Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Currently, studies on various natural products that aid in wound healing have seen significant growth. Betulin and its derivative, betulinic acid, are triterpenes abundant in the leaves and barks of certain species, such as birch, which has been of particular interest. Clinical and preclinical studies have demonstrated their ability to accelerate wound healing, as well as other properties such as antimicrobial, anti-inflammatory action, and anti-cancer properties, and beneficial effects on HIV, diabetes mellitus, and cardiovascular disorders. However, further research focusing exclusively on betulin and betulinic acid is needed to better understand its therapeutic potential and develop new medications for effective management. These advancements could greatly enhance the treatment of wounds, skin lesions and other diseases, offering more effective and safer therapeutic options to improve the quality of life of the population.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855311705240530073557
2024-06-13
2025-09-23
Loading full text...

Full text loading...

References

  1. EbelingS. NaumannK. PollokS. WardeckiT. Vidal-y-SyS. NascimentoJ.M. From a traditional medicinal plant to a rational drug: Understanding the clinically proven wound healing efficacy of birch bark extract.PLoS ONE201491e86147
    [Google Scholar]
  2. RiekstinaU. VitolinaS. GolubaK. Effect of betulin colloidal particles on proliferation and cytokine secretion of human skin fibroblasts.Plants20231217308810.3390/plants12173088 37687335
    [Google Scholar]
  3. JägerS. LaszczykM. SchefflerA. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex).Molecules200813123224323510.3390/molecules13123224 19104487
    [Google Scholar]
  4. HolonecL. RangaF. CrainicD. TrutaA. SocaciuC. Evaluation of Betulin and Betulinic Acid Content in Birch Bark from Different Forestry Areas of Western Carpathians.Not. Bot. Horti Agrobot. Cluj-Napoca20124029910.15835/nbha4027967
    [Google Scholar]
  5. HordyjewskaA. OstapiukA. HoreckaA. KurzepaJ. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential.Phytochem. Rev.201918392995110.1007/s11101‑019‑09623‑1
    [Google Scholar]
  6. SzlasaW. ŚlusarczykS. Nawrot-HadzikI. Betulin and Its Derivatives Reduce Inflammation and COX-2 Activity in Macrophages.Inflammation202346257358310.1007/s10753‑022‑01756‑4 36282372
    [Google Scholar]
  7. Pârvănescu PanăR.D. WatzC.G. MoacăE.A. Oleogel Formulations for the Topical Delivery of Betulin and Lupeol in Skin Injuries-Preparation, Physicochemical Characterization, and Pharmaco-Toxicological Evaluation.Molecules20212614417410.3390/molecules26144174 34299450
    [Google Scholar]
  8. TakibayevaA.T. ZhumabayevaG.K. BakibaevA.A. Methods of Analysis and Identification of Betulin and Its Derivatives.Molecules20232816594610.3390/molecules28165946 37630198
    [Google Scholar]
  9. AdepojuF.O. DuruK.C. LiE. KovalevaE.G. TsurkanM.V. Pharmacological Potential of Betulin as a Multitarget Compound.Biomolecules2023137110510.3390/biom13071105 37509141
    [Google Scholar]
  10. DragM. SurowiakP. Drag-ZalesinskaM. DietelM. LageH. OleksyszynJ. Comparision of the cytotoxic effects of birch bark extract, betulin and betulinic acid towards human gastric carcinoma and pancreatic carcinoma drug-sensitive and drug-resistant cell lines.Molecules20091441639165110.3390/molecules14041639 19396022
    [Google Scholar]
  11. KuznetsovaS.A. SkvortsovaG.P. MaliarI.N. SkurydinaE.S. VeselovaO.F. Extraction of betulin from birch bark and study of its physico-chemical and pharmacological properties.Russ. J. Bioorganic Chem.201440774274710.1134/S1068162014070073
    [Google Scholar]
  12. DeheleanC.A. ŞoicaC. LedeţiI. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation.Chem. Cent. J.20126113710.1186/1752‑153X‑6‑137 23158079
    [Google Scholar]
