Skip to content
2000
image of Neuroprotective Effects of Silymarin and Silibinin: A Review of Mechanisms in Common Neurodegenerative Diseases, Cerebral Ischemia, and Diabetic Neuropathy

Abstract

Introduction

Neurodegeneration is the gradual and progressive dissipation of neurons in specific parts of the human brain and is a prominent pathological trait of different neurodegenerative-related diseases. Flavonoid-enriched extracts, e.g., silibinin, should be prioritized as recent therapeutic practices to avert neurodegenerative diseases due to their possible advantageous impacts on human well-being. Silibinin, the main component of Silybum marianum, has various pharmacological activities such as antioxidant, anti-inflammatory, anticancer, and protective effects on the cardiovascular and central nervous systems.

Methods

Herein, we reviewed the effects of silymarin and its main derivative (silibinin), along with the involved mechanisms, on some common types of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and diabetes.

Results and Discussion

The findings of this review indicated that the neuroprotective effects of silymarin and its main derivative (silibinin) are labelported by most studies, particularly during the above-mentioned common neurodegenerative diseases. The compound’s efficacy varies by disease, with labelerior blood-brain barrier penetration in formulated versions. Unlike single-target flavonoids (e.g., quercetin), silibinin concurrently addresses amyloid pathology, neuroinflammation, and mitochondrial stabilization.

Conclusion

Silibinin’s multi-mechanistic profile labelports its therapeutic potential, though clinical translation requires optimized formulations and rigorous trials. Future research should prioritize human pharmacokinetics and combination therapies.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855408834251016070214
2025-11-04
2025-12-14
Loading full text...

Full text loading...

References

  1. Amor S. Puentes F. Baker D. Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010 129 2 154 169 10.1111/j.1365‑2567.2009.03225.x 20561356
    [Google Scholar]
  2. Jellinger K.A. Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 2001 5 1 1 17 10.1111/j.1582‑4934.2001.tb00134.x 12067447
    [Google Scholar]
  3. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002 96 2-3 67 202 10.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  4. Spencer J.P.E. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr. 2007 2 3 257 273 10.1007/s12263‑007‑0056‑z 18850181
    [Google Scholar]
  5. Solanki I. Parihar P. Mansuri M.L. Parihar M.S. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv. Nutr. 2015 6 1 64 72 10.3945/an.114.007500 25593144
    [Google Scholar]
  6. Testa R. Bonfigli A. Genovese S. De Nigris V. Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016 8 5 310 10.3390/nu8050310 27213445
    [Google Scholar]
  7. Oh Y. Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients 2016 8 8 472 10.3390/nu8080472 27483315
    [Google Scholar]
  8. Morazzoni P. Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia 1995 66 3 42
    [Google Scholar]
  9. ٹimلnek V, Kren V, Ulrichovل J, Vicar J, Cvak L. Silymarin: What is in the name …? An appeal for a change of editorial policy. Hepatology 2000 32 2 442 444 10.1053/jhep.2000.9770 10960282
    [Google Scholar]
  10. Dilpesh Jain D.J. Rahul Somani R.S. Silibinin, a bioactive flavanone in milk thistle, ameliorate gentamicin induced nephrotoxicity in rats. Pharmacologia 2015 38 44
    [Google Scholar]
  11. Jain D. Somani R.S. Silibinin, a bioactive flavanone, prevents the progression of early diabetic nephropathy in experimental type-2 diabetic rats. Inter J Green Phar 2015 9 2 118 124 10.4103/0973‑8258.155060
