Skip to content
2000
image of A Promising Approach to Target Cancer for Anticancer Drug Delivery via Engineered Cubosomal Nanocarriers

Abstract

Carcinoma is a worldwide concern of well-being that leads health concern leading to mortality and disability. Although current treatment procedures offer some efficacy, they are not devoid of constraints and potential adverse reactions. Over the past few years, tremendous progress has emerged in newer strategies like immunotherapy and novel drug delivery systems, such as designing formulations utilizing non-lamellar liquid-crystalline nanoparticles, known as lyotropic systems. Among them, cubosomes are one of the distinct categories of nanocarriers, formed by utilising utilizing precise proportions of amphiphilic lipids. Cubosomes are known for their ability to be compatible with living organisms and their flexibility in transporting drugs, allowing for the administration of pharmaceuticals through many pathways. Several preclinical investigations have been reported to explore the future of cubosomes in cancer therapy and theranostic applications. The findings suggest that nanotechnology and cancer therapies like immunotherapy have significant potential for tailored and efficient treatment approaches. Cubosomes can offer a promising contribution to the discipline of cancer research and the goal of enhancing therapeutic innovations. However, extensive research is required to confirm the safety, drug release mechanism, and stability of these nanocarriers. This review covers a brief overview of cancer therapy including immunotherapy, advantages of targeted drug delivery, general aspects on of cubosomes, types of cubosomes, structural components, and preparation methods, followed by the mechanism of release, and discoveries on cubosomes as drug delivery for various cancers covering breast, colorectal, lung, liver, cervical, skin, etc. along with the future perspectives of other novel therapies like immunology in cancer.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855402570250726155551
2025-08-22
2025-11-01
Loading full text...

Full text loading...

References

  1. Zeb A. Rana I. Choi H.I. Lee C.H. Baek S.W. Lim C.W. Khan N. Arif S.T. Sahar N. Alvi A.M. Shah F.A. Din F. Bae O.N. Park J.S. Kim J.K. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 2020 12 12 1184 10.3390/pharmaceutics12121184 33291312
    [Google Scholar]
  2. Majumder J. Taratula O. Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019 144 57 77 10.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  3. Barriga H.M.G. Holme M.N. Stevens M.M. Cubosomes: The next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 2019 58 10 2958 2978 10.1002/anie.201804067 29926520
    [Google Scholar]
  4. García-Pinel B. Porras-Alcalá C. Ortega-Rodríguez A. Sarabia F. Prados J. Melguizo C. López-Romero J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials 2019 9 4 638 10.3390/nano9040638 31010180
    [Google Scholar]
  5. Ozpolat B. Sood A.K. Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv. Drug Deliv. Rev. 2014 66 110 116 10.1016/j.addr.2013.12.008 24384374
    [Google Scholar]
  6. Cao W. Gu Y. Meineck M. Xu H. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem. Asian J. 2014 9 1 48 57 10.1002/asia.201301294 24347066
    [Google Scholar]
  7. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  8. Zafar A. Khatoon S. Khan M.J. Abu J. Naeem A. Advancements and limitations in traditional anti-cancer therapies: A comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy. Discov. Oncol. 2025 16 1 607 10.1007/s12672‑025‑02198‑8 40272602
    [Google Scholar]
  9. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  10. Hong L. Li W. Li Y. Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Advances 2023 13 31 21365 21382 10.1039/D3RA02969G 37465582