  13. ChenL. DengH. CuiH. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  14. KhanM.J. SarafS. SarafS. Anti-inflammatory and associated analgesic activities of HPLC standardized alcoholic extract of known ayurvedic plant Schleichera oleosa.J. Ethnopharmacol.201719725726510.1016/j.jep.2016.08.021 27544002
    [Google Scholar]
  15. LaavolaM. HaavikkoR. HämäläinenM. Betulin derivatives effectively suppress inflammation in vitro and in vivo.J. Nat. Prod.201679227428010.1021/acs.jnatprod.5b00709 26915998
    [Google Scholar]
  16. KhwazaV. MlalaS. OyedejiO.O. AderibigbeB.A. Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery.Molecules2021269240110.3390/molecules26092401 33918996
    [Google Scholar]
  17. ZehraB. AhmedA. SarwarR. Apoptotic and antimetastatic activities of betulin isolated from Quercus incana against non-small cell lung cancer cells.Cancer Manag. Res.2019111667168310.2147/CMAR.S186956 30863176
    [Google Scholar]
  18. AmiriS. DastghaibS. AhmadiM. Betulin and its derivatives as novel compounds with different pharmacological effects.Biotechnol. Adv.20203810740910.1016/j.biotechadv.2019.06.008 31220568
    [Google Scholar]
  19. BarretJ.P. PodmelleF. LipovýB. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program.Burns20174361284129410.1016/j.burns.2017.03.005 28400148
    [Google Scholar]
  20. FrewQ. RennekampffH.O. DziewulskiP. MoiemenN. ZahnT. HartmannB. Betulin wound gel accelerated healing of superficial partial thickness burns: Results of a randomized, intra‐individually controlled, phase III trial with 12‐months follow‐up.Burns201945487689010.1016/j.burns.2018.10.019 30559054
    [Google Scholar]
  21. Schwieger-BrielA. KiritsiD. SchemppC. HasC. SchumannH. Betulin-Based Oleogel to Improve Wound Healing in Dystrophic Epidermolysis Bullosa: A Prospective Controlled Proof-of-Concept Study.Dermatol. Res. Pract.2017201711010.1155/2017/5068969 28611842
    [Google Scholar]
  22. Häsler GunnarsdottirS. SommerauerL. SchnabelT. OostinghG.J. SchusterA. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications.Antibiotics202312113010.3390/antibiotics12010130 36671331
    [Google Scholar]
  23. SchefflerA. The Wound Healing Properties of Betulin from Birch Bark from Bench to Bedside.Planta Med.201985752452710.1055/a‑0850‑0224 30856673
    [Google Scholar]
  24. OuyangT. YinH. YangJ. LiuY. MaS. Tissue regeneration effect of betulin via inhibition of ROS/MAPKs/NF-ĸB axis using zebrafish model.Biomed. Pharmacother.202215311342010.1016/j.biopha.2022.113420 36076542
    [Google Scholar]
  25. KindlerS. SchusterM. SeebauerC. Triterpenes for Well-Balanced Scar Formation in Superficial Wounds.Molecules2016219112910.3390/molecules21091129 27618886
    [Google Scholar]
  26. MetelmannH.R. BrandnerJ.M. SchumannH. Accelerated reepithelialization by triterpenes: Proof of concept in the healing of surgical skin lesions.Skin Pharmacol. Physiol.201528111110.1159/000357501 25034442
    [Google Scholar]
  27. JonnalagaddaS.C. SumanP. MorganD.C. SeayJ.N. Recent developments on the synthesis and applications of betulin and betulinic acid derivatives as therapeutic agents.Studies in Natural Products Chemistry.Elsevier20174584
    [Google Scholar]
  28. RíosJ. MáñezS. New Pharmacological Opportunities for Betulinic Acid.Planta Med.201884181910.1055/s‑0043‑123472 29202513
    [Google Scholar]
  29. LouH. LiH. ZhangS. LuH. ChenQ. A Review on Preparation of Betulinic Acid and Its Biological Activities.Molecules20212618558310.3390/molecules26185583 34577056
    [Google Scholar]
  30. KaurP. AroraS. SinghR. Isolation, characterization and biological activities of betulin from Acacia nilotica bark.Sci. Rep.2022121937010.1038/s41598‑022‑13338‑3 35672366
    [Google Scholar]
  31. Filsuvez | European Medicines Agency.Available From: https://www.ema.europa.eu/en/medicines/human/EPAR/filsuvez (Accessed on 22 April, 2024).