    [Google Scholar]
  12. La Grange L. Wang M. Watkins R. Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J. Ethnopharmacol. 1999 65 1 53 61 10.1016/S0378‑8741(98)00144‑5 10350368
    [Google Scholar]
  13. Wang M.J. Lin W.W. Chen H.L. Silymarin protects dopaminergic neurons against lipopolysaccharide‐induced neurotoxicity by inhibiting microglia activation. Eur. J. Neurosci. 2002 16 11 2103 2112 10.1046/j.1460‑9568.2002.02290.x 12473078
    [Google Scholar]
  14. Tie F. Fu Y. Hu N. Wang H. Silibinin protects against H2O2-induced oxidative damage in SH-SY5Y cells by improving mitochondrial function. Antioxidants 2022 11 6 1101 10.3390/antiox11061101 35739997
    [Google Scholar]
  15. Wang C. Wang Z. Zhang X. Protection by silibinin against experimental ischemic stroke: Up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neurosci. Lett. 2012 529 1 45 50 10.1016/j.neulet.2012.08.078 22999929
    [Google Scholar]
  16. Yaghmaei P. Parivar K. Masoudi A. Darab M. Amini E. The effect of silybin on passive avoidance learning and pathological changes in hippocampal CA1 and DG regions in male Wistar rats offspring. J. Asian Nat. Prod. Res. 2009 11 6 514 522 10.1080/10286020902927864 20183284
    [Google Scholar]
  17. Di Cesare Mannelli L. Zanardelli M. Failli P. Ghelardini C. Oxaliplatin-induced neuropathy: Oxidative stress as pathological mechanism. Protective effect of silibinin. J. Pain 2012 13 3 276 284 10.1016/j.jpain.2011.11.009 22325298
    [Google Scholar]
  18. Yin F. Liu J. Ji X. Wang Y. Zidichouski J. Zhang J. Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int. 2011 58 3 399 403 10.1016/j.neuint.2010.12.017 21185897
    [Google Scholar]
  19. Baluchnejadmojarad T. Roghani M. Mafakheri M. Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: Involvement of estrogen receptors and oxidative stress. Neurosci. Lett. 2010 480 3 206 210 10.1016/j.neulet.2010.06.038 20600617
    [Google Scholar]
  20. Neha Kumar A. Jaggi A.S. Sodhi R.K. Singh N. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia. Naunyn Schmiedebergs Arch. Pharmacol. 2014 387 8 777 787 10.1007/s00210‑014‑0990‑4 24866499
    [Google Scholar]
  21. Raza S.S. Khan M.M. Ashafaq M. Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia: A behavioral, biochemical and immunohistological study in Wistar rats. J. Neurol. Sci. 2011 309 1-2 45 54 10.1016/j.jns.2011.07.035 21840019
    [Google Scholar]
  22. Yaghmaei P. Azarfar K. Dezfulian M. Ebrahim-Habibi A. Silymarin effect on amyloid-β plaque accumulation and gene expression of APP in an Alzheimer’s disease rat model. Daru 2014 22 1 24 10.1186/2008‑2231‑22‑24 24460990
    [Google Scholar]
  23. Jung U.J. Jeon M.T. Choi M.S. Kim S.R. Silibinin attenuates MPP + - induced neurotoxicity in the substantia nigra in vivo. J. Med. Food 2014 17 5 599 605 10.1089/jmf.2013.2926 24660866
    [Google Scholar]
  24. Lee Y. Park H.R. Chun H.J. Lee J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res. 2015 93 5 755 765 10.1002/jnr.23544 25677261
    [Google Scholar]
  25. Terry R.D. Davies P. Dementia of the Alzheimer type. Annu. Rev. Neurosci. 1980 3 1 77 95 10.1146/annurev.ne.03.030180.000453 6251745
    [Google Scholar]
  26. Duan S. Guan X. Lin R. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer’s disease. Neurobiol. Aging 2015 36 5 1792 1807 10.1016/j.neurobiolaging.2015.02.002 25771396
    [Google Scholar]
  27. Jangra A. Kasbe P. Pandey S.N. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: Modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol. Trace Elem. Res. 2015 168 2 462 471 10.1007/s12011‑015‑0375‑7 26018497
