Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Seaweeds are regarded as an important and alternative source of bioactive metabolites. It has recently come to the attention of researchers that marine algae have important physiologically active metabolites capable of displaying a range of biological activities, and the compounds extracted from seaweeds are known to target key molecules that control the processes leading to cancer. Cancer is one of the most common and potentially fatal diseases worldwide. It is characterised by uncontrolled proliferation of cells and tumour development. Every year, the global cancer burden is increasing progressively as a result of the ability of cancer cells to acquire resistance against existing chemotherapeutic drugs. Thus, there is a need to develop new drugs that could hamper this process leading to cancer. Marine-derived natural bioactive compounds pose as major potential candidates to develop such molecules. , a marine macroalgae belonging to the group Rhodophyta found in coastal plains of Indo-Pacific regions, has shown the presence of a variety of bioactive compounds that show significant anticancer activities and antioxidant properties. A number of chemical compounds are found in this species, which results in the macroalgae having significant anticancer activity. Therefore, the primary focus of the review is to highlight the bioactive compounds found in P. hornemannii that exhibit such anticancer potential.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855292105240607050623
2024-06-20
2025-09-23
Loading full text...

Full text loading...

References

  1. DhargalkarV.K. KavlekarD.P. Seaweeds-a field manual.GoaNational Institute of Oceanography2004
    [Google Scholar]
  2. KolanjinathanK. GaneshP. SaranrajP. Pharmacological importance of seaweeds: A review.World J Fish Mar Sci201461115
    [Google Scholar]
  3. ChojnackaK. SaeidA. WitkowskaZ. TuhyL. Biologically active compounds in seaweed extracts-the prospects for the application.Open Conf. Proc. J.201231202810.2174/1876326X01203020020
    [Google Scholar]
  4. El GamalA.A. Biological importance of marine algae.Saudi Pharm. J.201018112510.1016/j.jsps.2009.12.001 23960716
    [Google Scholar]
  5. Sithranga BoopathyN. KathiresanK. Anticancer drugs from marine flora: An overview.J. Oncol.2010201021418610.1155/2010/214186
    [Google Scholar]
  6. PérezM. FalquéE. DomínguezH. Antimicrobial action of compounds from marine seaweed.Mar. Drugs20161435210.3390/md14030052 27005637
    [Google Scholar]
  7. Wan-LoyC. Siew-MoiP. Marine algae as a potential source for anti-obesity agents.Mar. Drugs2016141222210.3390/md14120222 27941599
    [Google Scholar]
  8. SecaA. PintoD. Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds.Mar. Drugs201816723710.3390/md16070237 30011911
    [Google Scholar]
  9. ReboursC. Marinho-SorianoE. Zertuche-GonzálezJ.A. Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities.J. Appl. Phycol.20142651939195110.1007/s10811‑014‑0304‑8 25346571
    [Google Scholar]
  10. AnisM. AhmedS. HasanM.M. Algae as nutrition, medicine and cosmetic: The forgotten history, present status and future trends.World J. Pharm. Pharm. Sci.20176619341959
    [Google Scholar]
  11. PengY. Chemical composition of seaweeds.Seaweed sustainability.Elsevier20157912410.1016/B978‑0‑12‑418697‑2.00005‑2