  32. CunhaA.B. BatistaR. CastroM.Á. DavidJ.M. Chemical strategies towards the synthesis of betulinic acid and its more potent antiprotozoal analogues.Molecules2021264108110.3390/molecules26041081 33670791
    [Google Scholar]
  33. MelnikovaN. BurlovaI. KiselevaT. A practical synthesis of betulonic acid using selective oxidation of betulin on aluminium solid support.Molecules20121710118491186310.3390/molecules171011849 23085649
    [Google Scholar]
  34. DemetsO.V. TakibayevaA.T. KassenovR.Z. AliyevaM.R. Methods of Betulin Extraction from Birch Bark.Molecules20222711362110.3390/molecules27113621 35684557
    [Google Scholar]
  35. ŠimanP. FilipováA. TicháA. NiangM. BezroukA. HavelekR. Effective method of purification of betulin from birch bark: The importance of its purity for scientific and medicinal use.PLoS One2016115e0154933
    [Google Scholar]
  36. BoryczkaS. BębenekE. WietrzykJ. Synthesis, structure and cytotoxic activity of new acetylenic derivatives of betulin.Molecules20131844526454310.3390/molecules18044526 23595090
    [Google Scholar]
  37. Kovač-BešovićE.E. DurićK. KalođeraZ. SofićE. Identification and isolation of pharmacologically active triterpenes in Betuale cortex, Betula pendula Roth., Betulaceae.Bosn. J. Basic Med. Sci.200991313810.17305/bjbms.2009.2853 19284392
    [Google Scholar]
  38. BenetL.Z. HoseyC.M. UrsuO. OpreaT.I. BDDCS, the Rule of 5 and drugability.Adv. Drug Deliv. Rev.2016101899810.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  39. National Library of MedicinePubchem. 2024. Betulin.2024Available From: https://pubchem.ncbi.nlm.nih.gov/compound/72326
    [Google Scholar]
  40. National Library of MedicineBetulinic Acid.2024Available From: https://pubchem.ncbi.nlm.nih.gov/compound/64971
    [Google Scholar]
  41. MitchellS. VargasJ. HoffmannA. Signaling via the NFκB system.Wiley Interdiscip. Rev. Syst. Biol. Med.20168322724110.1002/wsbm.1331 26990581
    [Google Scholar]
  42. SchwiebsA. RadekeH.H. Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis.Anticancer. Agents Med. Chem.201818564565110.2174/1871520617666171012124820 29022515
    [Google Scholar]
  43. ÖzdemirZ. WimmerZ. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review.Phytochemistry202220311334010.1016/j.phytochem.2022.113340 35987401
    [Google Scholar]
  44. YangQ. FeiZ. HuangC. Betulin terpenoid targets OVCAR-3 human ovarian carcinoma cells by inducing mitochondrial mediated apoptosis, G2/M phase cell cycle arrest, inhibition of cell migration and invasion and modulating mTOR/PI3K/AKT signalling pathway.Cell. Mol. Biol.2021672141910.14715/cmb/2021.67.2.3 34817343
    [Google Scholar]
  45. FarooqiA.A. TurgambayevaA. TashenovaG. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis.Molecules20222816710.3390/molecules28010067 36615262
    [Google Scholar]
  46. KrólS.K. KiełbusM. Rivero-MüllerA. StepulakA. Comprehensive review on betulin as a potent anticancer agent.BioMed Res. Int.2015201558418910.1155/2015/584189
    [Google Scholar]
  47. YueJ. LópezJ.M. Understanding MAPK Signaling Pathways in Apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  48. LuoR. FangD. ChuP. WuH. ZhangZ. TangZ. Multiple molecular targets in breast cancer therapy by betulinic acid.Biomed. Pharmacother.2016841321133010.1016/j.biopha.2016.10.018 27810789
    [Google Scholar]
