Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Diabetic Neuropathy (DN) stands as one of the most deleterious consequences of prolonged hyperglycemia, affecting an estimated 50% of individuals with diabetes during their lifetime. Despite the prominent role of oxidative stress and inflammatory pathogenesis in DN, its precise etiology remains elusive. This study explores the recent strides in the field of plant interventions for DN, shedding light on promising avenues while navigating through existing challenges.

A comprehensive search of the literature was carried out using keywords related to diabetes mellitus, diabetic peripheral neuropathy, herbal medicine, plant extracts, phytoconstituents, and diabetic complications. The search was conducted across different reputable scientific databases, including Medline, Scopus, Google Scholar, PubMed, and others.

It has been observed that the antioxidant properties of plants and plant-derived constituents, especially the phenolic constituents, coupled with their impact on inflammatory cytokines, opioid receptors, nerve conduction velocity, and glial activation, exhibited potential in ameliorating impaired nerve function through modulation of oxidative stress markers. Behavioral parameters, including mechanical and thermal hyperalgesia, allodynia, and tactile allodynia, demonstrated notable improvement following the oral administration of these plant interventions in animal models. Despite the promising outcomes, challenges persist, encompassing a limited understanding of precise mechanisms, variability in study designs, and a dearth of robust clinical evidence.

The study underscores the imperative for comprehensive research, standardization, and rigorous clinical testing to fully unlock the therapeutic potential of herbal interventions in the management of DN.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855310587240513070231
2024-05-23
2025-09-23
Loading full text...

Full text loading...

References

  1. KingH. AubertR.E. HermanW.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections.Diabetes Care19982191414143110.2337/diacare.21.9.1414 9727886
    [Google Scholar]
  2. PradeepaR. DeepaR. MohanV. Epidemiology of diabetes in India--current perspective and future projections.J. Indian Med. Assoc.20021003144148 12408271
    [Google Scholar]
  3. WouC. UnwinN. HuangY. RoglicG. Implications of the growing burden of diabetes for premature cardiovascular disease mortality and the attainment of the sustainable development goal target 3.4.Cardiovasc. Diagn. Ther.20199214014910.21037/cdt.2018.09.04 31143635
    [Google Scholar]
  4. BalakumarP. AroraM.K. GantiS.S. ReddyJ. SinghM. Recent advances in pharmacotherapy for diabetic nephropathy: Current perspectives and future directions.Pharmacol. Res.2009601243210.1016/j.phrs.2009.02.002 19427582
    [Google Scholar]
  5. VinikA.I. ParkT.S. StansberryK.B. PittengerG.L. Diabetic neuropathies.Diabetologia200043895797310.1007/s001250051477 10990072
    [Google Scholar]
  6. EdwardsJ.L. VincentA.M. ChengH.T. FeldmanE.L. Diabetic neuropathy: Mechanisms to management.Pharmacol. Ther.2008120113410.1016/j.pharmthera.2008.05.005 18616962
    [Google Scholar]
  7. MiseryL. BrenautE. Le GarrecR. Neuropathic pruritus.Nat. Rev. Neurol.201410740841610.1038/nrneurol.2014.99 24912513
    [Google Scholar]
  8. MerskeyH. BogdukN. Classification of Chronic Pain.2nd edSeattleInternational Association for the Study of Pain. Task Force on Taxonomy1994
    [Google Scholar]
  9. ChildersW.E.Jr BaudyR.B. N-methyl-D-aspartate antagonists and neuropathic pain: the search for relief.J. Med. Chem.200750112557256210.1021/jm060728b 17489572
    [Google Scholar]
  10. KehletH. JensenT.S. WoolfC.J. Persistent postsurgical pain: Risk factors and prevention.Lancet200636795221618162510.1016/S0140‑6736(06)68700‑X 16698416
    [Google Scholar]
  11. SinghR. KishoreL. KaurN. Diabetic peripheral neuropathy: Current perspective and future directions.Pharmacol. Res.201480213510.1016/j.phrs.2013.12.005 24373831
    [Google Scholar]
  12. ChoiS.Z. SonM.W. Novel botanical drug for the treatment of diabetic neuropathy.Arch. Pharm. Res.201134686586710.1007/s12272‑011‑0621‑2 21660513