    [Google Scholar]
  12. CardozoK.H.M. Metabolites from algae with economical impact.Comp. Biochem. Physiol. C Toxicol. Pharmacol.20071461-2607810.1016/j.cbpc.2006.05.007
    [Google Scholar]
  13. SunY. HouS. SongS. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides.Int. J. Biol. Macromol.201811298599510.1016/j.ijbiomac.2018.02.066 29447968
    [Google Scholar]
  14. FolmerF. JasparsM. DicatoM. DiederichM. Photosynthetic marine organisms as a source of anticancer compounds.Phytochem. Rev.20109455757910.1007/s11101‑010‑9200‑2
    [Google Scholar]
  15. MurphyC. HotchkissS. WorthingtonJ. McKeownS.R. The potential of seaweed as a source of drugs for use in cancer chemotherapy.J. Appl. Phycol.20142652211226410.1007/s10811‑014‑0245‑2
    [Google Scholar]
  16. AlvesC. SilvaJ. PinteusS. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds.Front. Pharmacol.2018977710.3389/fphar.2018.00777 30127738
    [Google Scholar]
  17. RaviA. RajM.G. ArunachalamS. SathiaveluM. Marine environment: A potential source for anticancer drugs.Res J Pharm Technol20171051543155010.5958/0974‑360X.2017.00272.4
    [Google Scholar]
  18. ChoudhuryR. SahooN. Existence of diverse species of algae, composition and biological activity: A review along India’s coastlines.Pharmacogn. Rev.2021153019920810.5530/phrev.2021.15.19
    [Google Scholar]
  19. El GaafaryM. HafnerS. LangS.J. A novel polyhalogenated monoterpene induces cell cycle arrest and apoptosis in breast cancer cells.Mar. Drugs201917843710.3390/md17080437 31349625
    [Google Scholar]
  20. GuiryM.D. AlgaeBase. World-wide electronic publication.2013Available from: http//www. algaebase. org
    [Google Scholar]
  21. CikošA.M. JurinM. Čož-RakovacR. JokićS. JerkovićI. Update on monoterpenes from red macroalgae: Isolation, analysis, and bioactivity.Mar. Drugs201917953710.3390/md17090537 31527497
    [Google Scholar]
  22. JørgensenT.L. HallasJ. LandL.H. HerrstedtJ. Comorbidity and polypharmacy in elderly cancer patients: The significance on treatment outcome and tolerance.J. Geriatr. Oncol.2010128710210.1016/j.jgo.2010.06.003
    [Google Scholar]
  23. MullardA. FDA approves first immunotherapy combo.Nat. Rev. Drug Discov.20151411739740 26514852
    [Google Scholar]
  24. NicoliniA. CarpiA. FerrariP. Mario BiavaP. RossiG. Immunotherapy and hormone-therapy in metastatic breast cancer: A review and an update.Curr. Drug Targets201617101127113910.2174/1389450117666160201114752 26844558
    [Google Scholar]
  25. HeymachJ. KrilovL. AlbergA. Clinical cancer advances 2018: Annual report on progress against cancer from the american society of clinical oncology.J. Clin. Oncol.201836101020104410.1200/JCO.2017.77.0446 29380678
    [Google Scholar]
  26. De LartigueJ. Tumor heterogeneity: A central foe in the war on cancer.J. Community Support. Oncol.20181613E167E174
    [Google Scholar]
  27. NikolaouM. PavlopoulouA. GeorgakilasA.G. KyrodimosE. The challenge of drug resistance in cancer treatment: A current overview.Clin. Exp. Metastasis201835430931810.1007/s10585‑018‑9903‑0 29799080
    [Google Scholar]
  28. FeinbergA.P. OhlssonR. HenikoffS. The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.200671213310.1038/nrg1748 16369569
    [Google Scholar]
  29. CokkinidesV. AlbanoJ. SamuelsA. WardM. ThumJ. American cancer society: Cancer facts and figures.Atlanta Am Cancer Soc.2017; 2017.
