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles catalyzed by silica-supported tetramethyl guanidine under solvent-free conditions.Synth. Commun.201444182679269110.1080/00397911.2014.913634
    [Google Scholar]
  46. MalekiB. AshrafiS.S. Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): Preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives.RSC Advances2014481428734289110.1039/C4RA07813F
    [Google Scholar]
  47. PradhanK. PaulS. DasA.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: A facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media.Catal. Sci. Technol.20144382283110.1039/c3cy00901g
    [Google Scholar]
  48. FarahiM. KaramiB. SedighimehrI. TanuraghajH.M. An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid.Chin. Chem. Lett.201425121580158210.1016/j.cclet.2014.07.012
    [Google Scholar]
  49. SahaA. PayraS. BanerjeeS. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst.Green Chem.20151752859286610.1039/C4GC02420F
    [Google Scholar]
  50. BorhadeA.V. UphadeB.K. ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4H-pyrano[2,3-c]pyrazoles.J. Indian Chem. Soc.20151261107111310.1007/s13738‑014‑0571‑y
    [Google Scholar]
  51. MoeinpourF. KhojastehnezhadA. Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an efficient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles.Chin. Chem. Lett.201526557557910.1016/j.cclet.2015.01.033
    [Google Scholar]
  52. SoleimaniE. JafarzadehM. NorouziP. DayouJ. SipautC.S. MansaR.F. SaeiP. Synthesis of pyranopyrazoles using magnetically recyclable heterogeneous iron oxide‐silica core‐shell nanocatalyst.J. Chin. Chem. Soc.201562121155116210.1002/jccs.201400387
    [Google Scholar]
  53. IravaniN. KeshavarzM. KishS.H.A. ParandvarR. Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three-component one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives.Chin. J. Catal.201536462663310.1016/S1872‑2067(14)60284‑9
    [Google Scholar]
  54. Abdollahi-AlibeikM. MoaddeliA. MasoomiK. BF3 bonded nano Fe3O4 (BF3/MNPs): An efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives.RSC Advances2015591749327493910.1039/C5RA11343A
    [Google Scholar]
  55. HeraviM.M. GhobadiN. Nano-magnetite as an eco-friendly and magnetically separable catalyst for a one-pot synthesis of pyrano [2,3-c]pyrazoles and bis(4-hydroxycoumarin-3-yl)methane derivatives.Sci. Iran C.201522911918
    [Google Scholar]
  56. ChaudhariM.A. GujarJ.B. KawadeD.S. JogdandN.R. ShingareM.S. A highly efficient and sustainable synthesis of dihydropyrano[2,3-c]pyrazoles using polystyrene-supported p-toluenesulfonic acid as reusable catalyst.Cogent Chem.2015111063830106383910.1080/23312009.2015.1063830
    [Google Scholar]
  57. AyatiA. HeraviM.M. DaraieM. TanhaeiB. BamoharramF.F. SillanpaaM. H3PMo12O40 immobilized chitosan/Fe3O4 as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives.J. Indian Chem. Soc.201613122301230810.1007/s13738‑016‑0949‑0
    [Google Scholar]
  58. MalekiB. NasiriN. TayebeeR. KhojastehnezhadA. AkhlaghiH.A. Green synthesis of tetrahydrobenzo[b]pyrans, pyrano[2,3-c]pyrazoles and spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles catalyzed by nano-structured diphosphate in water.RSC Advances2016682791287913410.1039/C6RA15800E
    [Google Scholar]
  59. MaddilaS. GorleS. ShabalalaS. OyetadeO. MaddilaS.N. LavanyaP. JonnalagaddaS.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2.Arab. J. Chem.201912567167910.1016/j.arabjc.2016.04.016
    [Google Scholar]
  60. ReddyG.M. GarciaR.J. Synthesis of pyranopyrazoles under eco‐friendly approach by using acid catalysis.J. Heterocycl. Chem.2017541899410.1002/jhet.2544
    [Google Scholar]