    [Google Scholar]
  28. Navabi S.M. Elieh-Ali-Komi D. Afshari D. Adjunctive silymarin labelplementation and its effects on disease severity, oxidative stress, and inflammation in patients with Alzheimer’s disease. Nutr. Neurosci. 2024 27 10 1077 1087 10.1080/1028415X.2023.2301163 38353101
    [Google Scholar]
  29. Jin G. Bai D. Yin S. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice. Neurosci. Lett. 2016 629 256 261 10.1016/j.neulet.2016.06.008 27276653
    [Google Scholar]
  30. Pizza V. Agresta A. D’Acunto C.W. Festa M. Capasso A. Neuroinflamm-aging and neurodegenerative diseases: An overview. CNS Neurol. Disord. Drug Targets 2011 10 5 621 634 10.2174/187152711796235014
    [Google Scholar]
  31. Eikelenboom P. van Exel E. Hoozemans J.J.M. Veerhuis R. Rozemuller A.J.M. van Gool W.A. Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener. Dis. 2010 7 1-3 38 41 10.1159/000283480 20160456
    [Google Scholar]
  32. Tota S. Kamat P.K. Shukla R. Nath C. Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav. Brain Res. 2011 221 1 207 215 10.1016/j.bbr.2011.02.041 21382422
    [Google Scholar]
  33. Rezai-Zadeh K. Shytle D. Sun N. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 2005 25 38 8807 8814 10.1523/JNEUROSCI.1521‑05.2005 16177050
    [Google Scholar]
  34. Wei P. Li X. Wang S. Silibinin ameliorates formaldehyde‐induced cognitive impairment by inhibiting oxidative stress. Oxid. Med. Cell. Longev. 2022 2022 1 5981353 10.1155/2022/5981353 35757504
    [Google Scholar]
  35. Lu P. Mamiya T. Lu L. Silibinin attenuates cognitive deficits and decreases of dopamine and serotonin induced by repeated methamphetamine treatment. Behav. Brain Res. 2010 207 2 387 393 10.1016/j.bbr.2009.10.024 19857526
    [Google Scholar]
  36. Lu P. Mamiya T. Lu L.L. Silibinin prevents amyloid β peptide‐induced memory impairment and oxidative stress in mice. Br. J. Pharmacol. 2009 157 7 1270 1277 10.1111/j.1476‑5381.2009.00295.x 19552690
    [Google Scholar]
  37. Murata N. Murakami K. Ozawa Y. Silymarin attenuated the amyloid β plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Biosci. Biotechnol. Biochem. 2010 74 11 2299 2306 10.1271/bbb.100524 21071836
    [Google Scholar]
  38. Alihosseini T. Azizi M. Abbasi N. Mohammadpour S. Bagheri M. Amelioration of amyloid beta (Aβ1-40) neurotoxicity by administration of silibinin; a behavioral and biochemical assessment. Iran. J. Basic Med. Sci. 2023 26 7 791 798 37396937
    [Google Scholar]
  39. Wang Q. Zou L. Liu W. Inhibiting NF-κB activation and ROS production are involved in the mechanism of silibinin’s protection against D-galactose-induced senescence. Pharmacol. Biochem. Behav. 2011 98 1 140 149 10.1016/j.pbb.2010.12.006 21167197
    [Google Scholar]
  40. Yan W.J. Tan Y.C. Xu J.C. Protective effects of silibinin and its possible mechanism of action in mice exposed to chronic unpredictable mild stress. Biomol. Ther. 2015 23 3 245 250 10.4062/biomolther.2014.138 25995823
    [Google Scholar]
  41. Lee Y. Chun H.J. Lee K.M. Jung Y.S. Lee J. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson׳s disease by modulating the ERK and JNK signaling pathways. Brain Res. 2015 1627 233 242 10.1016/j.brainres.2015.09.029 26434409
    [Google Scholar]
  42. García E Arturo Garcí-De-La-Rosa L Fernanda Veloz-Castillo M Ángel Méndez-Rojas M Chavarría A. Arturo Garcيa-De-La-Rosa L, Fernanda Veloz-Castillo M, ءngel Méndez-Rojas M, Chavarrيa A. Preservation of dopamine levels in a mouse model of parkinson’s disease by carboxymethylated silica and starch nanoparticles coupled to silybin. ChemistrySelect 2023 8 3 202204332 10.1002/slct.202204332