    [Google Scholar]
  13. SaccoI.C.N. SudaE.Y. GomesA.A. Management of neuropathy musculoskeletal deficits is much more than general global exercises: Physiotherapy-based programs for diabetes long-term complications.J. Appl. Physiol.201712261523152410.1152/japplphysiol.00128.2017 28637833
    [Google Scholar]
  14. FergusonJ.M. SSRI antidepressant medications: Adverse effects and tolerability.Prim. Care Companion J. Clin. Psychiatry2001312227 15014625
    [Google Scholar]
  15. QuintansJ.S.S. AntoniolliÂ.R. AlmeidaJ.R.G.S. Santana-FilhoV.J. Quintans-JúniorL.J. Natural products evaluated in neuropathic pain models - a systematic review.Basic Clin. Pharmacol. Toxicol.2014114644245010.1111/bcpt.12178 24252102
    [Google Scholar]
  16. VrankenJ.H. Current approaches to the management of peripheral neuropathic pain.J. Pain Palliat. Care Pharmacother.201529330731010.3109/15360288.2015.1065943 26305433
    [Google Scholar]
  17. HosseinzadehH. MoallemS. MoshiriM. SarnavaziM. EtemadL. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice.Arzneimittelforschung201262732432910.1055/s‑0032‑1311635 22588629
    [Google Scholar]
  18. QureshiZ. AliM.N. KhalidM. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy.J. Diabetes Res.2022202211910.1155/2022/9989272 35127954
    [Google Scholar]
  19. PrabhawathiV. SivakumarP.M. PrabhakarP.K. CetinelS.R.N. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy.Mini Rev. Med. Chem.202222141828184610.2174/1389557522666220309140855 35264089
    [Google Scholar]
  20. D’SouzaR.S. BarmanR. JosephA. Abd-ElsayedA. Evidence-based treatment of painful diabetic neuropathy: A systematic review.Curr. Pain Headache Rep.202226858359410.1007/s11916‑022‑01061‑7 35716275
    [Google Scholar]
  21. VincentA.M. HayesJ.M. McLeanL.L. Vivekanandan-GiriA. PennathurS. FeldmanE.L. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1.Diabetes200958102376238510.2337/db09‑0047 19592619
    [Google Scholar]
  22. JackM. WrightD. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy.Transl. Res.2012159535536510.1016/j.trsl.2011.12.004 22500508
    [Google Scholar]
  23. OatesP.J. Polyol pathway and diabetic peripheral neuropathy.Int. Rev. Neurobiol.20025032539210.1016/S0074‑7742(02)50082‑9 12198816
    [Google Scholar]
  24. GeraldesP. KingG.L. Activation of protein kinase C isoforms and its impact on diabetic complications.Circ. Res.201010681319133110.1161/CIRCRESAHA.110.217117 20431074
    [Google Scholar]
  25. WilsonN.M. WrightD.E. Inflammatory mediators in diabetic neuropathy.J. Diabetes Metabol.201154
    [Google Scholar]
  26. HinderL.M. VincentA.M. BurantC.F. PennathurS. FeldmanE.L. Bioenergetics in diabetic neuropathy: What we need to know.J. Peripher. Nerv. Syst.201217s2Suppl. 2101410.1111/j.1529‑8027.2012.00389.x 22548617
    [Google Scholar]
  27. LupachykS. WatchoP. StavniichukR. ShevalyeH. ObrosovaI.G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy.Diabetes201362394495210.2337/db12‑0716 23364451
    [Google Scholar]
  28. LupachykS. WatchoP. ObrosovA.A. StavniichukR. ObrosovaI.G. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy.Exp. Neurol.201324734234810.1016/j.expneurol.2012.11.001 23142188
    [Google Scholar]
  29. WigginT.D. SullivanK.A. Pop-BusuiR. AmatoA. SimaA.A.F. FeldmanE.L. Elevated triglycerides correlate with progression of diabetic neuropathy.Diabetes20095871634164010.2337/db08‑1771 19411614
    [Google Scholar]
  30. TesfayeS. MalikR. WardJ.D. Vascular factors in diabetic neuropathy.Diabetologia199437984785410.1007/BF00400938 7806013
    [Google Scholar]
  31. BritlandS.T. YoungR.J. SharmaA.K. ClarkeB.F. Relationship of endoneurial capillary abnormalities to type and severity of diabetic polyneuropathy.Diabetes199039890991310.2337/diab.39.8.909 2373263
    [Google Scholar]
  32. MalikR.A. VevesA. MassonE.A. Endoneurial capillary abnormalities in mild human diabetic neuropathy.J. Neurol. Neurosurg. Psychiatry199255755756110.1136/jnnp.55.7.557 1640230
    [Google Scholar]
  33. YasudaH. DyckP.J. Abnormalities of endoneurial microvessels and sural nerve pathology in diabetic neuropathy.Neurology1987371202810.1212/WNL.37.1.203796834