    [Google Scholar]
  11. Gowda B.H.J. Ahmed M.G. Alshehri S.A. Wahab S. Vora L.K. Singh Thakur R.R. Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res. 2023 237 Pt 1 116894 10.1016/j.envres.2023.116894 37586450
    [Google Scholar]
  12. Zhao Q. Jiang Y. Xiang S. Kaboli P.J. Shen J. Zhao Y. Wu X. Du F. Li M. Cho C.H. Li J. Wen Q. Liu T. Yi T. Xiao Z. Engineered TCR-T cell immunotherapy in anticancer precision medicine: Pros and Cons. Front. Immunol. 2021 12 658753 10.3389/fimmu.2021.658753 33859650
    [Google Scholar]
  13. Xiang S. Li J. Shen J. Zhao Y. Wu X. Li M. Yang X. Kaboli P.J. Du F. Zheng Y. Wen Q. Cho C.H. Yi T. Xiao Z. Identification of prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Front. Immunol. 2021 12 653836 10.3389/fimmu.2021.653836 33897701
    [Google Scholar]
  14. Wang F. Zheng A. Zhang D. Zou T. Xiao M. Chen J. Wen B. Wen Q. Wu X. Li M. Du F. Chen Y. Zhao Y. Shen J. Xiang S. Li J. Deng S. Zhang Z. Yi T. Xiao Z. Molecular profiling of core immune-escape genes highlights LCK as an immune-related prognostic biomarker in melanoma. Front. Immunol. 2022 13 1024931 10.3389/fimmu.2022.1024931 36341345
    [Google Scholar]
  15. Jin J. Wu X. Yin J. Li M. Shen J. Li J. Zhao Y. Zhao Q. Wu J. Wen Q. Cho C.H. Yi T. Xiao Z. Qu L. Identification of genetic mutations in cancer: Challenge and opportunity in the new era of targeted therapy. Front. Oncol. 2019 9 263 10.3389/fonc.2019.00263 31058077
    [Google Scholar]
  16. Yang Q. Chen Y. Guo R. Dai Y. Tang L. Zhao Y. Wu X. Li M. Du F. Shen J. Yi T. Xiao Z. Wen Q. Interaction of ncRNA and epigenetic modifications in gastric cancer: Focus on histone modification. Front. Oncol. 2022 11 822745 10.3389/fonc.2021.822745 35155211
    [Google Scholar]
  17. Zheng G. Zhang B. Yu H. Song Z. Xu X. Zheng Z. Zhao K. Zhao J. Zhao Y. Therapeutic applications and potential biological barriers of nano-delivery systems in common gastrointestinal disorders: A comprehensive review. Adv. Compos. Hybrid Mater. 2025 8 2 227 10.1007/s42114‑025‑01292‑3
    [Google Scholar]
  18. Abourehab M.A.S. Ansari M.J. Singh A. Hassan A. Abdelgawad M.A. Shrivastav P. Abualsoud B.M. Amaral L.S. Pramanik S. Cubosomes as an emerging platform for drug delivery: A review of the state of the art. J. Mater. Chem. B Mater. Biol. Med. 2022 10 15 2781 2819 10.1039/D2TB00031H 35315858
    [Google Scholar]
  19. Sivadasan D. Sultan M.H. Alqahtani S.S. Javed S. Cubosomes in drug delivery: A comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines 2023 11 4 1114 10.3390/biomedicines11041114 37189732
    [Google Scholar]
  20. Kumar A. Singhal K. Kaushik N. Cubosomes: Versatile nanosized formulation for efficient delivery of therapeutics. Curr. Drug Deliv. 2022 19 6 644 657 10.2174/1567201818666210708123855 34238187
    [Google Scholar]
  21. A Vahab S. Nair A. Raj D. G P A. P P S. S Kumar V. Cubosomes as versatile lipid nanocarriers for neurological disorder therapeutics: A comprehensive review. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 6 3729 3746 10.1007/s00210‑023‑02879‑7 38095651
    [Google Scholar]
  22. Chang C. Meikle T.G. Drummond C.J. Yang Y. Conn C.E. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter 2021 17 12 3306 3313 10.1039/D0SM01655A 33623948
    [Google Scholar]
  23. Varghese R. Salvi S. Sood P. Kulkarni B. Kumar D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun. 2022 46 100561 10.1016/j.colcom.2021.100561
    [Google Scholar]
  24. Wakaskar R.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J. Drug Target. 2018 26 4 311 318 10.1080/1061186X.2017.1367006 28797169
    [Google Scholar]
  25. Sadhu V. R. Beram N. S. Kantamneni P. Review on cubosome: The novel drug delivery system. GSC Biol. and Pharm. Sci. 2018 5 1 076 10.30574/gscbps.2018.5.1.0089