    [Google Scholar]
  43. Chen H. Wang X. Wang M. Behavioral and neurochemical deficits in aging rats with increased neonatal iron intake: Silibinin’s neuroprotection by maintaining redox balance. Front. Aging Neurosci. 2015 7 206 10.3389/fnagi.2015.00206 26578951
    [Google Scholar]
  44. Geed M. Garabadu D. Ahmad A. Krishnamurthy S. Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol. Biochem. Behav. 2014 117 92 103 10.1016/j.pbb.2013.12.008 24345573
    [Google Scholar]
  45. Eyvari Brooshghalan S. Sabahi M. Ebadi S.A. Sadeghian Z. Mohajjel Nayebi A. Haddadi R. Silibinin chronic treatment in a rat model of Parkinson disease: A comprehensive in-vivo evaluation and in silico molecular modeling. Eur. J. Pharmacol. 2023 941 175517 10.1016/j.ejphar.2023.175517 36669615
    [Google Scholar]
  46. Pérez-H J. Carrillo-S C. Garcيa E, Ruiz-Mar G, Pérez-Tamayo R, Chavarrيa A. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology 2014 319 38 43 10.1016/j.tox.2014.02.009 24607817
    [Google Scholar]
  47. Thayumanavan G. Jeyabalan S. Fuloria S. Silibinin and Naringenin against Bisphenol A-Induced neurotoxicity in zebrafish model—Potential flavonoid molecules for new drug design, development, and therapy for neurological disorders. Molecules 2022 27 8 2572 10.3390/molecules27082572 35458770
    [Google Scholar]
  48. Song X. Zhou B. Zhang P. Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS–BDNF–TrkB pathway. Neurochem. Res. 2016 41 7 1662 1672 10.1007/s11064‑016‑1881‑5 26961891
    [Google Scholar]
  49. Klijn C.J.M. Hankey G.J. Management of acute ischaemic stroke: New guidelines from the american stroke association and european stroke initiative. Lancet Neurol. 2003 2 11 698 701 10.1016/S1474‑4422(03)00558‑1 14572738
    [Google Scholar]
  50. van der Worp H.B. van Gijn J. Clinical practice. Acute ischemic stroke. N. Engl. J. Med. 2007 357 6 572 579 10.1056/NEJMcp072057 17687132
    [Google Scholar]
  51. Zemke D. Smith J.L. Reeves M.J. Majid A. Ischemia and ischemic tolerance in the brain: An overview. Neurotoxicology 2004 25 6 895 904 10.1016/j.neuro.2004.03.009 15474608
    [Google Scholar]
  52. Kuroda S. Siesjِ BK. Reperfusion damage following focal ischemia: Pathophysiology and therapeutic windows. Clin. Neurosci. 1997 4 4 199 212 9186042
    [Google Scholar]
  53. Bondy S.C. The relation of oxidative stress and hyperexcitation to neurological disease. Exp. Biol. Med. (Maywood) 1995 208 4 337 345 10.3181/00379727‑208‑43862 7700883
    [Google Scholar]
  54. Lipton P. Ischemic cell death in brain neurons. Physiol. Rev. 1999 79 4 1431 1568 10.1152/physrev.1999.79.4.1431 10508238
    [Google Scholar]
  55. Herpich F. Rincon F. Management of acute ischemic stroke. Crit. Care Med. 2020 48 11 1654 1663 10.1097/CCM.0000000000004597 32947473
    [Google Scholar]
  56. Feske S.K. Ischemic stroke. Am. J. Med. 2021 134 12 1457 1464 10.1016/j.amjmed.2021.07.027 34454905
    [Google Scholar]
  57. Li W. Zhang Z. Li J. Silibinin exerts neuroprotective effects against cerebral hypoxia/reoxygenation injury by activating the GAS6/Axl pathway. Toxicology 2023 495 153598 10.1016/j.tox.2023.153598 37544575
    [Google Scholar]
  58. Lo E.H. Dalkara T. Moskowitz M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 2003 4 5 399 414 10.1038/nrn1106 12728267
    [Google Scholar]
  59. Madrigal J. Caso J. Hurtado O. Brain Oxidative markers in stress: Possible new drug targets against neuroinflammation. Curr. Neuropharmacol. 2004 2 2 183 189 10.2174/1570159043476846
    [Google Scholar]
  60. Shen Y.C. Wang Y.H. Chou Y.C. Dimemorfan protects rats against ischemic stroke through activation of sigma‐1 receptor‐mediated mechanisms by decreasing glutamate accumulation. J. Neurochem. 2008 104 2 558 572 10.1111/j.1471‑4159.2007.05058.x 18173806