    [Google Scholar]
  34. Fagerberg S, Roonemaa J. Radiological determination of foetal length by measurement of the lumbar spine.Acta Obstet. Gynecol. Scand.195938333333910.3109/00016345909157990 13821281
    [Google Scholar]
  35. TimperleyW.R. WardJ.D. PrestonF.E. DuckworthT. O’MalleyB.C. Clinical and histological studies in diabetic neuropathy.Diabetologia197612323724310.1007/BF00422090
    [Google Scholar]
  36. CoppeyL.J. GellettJ.S. DavidsonE.P. YorekM.A. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation.Free Radic. Res.2003371334010.1080/1071576021000028442 12653215
    [Google Scholar]
  37. KennedyJ.M. ZochodneD.W. Experimental diabetic neuropathy with spontaneous recovery: Is there irreparable damage?Diabetes200554383083710.2337/diabetes.54.3.830 15734862
    [Google Scholar]
  38. ObrosovaI.G. DrelV.R. PacherP. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: The relation is revisited.Diabetes200554123435344110.2337/diabetes.54.12.3435 16306359
    [Google Scholar]
  39. GuoC. QuobatariA. ShangguanY. HongS. WileyJ.W. QuobatariA. Diabetic autonomic neuropathy: Evidence for apoptosis in situ in the rat.Neurogastroenterol. Motil.200416333534510.1111/j.1365‑2982.2004.00524.x 15198656
    [Google Scholar]
  40. BurnandR.C. PriceS.A. McElhaneyM. BarkerD. TomlinsonD.R. Expression of axotomy-inducible and apoptosis-related genes in sensory nerves of rats with experimental diabetes.Brain Res. Mol. Brain Res.2004132223524010.1016/j.molbrainres.2004.05.002 15582161
    [Google Scholar]
  41. KamiyaH. ZhangW. SimaA.A.F. Degeneration of the Golgi and neuronal loss in dorsal root ganglia in diabetic BioBreeding/Worcester rats.Diabetologia200649112763277410.1007/s00125‑006‑0379‑0 17047923
    [Google Scholar]
  42. ZherebitskayaE. AkudeE. SmithD.R. FernyhoughP. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: Role of glucose-induced oxidative stress.Diabetes20095861356136410.2337/db09‑0034 19252136
    [Google Scholar]
  43. NegiG. KumarA. JoshiR.P. RubyP.K. SharmaS.S. Oxidative stress and diabetic neuropathy: current status of antioxidants.Institute of Integrative Omics and Applied Biotechnology Journal201127178
    [Google Scholar]
  44. ChisI.C. ClichiciA. NagyA.L. OrosA. CatoiC. ClichiciS. Quercetin in association with moderate exercise training attenuates injuries induced by experimental diabetes in sciatic nerves.J. Physiol. Pharmacol.2017686877886 29550800
    [Google Scholar]
  45. UneH.D. DureshahwarK. MubashirM. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy.Pharmacognosy Res.20179328729310.4103/pr.pr_147_16 28827972
    [Google Scholar]
  46. FerreiraP.E.B. LopesC.R. AlvesA.M. Diabetic neuropathy: An evaluation of the use of quercetin in the cecum of rats.World J. Gastroenterol.201319386416642610.3748/wjg.v19.i38.6416 24151360
    [Google Scholar]
  47. ZhaoB. ZhangQ. LiangX. XieJ. SunQ. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway.Eur. J. Pharmacol.202191217460710.1016/j.ejphar.2021.174607 34743981
    [Google Scholar]
  48. ZhangQ. SongW. ZhaoB. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro.Front. Neurosci.20211563617210.3389/fnins.2021.636172 33746703
    [Google Scholar]
  49. WangR. QiuZ. WangG. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice.Eur. J. Pharmacol.202088217326610.1016/j.ejphar.2020.173266 32553736
    [Google Scholar]
  50. YangR. LiL. YuanH. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X 4 receptor in dorsal root ganglia.J. Cell. Physiol.201923432756276410.1002/jcp.27091 30145789
    [Google Scholar]
  51. KandhareA.D. RaygudeK.S. Shiva KumarV. Ameliorative effects quercetin against impaired motor nerve function, inflammatory mediators and apoptosis in neonatal streptozotocin-induced diabetic neuropathy in rats.Biomed. Aging Pathol.20122417318610.1016/j.biomag.2012.10.002
    [Google Scholar]
  52. XieJ. SongW. LiangX. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level.Biomed. Pharmacother.202012711014710.1016/j.biopha.2020.110147 32559841
    [Google Scholar]
  53. ShiY. LiangX. ZhangH. WuQ. QuL. SunQ. Quercetin protects rat dorsal root ganglion neurons against high glucose-induced injury in vitro through Nrf-2/HO-1 activation and NF-κB inhibition.Acta Pharmacol. Sin.20133491140114810.1038/aps.2013.59 23770986