    [Google Scholar]
  26. Palma A.S. Casadei B.R. Lotierzo M.C. de Castro R.D. Barbosa L.R.S. A short review on the applicability and use of cubosomes as nanocarriers. Biophys. Rev. 2023 15 4 553 567 10.1007/s12551‑023‑01089‑y 37681099
    [Google Scholar]
  27. Garg G. Saraf S. Saraf S. Cubosomes: An overview. Biol. Pharm. Bull. 2007 30 2 350 353 10.1248/bpb.30.350 17268078
    [Google Scholar]
  28. Mathews P.D. Mertins O. Angelov B. Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J. Colloid Interface Sci. 2022 607 Pt 1 440 450 10.1016/j.jcis.2021.08.187 34509118
    [Google Scholar]
  29. Zhang L. Li J. Tian D. Sun L. Wang X. Tian M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis. 2020 11 1 1 10.1038/s41419‑019‑2182‑0 31911576
    [Google Scholar]
  30. Wörle G. Siekmann B. Koch M.H.J. Bunjes H. Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur. J. Pharm. Sci. 2006 27 1 44 53 10.1016/j.ejps.2005.08.004 16157479
    [Google Scholar]
  31. Singh A. Rana V. QbD assisted development of inhalable spray-dried erlotinib procubosomal system for the effective management of non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2023 90 105096 10.1016/j.jddst.2023.105096
    [Google Scholar]
  32. Gaballa S.A. El Garhy O.H. Moharram H. Abdelkader H. Preparation and evaluation of cubosomes/cubosomal gels for ocular delivery of beclomethasone dipropionate for management of uveitis. Pharm. Res. 2020 37 10 198 10.1007/s11095‑020‑02857‑1 32968868
    [Google Scholar]
  33. Kaasgaard T. Drummond C.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys. 2006 8 43 4957 4975 10.1039/b609510k 17091149
    [Google Scholar]
  34. Gagliardi A. Cosco D. Udongo B.P. Dini L. Viglietto G. Paolino D. Design and characterization of glyceryl monooleate-nanostructures containing doxorubicin hydrochloride. Pharmaceutics 2020 12 11 1017 10.3390/pharmaceutics12111017 33114287
    [Google Scholar]
  35. Zhang Q. Wang C. Yu L. You J. Wei G. Zhang J. Structural and transport properties of hydrophilic and hydrophobic modified ionomers in proton exchange membrane fuel cells. Polymers 2024 16 5 668 10.3390/polym16050668 38475350
    [Google Scholar]
  36. Chountoulesi M. Pispas S. Tseti I.K. Demetzos C. Lyotropic liquid crystalline nanostructures as drug delivery systems and vaccine platforms. Pharmaceuticals 2022 15 4 429 10.3390/ph15040429 35455426
    [Google Scholar]
  37. Hädicke A. Blume A. Interactions of Pluronic block copolymers with lipid monolayers studied by epi-fluorescence microscopy and by adsorption experiments. J. Colloid Interface Sci. 2013 407 327 338 10.1016/j.jcis.2013.06.041 23859816
    [Google Scholar]
  38. Zhai J. Luwor R.B. Ahmed N. Escalona R. Tan F.H. Fong C. Ratcliffe J. Scoble J.A. Drummond C.J. Tran N. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl. Mater. Interfaces 2018 10 30 25174 25185 10.1021/acsami.8b08125 29963859
    [Google Scholar]
  39. Nath A.G. Dubey P. Kumar A. Vaiphei K.K. Rosenholm J.M. Bansal K.K. Gulbake A. Recent advances in the use of cubosomes as drug carriers with special emphasis on topical applications. J. Lipids 2024 2024 1 2683466 10.1155/2024/2683466 39022452
    [Google Scholar]
  40. Li Y. Angelova A. Hu F. Garamus V.M. Peng C. Li N. Liu J. Liu D. Zou A. pH responsiveness of hexosomes and cubosomes for combined delivery of Brucea javanica oil and Doxorubicin. Langmuir 2019 35 45 14532 14542 10.1021/acs.langmuir.9b02257 31635451
    [Google Scholar]
  41. Oliveira C. Ferreira C.J.O. Sousa M. Paris J.L. Gaspar R. Silva B.F.B. Teixeira J.A. Ferreira-Santos P. Botelho C.M. A versatile nanocarrier—cubosomes, characterization, and applications. Nanomaterials 2022 12 13 2224 10.3390/nano12132224 35808060
    [Google Scholar]