  61. DavarpanahJ. KhoramR. Synthesis of pyranopyrazole compounds using heterogeneous base catalyst based on 1,3,5-triazine-2,4,6-triamine modified nano rice husk silica.J. Nanoanalysis.201742030
    [Google Scholar]
  62. GanguK.K. MaddilaS. MaddilaS.N. JonnalagaddaS.B. Novel iron doped calcium oxalates as promising heterogeneous catalysts for one-pot multi-component synthesis of pyranopyrazoles.RSC Advances20177142343210.1039/C6RA25372E
    [Google Scholar]
  63. ZainaliM. AmrollahiM.A. SBA-Pr-NH2 catalyzed preparation of pyrano[2,3-c]pyrazoles under solvent-free conditions.Rev. Roum. Chim.2018633137
    [Google Scholar]
  64. VagheiG.R. MahmoodiJ. ShahriariA. MaghbooliY. Synthesis of pyrano[2,3‐c]pyrazole derivatives using Fe3O4@SiO2 @piperidinium benzene‐1,3‐disulfonate (Fe3O4@SiO2 nanoparticle‐supported IL) as a novel, green and heterogeneous catalyst.Appl. Organomet. Chem.20173112e381610.1002/aoc.3816
    [Google Scholar]
  65. NazariS. KeshavarzM. Amberlite-supported L-prolinate: A novel heterogeneous organocatalyst for the three-component synthesis of 4H-pyrano[2,3-c]pyrazole derivatives.Russ. J. Gen. Chem.201787353954510.1134/S1070363217030252
    [Google Scholar]
  66. MaddilaS.N. MaddilaS. ZylV.W.E. JonnalagaddaS.B. CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles.Res. Chem. Intermed.20174384313432510.1007/s11164‑017‑2878‑7
    [Google Scholar]
  67. GholtashJ.E. FarahiM. Tungstic acid-functionalized Fe3O4@TiO2: Preparation, characterization and its application for the synthesis of pyrano[2,3-c]pyrazole derivatives as a reusable magnetic nanocatalyst.RSC Advances2018871409624096710.1039/C8RA06886K 35557933
    [Google Scholar]
  68. PatelK.G. MisraN.M. VekariyaR.H. ShettigarR.R. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste.Res. Chem. Intermed.201844128930410.1007/s11164‑017‑3104‑3
    [Google Scholar]
  69. SalehiN. MirjaliliB.B.F. Green synthesis of pyrano[2,3-c]pyrazoles and spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using nano-silica supported 1,4-diazabicyclo[2.2.2]octane as a novel catalyst.Org. Prep. Proced. Int.201850657858710.1080/00304948.2018.1537748
    [Google Scholar]
  70. BhaskaruniS.V.H.S. MaddilaS. ZylV.W.E. JonnalagaddaS.B. An efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst.RSC Advances2018829163361634310.1039/C8RA01994K 35542231
    [Google Scholar]
  71. UderjiH.S. AlibeikA.M. KarimiR.R. Fe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: Synthesis, characterization and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles.Iran. J. Catal.20188311323
    [Google Scholar]
  72. HajizadehZ. MalekiA. Poly(ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives.Molecular Catalysis2018460879310.1016/j.mcat.2018.09.018
    [Google Scholar]
  73. ValieyE. DekaminM.G. AlirezvaniZ. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives.Int. J. Biol. Macromol.201912940742110.1016/j.ijbiomac.2019.01.027 30658146
    [Google Scholar]
  74. AliE. JamalN.M.R. GhahramanzadehR. One‐pot multicomponent synthesis of pyrano[2,3-c]pyrazole derivatives using CMCSO3 H as a green catalyst.ChemistrySelect20194319033903910.1002/slct.201901676
    [Google Scholar]
  75. NiyaF.H. HazeriN. MaghsoodlouM.T. Synthesis and characterization of Fe3O4@THAM‐SO3 H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3‐c]pyrazole derivatives.Appl. Organomet. Chem.2020344e547210.1002/aoc.5472
    [Google Scholar]
  76. MishraM. NizamA. JomonK.J. TadaparthiK. A new facile ultrasound-assisted magnetic nano-[CoFe2O4]-catalyzed one-pot synthesis of pyrano[2,3-c]pyrazoles.Russ. J. Org. Chem.201955121925192810.1134/S1070428019120194
    [Google Scholar]