    [Google Scholar]
  54. TianR. YangW. XueQ. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats.Eur. J. Pharmacol.2016771849210.1016/j.ejphar.2015.12.021 26688570
    [Google Scholar]
  55. MittalR. KumarA. SinghD.P. BishnoiM. NagT.C. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: Targeting Nrf2/HO-1/NF-kB and COX signalling pathway.Inflammopharmacology201826375576810.1007/s10787‑017‑0413‑5 29094308
    [Google Scholar]
  56. Al-EnaziM.M. Protective effects of combined therapy of Rutin with Silymarin on experimentally-induced diabetic neuropathy in rats.Pharmacol. Pharm.20145987688910.4236/pp.2014.59098
    [Google Scholar]
  57. OlaM.S. AhmedM.M. AhmadR. AbuohashishH.M. Al-RejaieS.S. AlhomidaA.S. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina.J. Mol. Neurosci.201556244044810.1007/s12031‑015‑0561‑2 25929832
    [Google Scholar]
  58. VisnagriA. KandhareA.D. ChakravartyS. GhoshP. BodhankarS.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions.Pharm. Biol.201452781482810.3109/13880209.2013.870584 24559476
    [Google Scholar]
  59. SyedA.A. RezaM.I. YadavH. GayenJ.R. Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy.Exp. Gerontol.202317211206410.1016/j.exger.2022.112064 36528304
    [Google Scholar]
  60. TaoJ. LiuL. FanY. Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia.Int. J. Neurosci.2019129878479310.1080/00207454.2019.1567512 30621504
    [Google Scholar]
  61. AlharthyK. BalahaM. DeviS. Ameliorative effects of isoeugenol and eugenol against impaired nerve function and inflammatory and oxidative mediators in diabetic neuropathic rats.Biomedicines2023114120310.3390/biomedicines11041203 37189822
    [Google Scholar]
  62. NangleM. GibsonT. CotterM. CameronN. Effects of eugenol on nerve and vascular dysfunction in streptozotocin-diabetic rats.Planta Med.200672649450010.1055/s‑2005‑916262 16773532
    [Google Scholar]
  63. PrasadS.N. Muralidhara. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: Behavioral and biochemical evidence.Neurochem. Res.201338233034510.1007/s11064‑012‑0924‑9 23161090
    [Google Scholar]
  64. LiP. XiongD.L. SunW.P. XuS.Y. Effects of baicalin on diabetic neuropathic pain involving transient receptor potential vanilloid 1 in the dorsal root ganglia of rats.Neuroreport201829171492149810.1097/WNR.0000000000001138 30260820
    [Google Scholar]
  65. JugaitS. AretiA. NellaiappanK. Neuroprotective effect of baicalein against oxaliplatin-induced peripheral neuropathy: Impact on oxidative stress, neuro-inflammation and WNT/β-catenin signaling.Mol. Neurobiol.20225974334435010.1007/s12035‑022‑02858‑8 35527292
    [Google Scholar]
  66. StavniichukR. DrelV.R. ShevalyeH. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative–nitrosative stress and p38 MAPK activation.Exp. Neurol.2011230110611310.1016/j.expneurol.2011.04.002 21515260
    [Google Scholar]
  67. RaposoD. MorgadoC. Pereira-TerraP. TavaresI. Nociceptive spinal cord neurons of laminae I–III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG).Brain Res. Bull.2015110687510.1016/j.brainresbull.2014.12.004 25522867
    [Google Scholar]
  68. KianK. KhalatbaryA.R. AhmadvandH. Karimpour MalekshahA. ShamsZ. Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apoptosis.Nutr. Neurosci.201922857858610.1080/1028415X.2017.1419542 29292676
    [Google Scholar]
  69. GuiL. WangF. HuX. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK signaling pathway.Curr. Pharm. Des.202228332758277010.2174/1381612828666220902115437 36173051
    [Google Scholar]
  70. Al-RejaieS.S. AleisaA.M. AbuohashishH.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy.Neurol. Res.2015371092493310.1179/1743132815Y.0000000079 26187552
    [Google Scholar]
  71. AhmadM.F. NaseemN. RahmanI. Naringin attenuates the diabetic neuropathy in STZ-induced type 2 diabetic wistar rats.Life20221212211110.3390/life12122111 36556476
    [Google Scholar]
  72. SinghP. BansalS. KuhadA. KumarA. ChopraK. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels.Food Funct.20201154548456010.1039/C9FO00881K 32400767