    [Google Scholar]
  61. Chan P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 2001 21 1 2 14 10.1097/00004647‑200101000‑00002 11149664
    [Google Scholar]
  62. Rui Y.C. Zhang D.Z. Sun D.X. Zeng G.Q. [Effects of silybin on production of oxygen free radical, lipoperoxide and leukotrienes in brain following ischemia and reperfusion] Chung Kuo Yao Li Hsueh Pao 1990 11 5 418 421 2130596
    [Google Scholar]
  63. Hou Y.C. Liou K.T. Chern C.M. Preventive effect of silymarin in cerebral ischemia–reperfusion-induced brain injury in rats possibly through impairing NF-κB and STAT-1 activation. Phytomedicine 2010 17 12 963 973 10.1016/j.phymed.2010.03.012 20833521
    [Google Scholar]
  64. Sugimoto K. Iadecola C. Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res. 2003 960 1-2 273 276 10.1016/S0006‑8993(02)03805‑2 12505683
    [Google Scholar]
  65. Wang Y.H. Wang W.Y. Liao J.F. Prevention of macrophage adhesion molecule-1 (Mac-1)-dependent neutrophil firm adhesion by taxifolin through impairment of protein kinase-dependent NADPH oxidase activation and antagonism of G protein-mediated calcium influx. Biochem. Pharmacol. 2004 67 12 2251 2262 10.1016/j.bcp.2004.02.020 15163556
    [Google Scholar]
  66. Wang Y.H. Wang W.Y. Chang C.C. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J. Biomed. Sci. 2006 13 1 127 141 10.1007/s11373‑005‑9031‑0 16283433
    [Google Scholar]
  67. Yu J. Li J. Zhang S. IGF-1 induces hypoxia-inducible factor 1α-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells. Brain Res. 2012 1430 18 24 10.1016/j.brainres.2011.10.046 22104347
    [Google Scholar]
  68. Wang M. Li Y.J. Ding Y. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol. Neurobiol. 2016 53 2 932 943 10.1007/s12035‑014‑9062‑5 25561437
    [Google Scholar]
  69. Marrazzo G. Bosco P. La Delia F. Neuroprotective effect of silibinin in diabetic mice. Neurosci. Lett. 2011 504 3 252 256 10.1016/j.neulet.2011.09.041 21970972
    [Google Scholar]
  70. Xie Z. Ding S. Shen Y. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem. Biophys. Res. Commun. 2014 454 2 313 319 10.1016/j.bbrc.2014.10.080 25450395
    [Google Scholar]
  71. Liu B.N. Han B.X. Liu F. Neuroprotective effect of pAkt and HIF-1 α on ischemia rats. Asian Pac. J. Trop. Med. 2014 7 3 221 225 10.1016/S1995‑7645(14)60025‑0 24507644
    [Google Scholar]
  72. Shivani C. Lubhan S. Kedarinath T. Vipul K. Neuroprotective effect of Silibinin against middle cerebral artery occlusion induced focal cerebral ischemia and brain injury in Wistar rats. J Neurosci Behav Health 2017 9 1 10 15 10.5897/JNBH2014.0120
    [Google Scholar]
  73. Russell N.D.F. Cooper M.E. 50 years forward: Mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia 2015 58 8 1708 1714 10.1007/s00125‑015‑3600‑1 25906755
    [Google Scholar]
  74. Dobretsov M. Romanovsky D. Stimers J.R. Early diabetic neuropathy: Triggers and mechanisms. World J. Gastroenterol. 2007 13 2 175 191 10.3748/wjg.v13.i2.175 17226897
    [Google Scholar]
  75. Callaghan B.C. Cheng H.T. Stables C.L. Smith A.L. Feldman E.L. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012 11 6 521 534 10.1016/S1474‑4422(12)70065‑0 22608666
    [Google Scholar]
  76. Tesfaye S. Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab. Res. Rev. 2012 28 S1 8 14 10.1002/dmrr.2239 22271716
    [Google Scholar]
  77. Somani R.S. Shaikh A.S. Animal models and biomarkers of neuropathy in diabetic rodents. Indian J. Pharmacol. 2010 42 3 129 134 10.4103/0253‑7613.66833 20871761
    [Google Scholar]