  49. Anaya-EugenioG.D. EggersN.A. RenY. Rivera-ChávezJ. KinghornA.D. Carcache De BlancoE.J. Apoptosis Induced by (+)-Betulin Through NF-κB Inhibition in MDA-MB-231 Breast Cancer Cells.Anticancer Res.202040126637664710.21873/anticanres.14688 33288558
    [Google Scholar]
  50. MuH. SunY. YuanB. WangY. Betulinic acid in the treatment of breast cancer: Application and mechanism progress.Fitoterapia202316910561710.1016/j.fitote.2023.105617 37479118
    [Google Scholar]
  51. BellezzaI. MierlaA.L. MinelliA. Nrf2 and NF-κB and Their Concerted Modulation in Cancer Pathogenesis and Progression.Cancers20102248349710.3390/cancers2020483 24281078
    [Google Scholar]
  52. LiY. LiuX. JiangD. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.Arch. Pharm. Res.20163991257126510.1007/s12272‑016‑0761‑5 27271333
    [Google Scholar]
  53. ZakrzeskaA. KitlasP. ShlyahtunA. SzymańskaN. JabłońskiR. TomulewiczM. Hypoglycemic Effect of Betulin in Rats With Experimental Diabetes. Acta Pol Pharm -.Drug Res. (Stuttg.)2023805795804
    [Google Scholar]
  54. BukoV. KuzmitskayaI. KirkoS. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis.Physiol. Int.2019106432333410.1556/2060.106.2019.26 31619044
    [Google Scholar]
  55. WangW. WangY. LiuM. Betulinic acid induces apoptosis and suppresses metastasis in hepatocellular carcinoma cell lines in vitro and in vivo.J. Cell. Mol. Med.201923158659510.1111/jcmm.13964 30417527
    [Google Scholar]
  56. HanY.H. MunJ.G. JeonH.D. KeeJ.Y. HongS.H. Betulin inhibits lung metastasis by inducing cell cycle arrest, autophagy, and apoptosis of metastatic colorectal cancer cells.Nutrients20191216610.3390/nu12010066 31887988
    [Google Scholar]
  57. PfarrK. DanciuC. DeheleanC. PfeilschifterJ.M. RadekeH.H. Betulin - a plant-derived cytostatic drug - enhances antitumor immune response.J. Immunother. Cancer20142S23175
    [Google Scholar]
  58. ZhaoY. ChenC.H. Morris-NatschkeS.L. LeeK.H. Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors.Eur. J. Med. Chem.202121511328710.1016/j.ejmech.2021.113287 33639343
    [Google Scholar]
  59. WangQ. LiY. ZhengL. Novel Betulinic Acid–Nucleoside Hybrids with Potent Anti-HIV Activity.ACS Med. Chem. Lett.202011112290229310.1021/acsmedchemlett.0c00414 33214842
    [Google Scholar]
  60. MukherjeeR. KumarV. SrivastavaS.K. AgarwalS.K. BurmanA.C. Betulinic acid derivatives as anticancer agents: Structure activity relationship.Anticancer. Agents Med. Chem.20066327127910.2174/187152006776930846 16712455
    [Google Scholar]
  61. WimmerováM. BildziukevichU. WimmerZ. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents.Molecules20232823771810.3390/molecules28237718 38067449
    [Google Scholar]
  62. DangZ. HoP. ZhuL. New betulinic acid derivatives for bevirimat-resistant human immunodeficiency virus type-1.J. Med. Chem.20135652029203710.1021/jm3016969 23379607
    [Google Scholar]
  63. AdepojuF.O. SokolovaK.V. GetteI.F. Protective Effect of Betulin on Streptozotocin–Nicotinamide-Induced Diabetes in Female Rats.Int. J. Mol. Sci.2024254216610.3390/ijms25042166 38396842
    [Google Scholar]
  64. Ajala-LawalR.A. AliyuN.O. AjiboyeT.O. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways.Arch. Physiol. Biochem.2020126210711510.1080/13813455.2018.1498901 30288995
    [Google Scholar]
  65. WardeckiT. WernerP. ThomasM. Influence of Birch Bark Triterpenes on Keratinocytes and Fibroblasts from Diabetic and Nondiabetic Donors.J. Nat. Prod.20167941112112310.1021/acs.jnatprod.6b00027 27002382