    [Google Scholar]
  73. XiaZ-Y. XieH-T. PanX. ZhaoB. LiuZ.G. Puerarin ameliorates allodynia and hyperalgesia in rats with peripheral nerve injury.Neural Regen. Res.20181371263126810.4103/1673‑5374.235074 30028336
    [Google Scholar]
  74. LiuM. LiaoK. YuC. LiX. LiuS. YangS. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord.Mediators Inflamm.2014201448592710.1155/2014/485927
    [Google Scholar]
  75. JainD. BansalM.K. DalviR. UpganlawarA. SomaniR. Protective effect of diosmin against diabetic neuropathy in experimental rats.J. Integr. Med.2014121354110.1016/S2095‑4964(14)60001‑7 24461593
    [Google Scholar]
  76. Carballo-VillalobosA.I. González-TrujanoM.E. PellicerF. Alvarado-VásquezN. López-MuñozF.J. Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats.Biomed. Pharmacother.20189731032010.1016/j.biopha.2017.10.077 29091880
    [Google Scholar]
  77. BertozziM.M. RossaneisA.C. FattoriV. Diosmin reduces chronic constriction injury-induced neuropathic pain in mice.Chem. Biol. Interact.201727318018910.1016/j.cbi.2017.06.014 28625489
    [Google Scholar]
  78. ZhangB. YuY. AoriG. Tanshinone IIA attenuates diabetic peripheral neuropathic pain in experimental rats via inhibiting inflammation.Evid. Based Complement. Alternat. Med.201820182789847
    [Google Scholar]
  79. KongD. GuoZ. YangW. WangQ. YuY. ZhangL. Tanshinone II A affects diabetic peripheral neuropathic pain via spinal dorsal horn neuronal circuitry by modulating endoplasmic reticulum stress pathways.Exp. Clin. Endocrinol. Diabetes20201281596510.1055/a‑0919‑4614 31295750
    [Google Scholar]
  80. FengF.B. QiuH.Y. Neuroprotective effect of tanshinone IIA against neuropathic pain in diabetic rats through the Nrf2/ARE and NF‐κB signaling pathways.Kaohsiung J. Med. Sci.201834842843710.1016/j.kjms.2018.03.005 30041760
    [Google Scholar]
  81. Abo-SalemO.M. Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-inflammatory and anti-oxidant mechanisms.Open Access Maced. J. Med. Sci.20142342443010.3889/oamjms.2014.073
    [Google Scholar]
  82. KishoreL. KaurN. SinghR. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy.Inflammopharmacology2018264993100310.1007/s10787‑017‑0416‑2 29159712
    [Google Scholar]
  83. SuchalK. MalikS. KhanS. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol.Int. J. Mol. Sci.2017185100110.3390/ijms18051001 28505121
    [Google Scholar]
  84. Jamali-RaeufyN. BaluchnejadmojaradT. RoghaniM. keimasi S, goudarzi M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis.J. Chem. Neuroanat.201910210170910.1016/j.jchemneu.2019.101709 31698018
    [Google Scholar]
  85. KalaiF.Z. BoulaabaM. FerdousiF. IsodaH. Effects of isorhamnetin on diabetes and its associated complications: A review of in vitro and in vivo studies and a post hoc transcriptome analysis of involved molecular pathways.Int. J. Mol. Sci.202223270410.3390/ijms23020704 35054888
    [Google Scholar]
  86. AlqudahA. QnaisE.Y. WedyanM.A. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/Streptozotocin diabetic mice model.Molecules202328250210.3390/molecules28020502 36677559
    [Google Scholar]
  87. MatboliM. SaadM. HasaninA.H. New insight into the role of isorhamnetin as a regulator of insulin signaling pathway in type 2 diabetes mellitus rat model: Molecular and computational approach.Biomed. Pharmacother.202113511117610.1016/j.biopha.2020.111176 33401224
    [Google Scholar]
  88. LiM. LiQ. ZhaoQ. ZhangJ. LinJ. Luteolin improves the impaired nerve functions in diabetic neuropathy: Behavioral and biochemical evidences.Int. J. Clin. Exp. Pathol.2015891011210120 26617718
    [Google Scholar]
  89. SangeethaR. Luteolin in the management of type 2 diabetes mellitus.Curr. Res. Nutr. Food Sci.20197239339810.12944/CRNFSJ.7.2.09
    [Google Scholar]
  90. LiuY. TianX. GouL. SunL. LingX. YinX. Luteolin attenuates diabetes-associated cognitive decline in rats.Brain Res. Bull.201394232910.1016/j.brainresbull.2013.02.001 23415807
    [Google Scholar]
  91. HaraK. HaranishiY. KataokaK. Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model.Eur. J. Pharmacol.201472345946410.1016/j.ejphar.2013.10.046 24184666
    [Google Scholar]