  78. Ziegler D. Sohr C.G.H. Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care 2004 27 9 2178 2183 10.2337/diacare.27.9.2178 15333481
    [Google Scholar]
  79. Sheetz M.J. King G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002 288 20 2579 2588 10.1001/jama.288.20.2579 12444865
    [Google Scholar]
  80. MacDonald-Ramos K. Monroy A. Bobadilla-Bravo M. Cerbَn M. Silymarin reduced insulin resistance in non-diabetic women with obesity. Int. J. Mol. Sci. 2024 25 4 2050 10.3390/ijms25042050 38396727
    [Google Scholar]
  81. Vincent A.M. Russell J.W. Low P. Feldman E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev. 2004 25 4 612 628 10.1210/er.2003‑0019 15294884
    [Google Scholar]
  82. Dagli Gul A.S. Boyuk Ozcan G. Arihan O. Silibinin as a promising treatment for diabetes: Insights into behavioral and metabolic changes in an animal model. Food Sci. Nutr. 2024 12 5 3336 3345 10.1002/fsn3.3999 38726421
    [Google Scholar]
  83. Schmidt A.M. Hofmann M. Taguchi A. Yan S.D. Stern D.M. RAGE: A multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation. Semin. Thromb. Hemost. 2000 26 5 485 493 10.1055/s‑2000‑13204
    [Google Scholar]
  84. Yue D.K. Hanwell M.A. Satchell P.M. Turtle J.R. The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 1982 31 9 789 794 10.2337/diab.31.9.789 6819173
    [Google Scholar]
  85. Cameron N.E. Leonard M.B. Ross I.S. Whiting P.H. The effects of Sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 1986 29 3 168 174 10.1007/BF02427088 3084324
    [Google Scholar]
  86. Goto Y. Hotta N. Shigeta Y. Sakamoto N. Kikkawa R. Effects of an aldose reductase inhibitor, epalrestat, on diabetic neuropathy. Clinical benefit and indication for the drug assessed from the results of a placebo-controlled double-blind study. Biomed. Pharmacother. 1995 49 6 269 277 10.1016/0753‑3322(96)82642‑4 7579007
    [Google Scholar]
  87. Tao Z.S. Wang H.S. Li T.L. Wei S. Silibinin-modified Hydroxyapatite coating promotes the osseointegration of titanium rods by activation SIRT1/SOD2 signaling pathway in diabetic rats. J. Mater. Sci. Mater. Med. 2022 33 9 62 10.1007/s10856‑022‑06684‑1 36057883
    [Google Scholar]
  88. Padilla A. Descorbeth M. Almeyda A.L. Payne K. De Leon M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res. 2011 1370 64 79 10.1016/j.brainres.2010.11.013 21108938
    [Google Scholar]
  89. Vincent A.M. Hayes J.M. McLean L.L. Vivekanandan-Giri A. Pennathur S. Feldman E.L. Dyslipidemia-induced neuropathy in mice: The role of oxLDL/LOX-1. Diabetes 2009 58 10 2376 2385 10.2337/db09‑0047 19592619
    [Google Scholar]
  90. Vincent A.M. Perrone L. Sullivan K.A. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007 148 2 548 558 10.1210/en.2006‑0073 17095586
    [Google Scholar]
  91. Corrao G. Zambon A. Bertù L. Botteri E. Leoni O. Contiero P. Lipid lowering drugs prescription and the risk of peripheral neuropathy: An exploratory case-control study using automated databases. J. Epidemiol. Community Health 2004 58 12 1047 1051 10.1136/jech.2003.013409 15547071
    [Google Scholar]
  92. Toth C. Brussee V. Martinez J.A. McDonald D. Cunningham F.A. Zochodne D.W. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. Neuroscience 2006 139 2 429 449 10.1016/j.neuroscience.2005.11.065 16529870
    [Google Scholar]
  93. Sima A.A. Zhang W. Grunberger G. Type 1 diabetic neuropathy and C-peptide. Exp. Diabesity Res. 2004 5 1 65 77 15198372
    [Google Scholar]
  94. Pittenger G. Vinik A. Nerve growth factor and diabetic neuropathy. Exp. Diabesity Res. 2003 4 4 271 285 14668049
    [Google Scholar]
  95. Campbell C.M. Kipnes M.S. Stouch B.C. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy. Pain 2012 153 9 1815 1823 10.1016/j.pain.2012.04.014 22683276