  42. Janakiraman K. Krishnaswami V. Sethuraman V. Rajendran V. Kandasamy R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci. 2019 9 8 1781 1796 10.1007/s13204‑019‑00976‑9
    [Google Scholar]
  43. Attri N. Das S. Banerjee J. Shamsuddin S.H. Dash S.K. Pramanik A. Liposomes to cubosomes: The evolution of lipidic nanocarriers and their cutting-edge biomedical applications. ACS Appl. Bio Mater. 2024 7 5 2677 2694 10.1021/acsabm.4c00153 38613498
    [Google Scholar]
  44. Karami Z. Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today 2016 21 5 789 801 10.1016/j.drudis.2016.01.004 26780385
    [Google Scholar]
  45. Gupta V. An overview on cubosomes as remarkable nanocarrier for drug delivery. Malays. J. Pharm. Sci. 2023 21 2 47 85 10.21315/mjps2023.21.2.4
    [Google Scholar]
  46. Flak D.K. Adamski V. Nowaczyk G. Szutkowski K. Synowitz M. Jurga S. Held-Feindt J. AT101-Loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine 2020 15 7415 7431 10.2147/IJN.S265061 33116479
    [Google Scholar]
  47. Lancelot A. Sierra T. Serrano J.L. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin. Drug Deliv. 2014 11 4 547 564 10.1517/17425247.2014.884556 24490701
    [Google Scholar]
  48. Sartori B. Marmiroli B. Tailoring Lipid-based drug delivery nanosystems by synchrotron small angle X-ray Scattering. Pharmaceutics 2022 14 12 2704 10.3390/pharmaceutics14122704 36559196
    [Google Scholar]
  49. Kim H. Sung J. Chang Y. Alfeche A. Leal C. Microfluidics synthesis of gene silencing cubosomes. ACS Nano 2018 12 9 9196 9205 10.1021/acsnano.8b03770 30081623
    [Google Scholar]
  50. Barriga H.M.G. Pence I.J. Holme M.N. Doutch J.J. Penders J. Nele V. Thomas M.R. Carroni M. Stevens M.M. Coupling lipid nanoparticle structure and automated single‐particle composition analysis to design phospholipase‐responsive nanocarriers. Adv. Mater. 2022 34 26 2200839 10.1002/adma.202200839 35358374
    [Google Scholar]
  51. Caselli L. Conti L. De Santis I. Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv. Colloid Interface Sci. 2024 327 103156 10.1016/j.cis.2024.103156 38643519
    [Google Scholar]
  52. Patil S.M. Sawant S.S. Kunda N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm. 2021 607 121046 10.1016/j.ijpharm.2021.121046 34450225
    [Google Scholar]
  53. Cytryniak A. Nazaruk E. Bilewicz R. Górzyńska E. Żelechowska-Matysiak K. Walczak R. Mames A. Bilewicz A. Majkowska-Pilip A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials 2020 10 11 2272 10.3390/nano10112272 33207760
    [Google Scholar]
  54. Hallan S.S. Sguizzato M. Esposito E. Cortesi R. Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics 2021 13 4 549 10.3390/pharmaceutics13040549 33919859
    [Google Scholar]
  55. Fan C. Gao W. Chen Z. Fan H. Li M. Deng F. Chen Z. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm. 2011 404 1-2 180 190 10.1016/j.ijpharm.2010.10.038 21087660
    [Google Scholar]
  56. Salomão M.J.A. Praça F.G. Peh H.Y. Foloni A.R. da Silva D.A. de Carvalho B.M. Bentley M.V.L.B. Medina W.S.G. Preparation and Physicochemical characterization of glyceryl monoolein bearing cubosomes to improve vitamin E delivery into the Skin: A proposal for skin cancer prevention. Drug Deliv. Lett. 2018 8 3 234 241 10.2174/2210303108666180629150348
    [Google Scholar]
  57. Bazylińska U. Kulbacka J. Schmidt J. Talmon Y. Murgia S. Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. J. Colloid Interface Sci. 2018 522 163 173 10.1016/j.jcis.2018.03.063 29601958
    [Google Scholar]
  58. Zahiri M. Kamali H. Abnous K. Mohammad Taghdisi S. Nekooei S. Nekooei N. Ramezani M. Alibolandi M. Synthesis of folate targeted theranostic cubosomal platform for co-delivery of bismuth oxide and doxorubicin to melanoma in vitro and in vivo. Eur. J. Pharm. Biopharm. 2024 198 114259 10.1016/j.ejpb.2024.114259 38479563