    [Google Scholar]
  30. SunW. Recent advances in cancer immunotherapy.J. Hematol. Oncol.20171019610.1186/s13045‑017‑0460‑9 28434404
    [Google Scholar]
  31. Ruiz-TorresV. EncinarJ. Herranz-LópezM. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs.Molecules2017227103710.3390/molecules22071037 28644406
    [Google Scholar]
  32. SecaA. PintoD. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application.Int. J. Mol. Sci.201819126310.3390/ijms19010263 29337925
    [Google Scholar]
  33. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  34. CarpenaM. Garcia-PerezP. Garcia-OliveiraP. Biological properties and potential of compounds extracted from red seaweeds.Phytochem. Rev.202213210.1007/s11101‑022‑09826‑z 35791430
    [Google Scholar]
  35. MurugesanS. BhuvaneswariS. RaoU.S.M. SivamuruganV. Screening of phytochemicals and antibacterial activity of marine red alga Portieria hornemannii (Lyngbye) PC Silva.RJPPD20179313113610.5958/2321‑5836.2017.00022.2
    [Google Scholar]
  36. JosephJ. Screening of phytochemical, antioxidant activity and anti-bacterial activity of marine seaweeds.Int. J. Pharm. Pharm. Sci.2019111616610.22159/ijpps.2019v11i1.29119
    [Google Scholar]
  37. ElangovanM. AnantharamanP. KavisriM. MoovendhanM. Isolation, chemical characterization and in vitro bioactive potential of polysaccharides from seaweed Portieria hornemannii.Biomass Conv Bioref2022112
    [Google Scholar]
  38. ChidambaramP. JeyprakashA. ChinnathambiP. Characterisation of carrageenan extracted from fresh and defatted red algae along the Pamban coast, Tamilnadu, India.Vegetos201932328128710.1007/s42535‑019‑00045‑0
    [Google Scholar]
  39. ArunkumarK. RajaR. KumarV.B.S. JosephA. ShilpaT. CarvalhoI.S. Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds.J. Food Meas. Charact.202115156757610.1007/s11694‑020‑00661‑4
    [Google Scholar]
  40. KnottM.G. An examination of the chemical structures and in vitro cytotoxic bioactivity of halomon related secondary metabolites from Portieria hornemannii found worldwide.ISTJN20161530
    [Google Scholar]
  41. SubbiahM. SundaresanB. NatarajanT.S. VajiraveluS. In vitro cytotoxic studies of red algae Portieria hornemannii and Spyridia fusiformis against Dalton’s lymphoma ascite and Ehrlich ascite carcinoma cell lines.J. Coast. Life Med.201641294995210.12980/jclm.4.2016J6‑208
    [Google Scholar]
  42. AntonyT. ChakrabortyK. Pharmacological properties of seaweeds against progressive lifestyle diseases.J. Aquat. Food Prod. Technol.201928101092110410.1080/10498850.2019.1684407
    [Google Scholar]
  43. SenthilkumarN. KurinjimalarC. ThangamR. Further studies and biological activities of macromolecular protein R-Phycoerythrin from Portieria hornemannii.Int. J. Biol. Macromol.20136210711610.1016/j.ijbiomac.2013.08.004 23962717
    [Google Scholar]
  44. KuniyoshiM. OshiroN. MionoT. HigaT. Halogenated monoterpenes having a cyclohexadienone from the red alga Portieria hornemanni.J. Chin. Chem. Soc.200350116717010.1002/jccs.200300023
    [Google Scholar]
  45. WrightA.D. KönigG.M. SticherO. de NysR. Five new monoterpenes from the marine red alga Portieria hornemannii.Tetrahedron199147305717572410.1016/S0040‑4020(01)86524‑8
    [Google Scholar]
  46. GunatilakaA.A.L. PaulV.J. ParkP.U. Apakaochtodenes A and B: Two tetrahalogenated monoterpenes from the red marine alga Portieria hornemannii.J. Nat. Prod.199962101376137810.1021/np9901128 10543896
    [Google Scholar]
  47. FullerR.W. CardellinaJ.H.II KatoY. A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines.J. Med. Chem.199235163007301110.1021/jm00094a012 1501227
    [Google Scholar]
  48. ZandiK. AhmadzadehS. TajbakhshS. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.Eur. Rev. Med. Pharmacol. Sci.2010148669673 20707286
    [Google Scholar]
  49. FullerR.W. CardellinaJ.H.II JurekJ. Isolation and structure/activity features of halomon-related antitumor monoterpenes from the red alga Portieria hornemannii.J. Med. Chem.199437254407441110.1021/jm00051a019 7996553
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855292105240607050623
Loading
/content/journals/cdth/10.2174/0115748855292105240607050623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test