    [Google Scholar]
  96. Said G. Diabetic neuropathy—a review. Nat. Clin. Pract. Neurol. 2007 3 6 331 340 10.1038/ncpneuro0504 17549059
    [Google Scholar]
  97. Bahadoran Z. Mirmiran P. Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013 12 1 43 10.1186/2251‑6581‑12‑43 23938049
    [Google Scholar]
  98. Johnston K. Sharp P. Clifford M. Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco‐2 cells. FEBS Lett. 2005 579 7 1653 1657 10.1016/j.febslet.2004.12.099 15757656
    [Google Scholar]
  99. Ding Y. Dai X. Jiang Y. Zhang Z. Li Y. Functional and morphological effects of grape seed proanthocyanidins on peripheral neuropathy in rats with type 2 diabetes mellitus. Phytother. Res. 2014 28 7 1082 1087 10.1002/ptr.5104 24343984
    [Google Scholar]
  100. Ding Y. Dai X. Zhang Z. Proanthocyanidins protect against early diabetic peripheral neuropathy by modulating endoplasmic reticulum stress. J. Nutr. Biochem. 2014 25 7 765 772 10.1016/j.jnutbio.2014.03.007 24791737
    [Google Scholar]
  101. Visnagri A. Kandhare A.D. Chakravarty S. Ghosh P. Bodhankar S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol. 2014 52 7 814 828 10.3109/13880209.2013.870584 24559476
    [Google Scholar]
  102. Zhang J. Mao X. Zhou Y. [Effects of silybin on red blood cell sorbitol and nerve conduction velocity in diabetic patients] Zhongguo Zhong Xi Yi Jie He Za Zhi 1993 13 12 725 726 8136645
    [Google Scholar]
  103. Lirussi F. Beccarello A. Zanette G. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr. Metab. 2002 15 4 222 231 12416659
    [Google Scholar]
  104. Jain D Somani R Gilhotra R Silibinin ameliorates hyperglycaemia, hyperlipidemia and prevent oxidative stress in streptozotocin induced diabetes in Sprague Dawley rats. Inter J Pharm Res All Sci 2016 5 3
    [Google Scholar]
  105. Velussi M. Cernigoi A.M. Ariella D.M. Dapas F. Caffau C. Zilli M. Long-term (23 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. J. Hepatol. 1997 26 4 871 879 10.1016/S0168‑8278(97)80255‑3 9126802
    [Google Scholar]
  106. Huseini H.F. Larijani B. Heshmat R. The efficacy ofSilybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2006 20 12 1036 1039 10.1002/ptr.1988 17072885
    [Google Scholar]
  107. Guigas B. Naboulsi R. Villanueva G.R. The flavonoid silibinin decreases glucose-6-phosphate hydrolysis in perfused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase. Cell. Physiol. Biochem. 2007 20 6 925 934 10.1159/000110453 17982275
    [Google Scholar]
  108. Alhusban A. Alkhazaleh E. El-Elimat T. Silymarin ameliorates diabetes-induced proangiogenic response in brain endothelial cells through a GSK-3 β inhibition-induced reduction of VEGF release. J. Diabetes Res. 2017 2017 1 1 9 10.1155/2017/2537216 29209632
    [Google Scholar]
  109. Lu P. Mamiya T. Lu L. Xanthoceraside attenuates amyloid β peptide25–35-induced learning and memory impairments in mice. Psychopharmacology 2012 219 1 181 190 10.1007/s00213‑011‑2386‑1 21735075
    [Google Scholar]
  110. Lu P. Mamiya T. Lu L.L. Silibinin attenuates amyloid β(25-35) peptide-induced memory impairments: Implication of inducible nitric-oxide synthase and tumor necrosis factor-α in mice. J. Pharmacol. Exp. Ther. 2009 331 1 319 326 10.1124/jpet.109.155069 19638571
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855408834251016070214
Loading
/content/journals/cdth/10.2174/0115748855408834251016070214
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Silybum marianum ; neurodegenerative diseases ; diabetes ; Ischemia ; Alzheimer's ; Parkinson's
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test