    [Google Scholar]
  59. Mabrouk A.A. El-Mezayen N.S. Tadros M.I. El-Gazayerly O.N. El-Refaie W.M. Novel mucoadhesive celecoxib-loaded cubosomal sponges: Anticancer potential and regulation of myeloid-derived suppressor cells in oral squamous cell carcinoma. Eur. J. Pharm. Biopharm. 2023 182 62 80 10.1016/j.ejpb.2022.12.003 36513316
    [Google Scholar]
  60. Eldeeb A.E. Salah S. Ghorab M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J. Drug Deliv. Sci. Technol. 2019 52 236 247 10.1016/j.jddst.2019.04.036
    [Google Scholar]
  61. Sethuraman V. Janakiraman K. Krishnaswami V. Natesan S. Kandasamy R. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem. Phys. Lipids 2019 224 104763 10.1016/j.chemphyslip.2019.03.016 30951710
    [Google Scholar]
  62. Umar H. Wahab H.A. Ahmed N. Fujimura N.A. Amjad M.W. Bukhari S.N.A. Ahmad W. Development, optimization and characterization of cisplatin loaded cubosomes for human lung carcinoma. Drug Dev. Ind. Pharm. 2024 ••• 1 14 10.1080/03639045.2024.2326043 38451066
    [Google Scholar]
  63. El-Shenawy A.A. Elsayed M.M.A. Atwa G.M.K. Abourehab M.A.S. Mohamed M.S. Ghoneim M.M. Mahmoud R.A. Sabry S.A. Anwar W. El-Sherbiny M. Hassan Y.A. Belal A. Ramadan A.E. Anti-tumor activity of orally administered gefitinib-loaded nanosized cubosomes against colon cancer. Pharmaceutics 2023 15 2 680 10.3390/pharmaceutics15020680 36840004
    [Google Scholar]
  64. Almoshari Y. Iqbal H. Razzaq A. Ali Ahmad K. Khan M.K. Saeed Alqahtani S. Sultan M.H. Ali Khan B. Development of nanocubosomes co-loaded with dual anticancer agents curcumin and temozolomide for effective colon cancer therapy. Drug Deliv. 2022 29 1 2633 2643 10.1080/10717544.2022.2108938 35942514
    [Google Scholar]
  65. Raj A. Thomas S. Development and Characterization of 5-Fluorouracil Cubosomal Nanosponge Tablet for Colon Targeting. Research and Reviews. J. Pharm. Sci. 2019 10 2 9 18
    [Google Scholar]
  66. Pramanik A. Xu Z. Shamsuddin S.H. Khaled Y.S. Ingram N. Maisey T. Tomlinson D. Coletta P.L. Jayne D. Hughes T.A. Tyler A.I.I. Millner P.A. Affimer tagged Cubosomes: Targeting of carcinoembryonic antigen expressing colorectal cancer cells using in vitro and in vivo models. ACS Appl. Mater. Interfaces 2022 14 9 11078 11091 10.1021/acsami.1c21655 35196008
    [Google Scholar]
  67. Nasr M. Ghorab M.K. Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B 2015 5 1 79 88 10.1016/j.apsb.2014.12.001 26579429
    [Google Scholar]
  68. Xu Y. Guo Y. Lu C. Yu L. Fang C. Li C. <i>Polygonatum sibiricum</i> polysaccharide inhibited liver cancer in a simulated tumor microenvironment by eliminating TLR4/STAT3 pathway. Biol. Pharm. Bull. 2023 46 9 1249 1259 10.1248/bpb.b23‑00198 37661404
    [Google Scholar]
  69. Badiger P. Mannur V.S. Koli R. Dual drug-loaded cubosome nanoparticles for hepatocellular carcinoma: A design of experiment approach for optimization and in vitro evaluation. Future J. Pharm. Sci. 2024 10 1 38 10.1186/s43094‑024‑00607‑3
    [Google Scholar]
  70. Nisha R. Kumar P. Kumar U. Mishra N. Maurya P. Singh P. Tabassum H. Alka Singh S. Guleria A. Saraf S.A. Assessment of hyaluronic acid-modified imatinib mesylate cubosomes through CD44 targeted drug delivery in NDEA-induced hepatic carcinoma. Int. J. Pharm. 2022 622 121848 10.1016/j.ijpharm.2022.121848 35613653
    [Google Scholar]
  71. Fahmy U.A. Fahmy O. Alhakamy N.A. Optimized icariin cubosomes exhibit augmented cytotoxicity against SKOV-3 ovarian cancer cells. Pharmaceutics 2020 13 1 20 10.3390/pharmaceutics13010020 33374293
    [Google Scholar]
  72. Sharma N. Upadhyay S. Gupta P.C. Cervical Cancer: Basic Information and Comprehensive Control. In: Women’s Health: A Comprehensive Guide to Common Health Issues in Women. Bentham Science Publishers 2024 10.2174/9789815256291124010009