  77. GhasemzadehM.A. EshkevariM.B. BasirA.M.H. Green synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@l-arginine as a robust and reusable catalyst.BMC Chem.201913111912910.1186/s13065‑019‑0636‑1 31624802
    [Google Scholar]
  78. ShahbaziS. GhasemzadehM.A. ShakibP. ZolfaghariM.R. BahmaniM. Synthesis and antimicrobial study of 1,4-dihydropyrano[2,3-c]pyrazole derivatives in the presence of amino-functionalized silica-coated cobalt oxide nanostructures as catalyst.Polyhedron201917017217910.1016/j.poly.2019.04.063
    [Google Scholar]
  79. KaminwarN.S. TekaleS.U. ChidrawarA.B. KótaiL. PawarR.P. Eco-friendly synthesis of 1, 4-dihydropyrano-[2,3-c] pyrazoles using copper nanoparticles grafted on carbon microsphere as a heterogeneous catalyst. Lett. Appl.NanoBioSci.2020941521152810.33263/LIANBS94.15211528
    [Google Scholar]
  80. KaramiS. DekaminM.G. ValieyE. ShakibP. DABA MNPs: A new and efficient magnetic bifunctional nanocatalyst for the green synthesis of biologically active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives.New J. Chem.20204433139521396110.1039/D0NJ02666B
    [Google Scholar]
  81. TaftiD.A. MirjaliliB.B.F. BamoniriA. SalehiN. Rapid four-component synthesis of dihydropyrano[2,3-c]pyrazoles using nano-eggshell/Ti(IV) as a highly compatible natural based catalyst.BMC Chem.2021151610.1186/s13065‑021‑00734‑5 33494797
    [Google Scholar]
  82. SinghH. Urea chelated autocombused synthesis of BiFeO3 nanoparticles: Application as magnetically retriable heterogeneous catalyst for synthesis of pyrano[2,3-c]pyrazoles.Ferroelectrics2021583125142
    [Google Scholar]
  83. ShindeS.K. PatilM.U. DamateS.A. PatilS.S. Synergetic effects of naturally sourced metal oxides in organic synthesis: A greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes.Res. Chem. Intermed.20184431775179510.1007/s11164‑017‑3197‑8
    [Google Scholar]
  84. AliM.A.E.A.A. Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst.Tetrahedron201470182971297510.1016/j.tet.2014.03.024
    [Google Scholar]
  85. YellapurkarI. BhabalS. RamanaM.M.V. JangamK. SalveV. PatangeS. MoreP. Magnesium ferrichromate nanoparticles: An efficient and recyclable catalyst in the synthesis of pyrano[2,3-c]pyrazole derivatives.Res. Chem. Intermed.20214772669268710.1007/s11164‑021‑04435‑5
    [Google Scholar]
  86. AmerM.M.K. AbdellattifM.H. MouneirS.M. ZordokW.A. ShehabW.S. Synthesis, DFT calculation, pharmacological evaluation, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives.Bioorg. Chem.202111410513610.1016/j.bioorg.2021.105136 34328860
    [Google Scholar]
  87. BansodeN.D. RathodV.N. GadekarS.P. LandeM.K. A novel, green and heterogeneous ceria-based solid Lewis acid catalyst assisted one-pot multicomponent synthesis of dihydro-pyrano[2,3-c]pyrazole.Rasayan J. Chem.20211421415142210.31788/RJC.2021.1426069
    [Google Scholar]
  88. AkbarpourT. SeyfJ.Y. KhazaeiA. SarmastiN. Synthesis of pyrano[2,3-c]pyrazole derivatives using a novel ionic-liquid based nano-magnetic catalyst (Fe3O4@SiO2@(CH2)3NH@CC@Imidazole @SO3H+Cl−).Polycycl. Aromat. Compd.2021638443864
    [Google Scholar]
  89. HamrahianS.A. SalehzadehS. RakhtshahJ. BabaeiH.F. KaramiN. Preparation, characterization and catalytic application of molybdenum Schiff‐base complex immobilized on silica‐coated Fe3O4 as a reusable catalyst for the synthesis of pyranopyrazole derivatives.Appl. Organomet. Chem.2019332e472310.1002/aoc.4723
    [Google Scholar]
  90. DeshmukhM.B. PatilS.S. JadhavS.D. PawarP.B. Green approach for knoevenagel condensation of aromatic aldehydes with active methylene group.Synth. Commun.20124281177118310.1080/00397911.2010.537423
    [Google Scholar]