  92. BagdasD. OzbolukH.Y. CinkilicN. GurunM.S. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy.J. Med. Food201417673073210.1089/jmf.2013.2966 24611441
    [Google Scholar]
  93. SaraswatN. SachanN. ChandraP. Anti-diabetic, diabetic neuropathy protective action and mechanism of action involving oxidative pathway of chlorogenic acid isolated from Selinum vaginatum roots in rats.Heliyon2020610e0513710.1016/j.heliyon.2020.e05137 33088940
    [Google Scholar]
  94. ShahidiS. KomakiA. RaoufiS. SalehiI. ZareiM. MahdianM. Ellagic acid ameliorates streptozotocin-induced diabetic hyperalgesia in rat: Involvement of oxidative stress.Basic Clin. Neurosci.20211286187210.32598/bcn.2021.2413.1 35693147
    [Google Scholar]
  95. UzarE. AlpH. CevikM.U. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats.Neurol. Sci.201233356757410.1007/s10072‑011‑0775‑1 21922312
    [Google Scholar]
  96. FazlinZ MyoT FauziDM ResniM NoorzaidM Neuroprotective effects of ellagic acid, rutin and p-coumaric acid on diabetic neuropathy rats.Asian J Med health Sci2022543
    [Google Scholar]
  97. LiY. ZhangY. LiuD. LiuH. HouW. DongY. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model.Int. J. Med. Sci.201310437738110.7150/ijms.5224 23471081
    [Google Scholar]
  98. ZhaoW.C. ZhangB. LiaoM.J. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.Neurosci. Lett.2014560818510.1016/j.neulet.2013.12.019 24370596
    [Google Scholar]
  99. MengB. ShenL. ShiX. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain.Neurosci. Lett.2015605596410.1016/j.neulet.2015.08.011 26282904
    [Google Scholar]
  100. JiaT. RaoJ. ZouL. Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia.Front. Neurosci.20181175510.3389/fnins.2017.00755 29422835
    [Google Scholar]
  101. OlukmanM. ÖnalA. ÇelenkF.G. Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats.Neural Regen. Res.20181391657166410.4103/1673‑5374.232530 30127129
    [Google Scholar]
  102. CuiY. LiY. NingJ. Resveratrol alleviates diabetic mechanical allodynia in rats by downregulating P2X3R.Mol. Med. Rep.202022295796310.3892/mmr.2020.11157 32468070
    [Google Scholar]
  103. WangC. ChiJ. CheK. The combined effect of mesenchymal stem cells and resveratrol on type 1 diabetic neuropathy.Exp. Ther. Med.20191753555356310.3892/etm.2019.7383 30988737
    [Google Scholar]
  104. GhowebaR.E. KhowailedA.A. AboulhodaB.E. RashedL.A. SelmyA. Synergistic role of resveratrol and exercise training in management of diabetic neuropathy and myopathy via SIRT1/NGF/GAP43 linkage.Tissue Cell20238110201410.1016/j.tice.2023.102014 36621294
    [Google Scholar]
  105. KumarS. ModgilS. BammidiS. Allium cepa exerts neuroprotective effect on retinal ganglion cells of pterygopalatine artery (PPA) ligated mice.J. Ayurveda Integr. Med.202011448949410.1016/j.jaim.2019.08.002 32088091
    [Google Scholar]
  106. KhanD. MohammedM. UpaganlawarA. UpasaniC.D. UneH.D. Ameliorative potential of Allium cepa Lam. leaves on diabetes induced and chronic constriction injury induced neuropathic pain in experimental rats. Indian J Pharm.Educ. Res.202054143149
    [Google Scholar]
  107. MalikZ.A. TabassumN. SharmaP.L. Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia.Adv. Biosci. Biotechnol.20134335636310.4236/abb.2013.43047
    [Google Scholar]
  108. RaishM. AhmadA. JanB.L. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats.Int. J. Biol. Macromol.20169139439910.1016/j.ijbiomac.2016.05.090 27238589
    [Google Scholar]
  109. OstovarM. AkbariA. AnbardarM.H. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy.J. Integr. Med.2020181596710.1016/j.joim.2019.12.002 31874814
    [Google Scholar]
  110. Fallah HuseiniH. AndalibS. JasemiE. Protective effect of Citrullus colocynthis (L.) Schard. fruit extract on high glucose-induced neurotoxicity in PC-12 cells.J Med Plants20212080606810.52547/jmp.20.80.60
    [Google Scholar]
  111. RaafatK. SamyW. Amelioration of diabetes and painful diabetic neuropathy by Punica granatum L. Extract and its spray dried biopolymeric dispersions.Evid. Based Complement. Alternat. Med.20142014180495
    [Google Scholar]