    [Google Scholar]
  73. Victorelli F.D. Salvati Manni L. Biffi S. Bortot B. Buzzá H.H. Lutz-Bueno V. Handschin S. Calixto G. Murgia S. Chorilli M. Mezzenga R. Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J. Colloid Interface Sci. 2022 620 419 430 10.1016/j.jcis.2022.04.031 35439693
    [Google Scholar]
  74. R David S. Akmar Binti Anwar N. Yian K.R. Mai C-W. Das S.K. Rajabalaya R. Development and evaluation of curcumin liquid crystal systems for cervical cancer. Sci. Pharm. 2020 88 1 15 10.3390/scipharm88010015
    [Google Scholar]
  75. Gajda E. Godlewska M. Mariak Z. Nazaruk E. Gawel D. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells. Int. J. Mol. Sci. 2020 21 14 5039 10.3390/ijms21145039 32708846
    [Google Scholar]
  76. Li X.J. You Y. Zhang Q.L. Zhang B.B. Yan L. Ou Z.M. Zhang Y. Wang Y.J. Tong Y. Liu D.W. Wang J.Y. [Preparation of paclitaxel-loaded and folic acid-modified poly (lactic-co-glycolic acid) nano-micelles and in vitro anticancer effect on cervical cancer HeLa cells]. Zhongguo Zhongyao Zazhi 2021 46 10 2481 2488 10.19540/j.cnki.cjcmm.20210302.303 34047094
    [Google Scholar]
  77. Lin T. Wei Q. Zhang H. Yang Y. Jiang B. Wang Z. Li S. Wang Q. Hu M. Chen W. Wang L. Ding B. Novel dual targeting cubosomes modified with angiopep-2 for co-delivery GNA and PLHSpT to brain glioma. J. Biomater. Appl. 2024 38 6 743 757 10.1177/08853282231217753 38000075
    [Google Scholar]
  78. Pandey P. Kumar Arya D. Kumar Ramar M. Chidambaram K. Rajinikanth P.S. Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov. Today 2022 27 9 2526 2540 10.1016/j.drudis.2022.06.007 35753642
    [Google Scholar]
  79. Akhila G. Nagashree AG N. Spandana KM A. Kumar S H. Harshith HS H. Vardh R V. Shailesh T S. An overview of a biomarker in breast cancer. Int. J. Pharm. Investig. 2023 13 4 721 734 10.5530/ijpi.13.4.090
    [Google Scholar]
  80. Zaki R.M. El Sayeh Abou El Ela A. Almurshedi A.S. Aldosari B.N. Aldossari A.A. Ibrahim M.A. Fabrication and assessment of orodispersible tablets loaded with cubosomes for the improved anticancer activity of simvastatin against the MDA-MB-231 breast cancer cell line. Polymers 2023 15 7 1774 10.3390/polym15071774 37050387
    [Google Scholar]
  81. Trickler W.J. Nagvekar A.A. Dash A.K. A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 2008 9 2 486 493 10.1208/s12249‑008‑9063‑7 18431660
    [Google Scholar]
  82. Gong X. Moghaddam M.J. Sagnella S.M. Conn C.E. Mulet X. Danon S.J. Waddington L.J. Drummond C.J. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine: A chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue. Soft Matter 2011 7 12 5764 10.1039/c1sm05330b
    [Google Scholar]
  83. Mehanna M.M. Sarieddine R. Alwattar J.K. Chouaib R. Gali-Muhtasib H. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization. Int. J. Nanomedicine 2020 15 9557 9570 10.2147/IJN.S263797 33293807
    [Google Scholar]
  84. Rarokar N.R. Khedekar P.B. Formulation and evaluation of docetaxel trihydrate loaded self-assembled nanocarriers for treatment of her2 positive breast cancer. J. Drug Deliv. Ther. 2017 7 6 10.22270/jddt.v7i6.1530
    [Google Scholar]
  85. Zewail M. E Gaafar P.M. Ali M.M. Abbas H. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv. 2022 29 1 1663 1674 10.1080/10717544.2022.2079770 35616281
    [Google Scholar]
  86. Kumbhar P. Khade V. Khadake V. Marale P. Manjappa A. Nadaf S. Kumbar V. Bhagwat D. Disouza J. Ifosfamide-Loaded Cubosomes: An approach to potentiate cytotoxicity against MDA-MB-231 Breast Cancer Cells. Fabad J. Pharm. Sci. 2022 48 37 52 10.55262/fabadeczacilik.1145208
    [Google Scholar]