  91. DharmendraD. ChundawatP. VyasY. ChaubisaP. KumawatM. AmetaC. Eco-friendly design of TiO2 nanoparticles supported on Fe3O4 coated carbon-based biochar substrate for the synthesis of pyrano-[2,3-c]-pyrazole derivatives.Sustain. Chem. Pharm.20222810073210074910.1016/j.scp.2022.100732
    [Google Scholar]
  92. NguyenH.T. TruongM.N.H. LeT.V. VoN.T. NguyenH.D. TranP.H. A new pathway for the preparation of pyrano[2,3-c]pyrazoles and molecular docking as inhibitors of p38 MAP kinase.ACS Omega2022720174321744310.1021/acsomega.2c01814 35647469
    [Google Scholar]
  93. GhasemzadehM.A. EshkevariM.B. DadashiJ. IRMOF-3 functionalized GO/CuFe2O4: A new and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles under ultrasound irradiations.J. Mol. Struct.2022126113284310.1016/j.molstruc.2022.132843
    [Google Scholar]
  94. SangleS.L. TopeD.R. BorhadeA.V. GhumareS.S. Efficient synthesis of pyranopyrazole derivatives using silica grafted copper stannate catalyst.Int. J. Adv. Sci. Res.2022133843
    [Google Scholar]
  95. GhorbaniS. HabibiD. HeydariS. A phenylazophenylenediamine-based La-complex as a superb nanocatalyst for the synthesis of diverse pyrano[2,3-c]pyrazoles.J. Mol. Struct.2022126013271313272610.1016/j.molstruc.2022.132713
    [Google Scholar]
  96. LadoleC.A. NahateN.R. WajidA. Multicomponent synthesis of pyranopyrazoles using lanthanum ferrite as efficient and reusable heterogeneous catalyst.Ejpmr.202310234242
    [Google Scholar]
  97. MallahD. MirjaliliB.B.F. A green protocol ball milling synthesis of dihydropyrano[2,3-c]pyrazole using nano-silica/aminoethylpiperazine as a metal-free catalyst.BMC Chem.2023171102110.1186/s13065‑023‑00934‑1 36870991
    [Google Scholar]
  98. GantaR.K. KerruN. MaddilaS. JonnalagaddaS.B. Advances in pyranopyrazole scaffolds’ syntheses using sustainable catalysts.Molecules20212611327010.3390/molecules26113270 34071629
    [Google Scholar]
  99. ThakareN.V. AswarA.S. SalunkheN.G. Magnetically recoverable nanocatalyst for the synthesis of pyranopyrazoles: CoFe2O4@SiO2-HClO4.Eur. J. Chem.202314338539210.5155/eurjchem.14.3.385‑392.2457
    [Google Scholar]
  100. SubrahmanyamC.V. RaoB.S. MuralidharP. RaoL.V. GumbiB. MaddilaS. Green synthesis of novel pyrano[2,3-c]pyrazole-5-carbonitrile analogues by using Fe5(PW10V2O40)3 nanocatalyst through a one-pot Knoevenagel condensation and Michael addition mechanism.Inorg. Chem. Commun.202415911190610.1016/j.inoche.2023.111906
    [Google Scholar]
  101. GaikwadS.B. PuriK. MnFe2O4 nanoparticle as a new and magnetically separable nanocatalyst for solvent-free synthesis of dihydropyrano [2,3-c]pyrazole derivatives.Int. J. Sci. Res. Sci. Technol.20241131832610.32628/IJSRST173876
    [Google Scholar]
  102. ChhattiseP. SalehS. PanditV. ArbujS. ChabukswarV. ZnO nanostructures: A heterogeneous catalyst for the synthesis of benzoxanthene and pyranopyrazole scaffolds via a multi-component reaction strategy.Mater. Adv.2020172339234510.1039/D0MA00403K
    [Google Scholar]
  103. RatherR.A. SiddiquiZ.N. Synthesis, characterization and application of Nd-Salen schiff base complex immobilized mesoporous silica in solvent free synthesis of pyranopyrazoles.J. Organomet. Chem.201886816417410.1016/j.jorganchem.2018.05.008
    [Google Scholar]
  104. SoleimaniM. AkbarpourT. KhazaeiA. Fabrication of copper(II)-coated magnetic core-shell nanoparticles an engineered nano-magnetic catalyst for the synthesis of pyrano pyrazole and pyrazole derivatives.Polycycl. Aromat. Compd.20244419011610.1080/10406638.2023.2169472
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461353365241217064250
Loading
/content/journals/cgc/10.2174/0122133461353365241217064250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test