  112. JainV. PareekA. BhardwajY.R. SinghN. Attenuating effect of standardized fruit extract of punica granatum L in rat model of tibial and sural nerve transection induced neuropathic pain.BMC Complement. Altern. Med.201313127410.1186/1472‑6882‑13‑274 24499201
    [Google Scholar]
  113. JainV. PareekA. BhardwajY.R. SinhaS.K. GuptaM.M. SinghN. Punicalagin and ellagic acid containing Punica granatum L. fruit rind extract prevents vincristine-induced neuropathic pain in rats: an in silico and in vivo evidence of GABAergic action and cytokine inhibition.Nutr. Neurosci.202225102149216610.1080/1028415X.2021.1954293 34369317
    [Google Scholar]
  114. YadavS.K. NagoriB.P. DesaiP.K. Pharmacological characterization of different fractions of Calotropis procera (Asclepiadaceae) in streptozotocin induced experimental model of diabetic neuropathy.J. Ethnopharmacol.2014152234935710.1016/j.jep.2014.01.020 24486599
    [Google Scholar]
  115. ZafarS. AnwarH. QasimM. Calotropis procera (root) escalates functions rehabilitation and attenuates oxidative stress in a mouse model of peripheral nerve injury.Pak. J. Pharm. Sci.2021950165027 33879440
    [Google Scholar]
  116. IhegboroG.O. OnonamaduC.J. OwolarafeT.A. FadiluM. JosephO.E. Anti-reno-haematological tenacity of Calotropis procera aqueous-methanol root extract in alloxan-induced pancrotoxic Wistar rats.Comp. Clin. Pathol.202231221121910.1007/s00580‑022‑03322‑8
    [Google Scholar]
  117. ArchanaJ. AnnapurnaA. DevayaniP. Neuroprotective role of Tinospora cordifolia extract in streptozotocin induced neuropathic pain.Braz. J. Pharm. Sci.202258e1850110.1590/s2175‑97902020000118501
    [Google Scholar]
  118. PatialV. KatochS. ChhimwalJ. SinghP.P. SureshP.S. PadwadY. Tinospora cordifolia activates PPARγ pathway and mitigates glomerular and tubular cell injury in diabetic kidney disease.Phytomedicine20219115366310.1016/j.phymed.2021.153663 34358759
    [Google Scholar]
  119. AmbalavananR. JohnA.D. SelvarajA.D. Nephroprotective role of nanoencapsulated Tinospora cordifolia (Willd.) using polylactic acid nanoparticles in streptozotocin‐induced diabetic nephropathy rats.IET Nanobiotechnol.202115441141710.1049/nbt2.12030 34694717
    [Google Scholar]
  120. RaoB.S. ReddyK.E. ParveenK. NarendraB.L. ShekharS.C. MangalaL. Effects of Cleome viscosa on hyperalgesia, oxidative stress and lipid profile in STZ induced diabetic neuropathy in Wistar rats.Pak. J. Pharm. Sci.201427511371145 25176371
    [Google Scholar]
  121. NarsimhuluB.L. SureshY. RajasekarG. Evaluation of hepatoprotective and nephroprotective activity of methanolic extract of Cleome viscosa and Cleome gynandra in STZ-induced diabetic rats.Pharma Innov J20198574581
    [Google Scholar]
  122. DawaneJ.S. PanditV.A. BhosaleM.S. KhatavkarP.S. Evaluation of effect of nishamalaki on STZ and HFHF diet induced diabetic neuropathy in wistar rats.J. Clin. Diagn. Res.20161010FF01FF0510.7860/JCDR/2016/21011.8752 27891351
    [Google Scholar]
  123. NickanderK.K. McpheeB.R. LowP.A. TritschlerH. Alpha-lipoic acid: Antioxidant potency against lipid peroxidation of neural tissues in vitro and implications for diabetic neuropathy.Free Radic. Biol. Med.199621563163910.1016/0891‑5849(96)00172‑4 8891666
    [Google Scholar]
  124. ShaquraM. KhalefaB.I. ShakibaeiM. New insights into mechanisms of opioid inhibitory effects on capsaicin-induced TRPV1 activity during painful diabetic neuropathy.Neuropharmacology20148514215010.1016/j.neuropharm.2014.05.026 24863039
    [Google Scholar]
  125. ValensiP. Le DevehatC. RichardJ.L. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy.J. Diabetes Complications200519524725310.1016/j.jdiacomp.2005.05.011 16112498
    [Google Scholar]
  126. BelminJ. ValensiP. Diabetic neuropathy in elderly patients. What can be done?Drugs Aging19968641642910.2165/00002512‑199608060‑00003 8736625
    [Google Scholar]
  127. GammaitoniA.R. AlvarezN.A. GalerB.S. Safety and tolerability of the lidocaine patch 5%, a targeted peripheral analgesic: A review of the literature.J. Clin. Pharmacol.200343211111710.1177/0091270002239817 12616661
    [Google Scholar]
  128. OsamaH. HamedE.O. MahmoudM.A. AbdelrahimM.E.A. The effect of hesperidin and diosmin individually or in combination on metabolic profile and neuropathy among diabetic patients with metabolic syndrome: A randomized controlled trial.J. Diet. Suppl.202320574976210.1080/19390211.2022.2107138 35946912