    [Google Scholar]
  66. XieW. HuW. HuangZ. Betulinic acid accelerates diabetic wound healing by modulating hyperglycemia-induced oxidative stress, inflammation and glucose intolerance.Burns Trauma202210tkac00710.1093/burnst/tkac007 35415192
    [Google Scholar]
  67. MovahedianA.A. EshraghiA. AsgariS. NaderiG.A. BadieeA. Antioxidant Effect of Ziziphus vulgaris, Portulaca oleracea, Berberis integerima and Gundelia tournefortti on Lipid Peroxidation, Hb Glycosylation and Red Blood Cell Hemolysis.J Med Plants201110408088
    [Google Scholar]
  68. LiX. JiangW. LiW. Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer.Oncol. Res.202331450551410.32604/or.2023.026959 37415745
    [Google Scholar]
  69. ArstallM.A. YangJ. StaffordI. BettsW.H. HorowitzJ.D. N-acetylcysteine in combination with nitroglycerin and streptokinase for the treatment of evolving acute myocardial infarction. Safety and biochemical effects.Circulation199592102855286210.1161/01.CIR.92.10.2855 7586252
    [Google Scholar]
  70. EshraghiA. TalasazA.H. SalamzadehJ. Evaluating the effect of intracoronary N-acetylcysteine on platelet activation markers after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction.Am. J. Ther.2016231e44e5110.1097/MJT.0000000000000309 26291594
    [Google Scholar]
  71. NikbakhtM. AhmadiF. VaseghiG. The role of N-acetylcysteine in platelet aggregation and reperfusion injury in recent years.Curr. Clin. Pharmacol.2018122839110.2174/1574884712666170704145842 28676007
    [Google Scholar]
  72. AyyappanJ.P. LizardoK. WangS. YurkowE. NagajyothiJ.F. Inhibition of SREBP improves cardiac lipidopathy, improves endoplasmic reticulum stress, and modulates chronic Chagas cardiomyopathy.J. Am. Heart Assoc.202093e01425510.1161/JAHA.119.014255 31973605
    [Google Scholar]
  73. TangJ.J. LiJ.G. QiW. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques.Cell Metab.2011131445610.1016/j.cmet.2010.12.004 21195348
    [Google Scholar]
  74. YuC. CaiX. LiuX. LiuJ. ZhuN. Betulin Alleviates Myocardial Ischemia–Reperfusion Injury in Rats via Regulating the Siti1/NLRP3/NF-κB Signaling Pathway.Inflammation20214431096110710.1007/s10753‑020‑01405‑8 33392937
    [Google Scholar]
  75. WenY. GengL. ZhouL. PeiX. YangZ. DingZ. Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathway.Int. Immunopharmacol.20208510665310.1016/j.intimp.2020.106653 32531709
    [Google Scholar]
  76. ZhangS.Y. ZhaoQ.F. FangN.N. YuJ.G. Betulin inhibits pro-inflammatory cytokines expression through activation STAT3 signaling pathway in human cardiac cells.Eur. Rev. Med. Pharmacol. Sci.2015193455460 25720718
    [Google Scholar]
  77. YoonJ.J. LeeY.J. HanB.H. Protective effect of betulinic acid on early atherosclerosis in diabetic apolipoprotein-E gene knockout mice.Eur. J. Pharmacol.201779622423210.1016/j.ejphar.2016.11.044 27894808
    [Google Scholar]
  78. GuiY. YanH. GaoF. XiC. LiH. WangY. Betulin attenuates atherosclerosis in apoES1S mice by up-regulating ABCA1 and ABCG1.Acta Pharmacol. Sin.201637101337134810.1038/aps.2016.46 27374487
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855311705240530073557
Loading
/content/journals/cdth/10.2174/0115748855311705240530073557
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): betula; betulin; betulinic acid; cicatrix; triterpenes; Wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test