  87. Gupta T. Kenjale P. Pokharkar V. QbD-based optimization of raloxifene-loaded cubosomal formulation for transdemal delivery: Ex vivo permeability and in vivo pharmacokinetic studies. Drug Deliv. Transl. Res. 2022 12 12 2979 2992 10.1007/s13346‑022‑01162‑1 35462597
    [Google Scholar]
  88. Swarnakar N.K. Thanki K. Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: Implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm. Res. 2014 31 5 1219 1238 10.1007/s11095‑013‑1244‑8 24218223
    [Google Scholar]
  89. El-Laithy H.M. Badawi A. Abdelmalak N.S. El-Sayyad N. Cubosomes as oral drug delivery systems: A promising approach for enhancing the release of clopidogrel bisulphate in the intestine. Chem. Pharm. Bull. (Tokyo) 2018 66 12 1165 1173 10.1248/cpb.c18‑00615 30232306
    [Google Scholar]
  90. Mohsen A.M. Younis M.M. Salama A. Darwish A.B. Cubosomes as a potential oral drug delivery system for enhancing the hepatoprotective effect of coenzyme q10. J. Pharm. Sci. 2021 110 7 2677 2686 10.1016/j.xphs.2021.02.007 33600809
    [Google Scholar]
  91. Peng X. Zhou Y. Han K. Qin L. Dian L. Li G. Pan X. Wu C. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des. Devel. Ther. 2015 9 4209 4218 10.2147/DDDT.S86370 26345516
    [Google Scholar]
  92. Morsi N.M. Abdelbary G.A. Ahmed M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm. 2014 86 2 178 189 10.1016/j.ejpb.2013.04.018 23688805
    [Google Scholar]
  93. Kurangi B. Jalalpure S. Jagwani S. Formulation and evaluation of resveratrol loaded cubosomal nanoformulation for topical delivery. Curr. Drug Deliv. 2021 18 5 607 619 10.2174/1567201817666200902150646 32881670
    [Google Scholar]
  94. Huang J. Peng T. Li Y. Zhan Z. Zeng Y. Huang Y. Pan X. Wu C.Y. Wu C. Ocular cubosome drug delivery system for timolol maleate: Preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 2017 18 8 2919 2926 10.1208/s12249‑017‑0763‑8 28429294
    [Google Scholar]
  95. Lian R. Lu Y. Qi J. Tan Y. Niu M. Guan P. Hu F. Wu W. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: Physical characterization and enhanced oral bioavailability. AAPS PharmSciTech 2011 12 4 1234 1240 10.1208/s12249‑011‑9666‑2 21948306
    [Google Scholar]
  96. von Halling Laier C. Gibson B. van de Weert M. Boyd B.J. Rades T. Boisen A. Hook S. Nielsen L.H. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int. J. Pharm. 2018 550 1-2 35 44 10.1016/j.ijpharm.2018.08.036 30134183
    [Google Scholar]
  97. Bessone C.D.V. Akhlaghi S.P. Tártara L.I. Quinteros D.A. Loh W. Allemandi D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci. 2021 160 105748 10.1016/j.ejps.2021.105748 33567324
    [Google Scholar]
  98. Sherif S. Bendas E.R. Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur. J. Pharm. Biopharm. 2014 86 2 251 259 10.1016/j.ejpb.2013.09.008 24056055
    [Google Scholar]
  99. Verma P. Ahuja M. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug Deliv. 2016 23 8 3043 3054 10.3109/10717544.2016.1143057 26878398
    [Google Scholar]
  100. Elakkad Y.E. Younis M.K. Allam R.M. Mohsen A.F. Khalil I.A. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int. J. Pharm. 2021 601 120483 10.1016/j.ijpharm.2021.120483 33737098
    [Google Scholar]
  101. Yaghmur A. Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B 2021 11 4 871 885 10.1016/j.apsb.2021.02.013 33996404
    [Google Scholar]
  102. Garg M. Goyal A. Kumari S. An update on the recent advances in cubosome: A novel drug delivery system. Curr. Drug Metab. 2021 22 6 441 450 10.2174/1389200221666210105121532 33402079
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855402570250726155551
Loading
/content/journals/cdth/10.2174/0115748855402570250726155551
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; nanocarriers ; Glycerol monooleate ; cubic phase ; cubosomes ; nanocubosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test