    [Google Scholar]
  129. SimpsonD.M. Robinson-PappJ. VanJ. Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebo-controlled study.J. Pain2017181425310.1016/j.jpain.2016.09.008 27746370
    [Google Scholar]
  130. DludlaP.V. NkambuleB.B. CirilliI. Capsaicin, its clinical significance in patients with painful diabetic neuropathy.Biomed. Pharmacother.202215311343910.1016/j.biopha.2022.113439 36076554
    [Google Scholar]
  131. ZieglerD. FonsecaV. From guideline to patient: A review of recent recommendations for pharmacotherapy of painful diabetic neuropathy.J. Diabetes Complications201529114615610.1016/j.jdiacomp.2014.08.008 25239450
    [Google Scholar]
  132. DerryS. RiceA.S. ColeP. TanT. MooreR.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults.Cochrane Database Syst. Rev.201711CD007393 28085183
    [Google Scholar]
  133. AbramsR.M.C. PedowitzE.J. SimpsonD.M. A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults.Expert Rev. Neurother.202121325926610.1080/14737175.2021.1874920 33428495
    [Google Scholar]
  134. MusharrafM.U. AhmadZ. YaqubZ. Comparison of topical capsaicin and topical turpentine Oil for treatment of painful diabetic neuropathy.J. Ayub Med. Coll. Abbottabad2017293384387 29076666
    [Google Scholar]
  135. ElbadawyA.M. Abd ElmoniemR.O. ElsayedA.M. Alpha lipoic acid and diabetes mellitus: Potential effects on peripheral neuropathy and different metabolic parameters.Alex. J. Med.202157111312010.1080/20905068.2021.1907961
    [Google Scholar]
  136. IbrahimpasicK. Alpha lipoic acid and glycaemic control in diabetic neuropathies at type 2 diabetes treatment.Med. Arh.20136717910.5455/medarh.2013.67.7‑9 23678828
    [Google Scholar]
  137. MohammadiV. KhaliliM. EghtesadiS. The effect of alpha-lipoic acid (ALA) supplementation on cardiovascular risk factors in men with chronic spinal cord injury: A clinical trial.Spinal Cord201553862162410.1038/sc.2015.35 25753493
    [Google Scholar]
  138. AgathosE. TentolourisA. EleftheriadouI. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy.J. Int. Med. Res.20184651779179010.1177/0300060518756540 29517942
    [Google Scholar]
  139. RochetteL. GhibuS. MuresanA. VergelyC. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes.Can. J. Physiol. Pharmacol.201593121021102710.1139/cjpp‑2014‑0353 26406389
    [Google Scholar]
  140. EspositoC. Ugo GarzarellaE. SantarcangeloC. Safety and efficacy of alpha-lipoic acid oral supplementation in the reduction of pain with unknown etiology: A monocentric, randomized, double-blind, placebo-controlled clinical trial.Biomed. Pharmacother.202114411230810.1016/j.biopha.2021.112308 34649217
    [Google Scholar]
  141. El-NahasM.R. ElkannishyG. AbdelhafezH. ElkhamisyE.T. El-SehrawyA.A. Oral alpha lipoic acid treatment for symptomatic diabetic peripheral neuropathy: A randomized double-blinded placebo-controlled study.Endocr. Metab. Immune Disord. Drug Targets20202091531153410.2174/1871530320666200506081407 32370731
    [Google Scholar]
  142. AsadiS. GholamiM.S. SiassiF. QorbaniM. KhamoshianK. SotoudehG. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial.Complement. Ther. Med.20194325326010.1016/j.ctim.2019.02.014 30935539
    [Google Scholar]
  143. AsadiS. GholamiM.S. SiassiF. QorbaniM. SotoudehG. Beneficial effects of nano‐curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double‐blind, placebo‐controlled clinical trial.Phytother. Res.202034489690310.1002/ptr.6571 31788880
    [Google Scholar]
  144. HeydariM. HomayouniK. HashempurM.H. ShamsM. Topical Citrullus colocynthis in painful diabetic neuropathy: A double-blind randomized placebo-controlled clinical trial.J. Diabetes2015824625210.1111/1753‑0407.12287 25800045
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855310587240513070231
Loading
/content/journals/cdth/10.2174/0115748855310587240513070231
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Diabetes; herbs; hyperglycemia; inflammation; oxidative stress; phenolic compounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test