Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Objective

The purpose of this study is to provide a thorough examination of methods for improving ocular medication penetration within controlled-release formulations, with an emphasis on their relevance to the treatment of eye disorders.

Methods

Employing a methodical and rigorous methodology, this study provides an in-depth survey of current knowledge and research on the topic. Research on iontophoresis, prodrugs, pH modulation, penetration enhancers, hydrogels, inserts, nanomicelles, microemulsions, dendrimers, contact lenses, cationic emulsions, and targeted drug delivery are only some of the many topics covered in this study.

Results

Results summarise and synthesize prior research to give useful insights into the efficacy and potential of controlled-release formulations in increasing ocular medication delivery, providing a thorough review of current insights into these techniques.

Discussion

The discussion portion of the review critically assesses the guiding principles, advantages, and downsides of each technique, and it also investigates the consequences and prospects for this developing subject.

Conclusion

The study highlights the revolutionary potential of controlled-release formulations in the treatment of ocular illnesses, highlighting the importance of overcoming the obstacles associated with restricted pharmaceutical penetration into ocular tissues. This study concludes the present level of knowledge and paves the way for future improvements in the area of ocular medication administration, making it an essential resource for scientists and medical professionals working on the subject.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855287441240513081002
2024-05-23
2025-09-22
Loading full text...

Full text loading...

References

  1. LimL.W. YipL.W. TayH.W. Sustainable practice of ophthalmology during COVID-19: Challenges and solutions.Graefes Arch. Clin. Exp. Ophthalmol.202025871427143610.1007/s00417‑020‑04682‑z 32314034
    [Google Scholar]
  2. CholkarK. DasariS.R. PalD. MitraA.K. Eye: Anatomy, physiology and barriers to drug delivery.Ocular Transporters and Receptors: Their Role in Drug Delivery.Sawston, United KingdomWoodhead Publishing201313610.1533/9781908818317.1
    [Google Scholar]
  3. RobinA.L. MuirK.W. Medication adherence in patients with ocular hypertension or glaucoma.Expert Rev. Ophthalmol.2019144-519921010.1080/17469899.2019.1635456
    [Google Scholar]
  4. PanossianA.G. EfferthT. ShikovA.N. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases.Med. Res. Rev.202141163070310.1002/med.21743 33103257
    [Google Scholar]
  5. WartmanS. The transformation of academic health centers: Meeting the challenges of healthcare’s changing landscape.Cambridge, MassachusettsAcademic Press2015
    [Google Scholar]
  6. DesaiA. ShuklaM. MaulviF. RanchK. Ophthalmic and otic drug administration: Novel approaches and challenges.Novel Drug Delivery Technologies.United StatesSpringer Link201910.1007/978‑981‑13‑3642‑3_10
    [Google Scholar]
  7. PatelA. CholkarK. AgrahariV. MitraA.K. Ocular drug delivery systems: An overview.World J. Pharmacol.201322476410.5497/wjp.v2.i2.47 25590022
    [Google Scholar]
  8. KaurI.P. KakkarS. Nanotherapy for posterior eye diseases.J. Control. Release201419310011210.1016/j.jconrel.2014.05.031 24862316
    [Google Scholar]
  9. PumerantzA. PEGylated liposomal vancomycin: A glimmer of hope for improving treatment outcomes in MRSA pneumonia.Recent Patents Anti-Infect. Drug Disc.20127320521210.2174/157489112803521904
    [Google Scholar]
  10. AchilladelisB. AntonakisN. The dynamics of technological innovation: The case of the pharmaceutical industry.Res. Policy200130453558810.1016/S0048‑7333(00)00093‑7
    [Google Scholar]
  11. VarmaM.V.S. KaushalA.M. GargA. GargS. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems.Am. J. Drug Deliv.200421435710.2165/00137696‑200402010‑00003
    [Google Scholar]
  12. UmmadiS. ShravaniB. RaoN.R. ReddyM.S. SanjeevB. Overview on controlled release dosage form.System2013785160
    [Google Scholar]
  13. ReddyI.K. Ocular theraputics and drug delivery.Boca Raton, FloridaCRC Press1995
    [Google Scholar]
  14. Abdel-MageedH.M. AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: A comprehensive updated review on current status, challenges and emerging opportunities.J. Microencapsul.202138641443610.1080/02652048.2021.1942275 34157915
    [Google Scholar]
  15. BattagliaL. GallarateM. SerpeL. Ocular delivery of solid lipid nanoparticles.Lipid Nanocarriers for Drug Targeting.AmsterdamElsevier201810.1016/B978‑0‑12‑813687‑4.00007‑4
    [Google Scholar]
  16. ParedesA.J. McKennaP.E. RamöllerI.K. Microarray patches: Poking a hole in the challenges faced when delivering poorly soluble drugs.Adv. Funct. Mater.2021311200579210.1002/adfm.202005792
    [Google Scholar]
  17. MishraD.K. ShandilyaR. MishraP.K. Lipid based nanocarriers: A translational perspective.Nanomedicine20181472023205010.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  18. ÇağdaşM. SezerA.D. BucakS. Liposomes as potential drug carrier systems for drug delivery.Application of Nanotechnology in Drug Delivery.LondonIntechOpen Ltd.2014
    [Google Scholar]
  19. SinghY. MeherJ.G. RavalK. Nanoemulsion: Concepts, development and applications in drug delivery.J. Control. Release2017252284910.1016/j.jconrel.2017.03.008 28279798
    [Google Scholar]
  20. KhievD. MohamedZ.A. VichareR. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials (Basel)202111117310.3390/nano11010173 33445545
    [Google Scholar]
  21. SasakiH. YamamuraK. MukaiT. Enhancement of ocular drug penetration.Crit. Rev. Ther. Drug Carrier Syst.1999161161510.1615/CritRevTherDrugCarrierSyst.v16.i1.20
    [Google Scholar]
  22. PinheiroA.V. HanD. ShihW.M. YanH. Challenges and opportunities for structural DNA nanotechnology.Nat. Nanotechnol.201161276377210.1038/nnano.2011.187 22056726
    [Google Scholar]
  23. GaoY GesenbergC ZhengW Oral formulations for preclinical studies: Principle, design, and development considerations.Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. Cambridge, Massachusetts:Academic Press20172455495
    [Google Scholar]
  24. BeginesB. OrtizT. Pérez-ArandaM. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  25. PardeshiS.R. MoreM.P. KulkarniA.D. Current perspectives in nanomedicine delivery for targeted ocular therapeutics.Bull. Mater. Sci.20234613510.1007/s12034‑022‑02869‑0
    [Google Scholar]
  26. ChoonaraY.E. PillayV. DanckwertsM.P. CarmichaelT.R. du ToitL.C. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases.J. Pharm. Sci.20109952219223910.1002/jps.21987 19894268
    [Google Scholar]
  27. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.91 25565440
    [Google Scholar]
  28. BlasiP. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview.J. Pharm. Investig.201949433734610.1007/s40005‑019‑00453‑z
    [Google Scholar]
  29. DingD. ZhuQ. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics.Mater. Sci. Eng. C2018921041106010.1016/j.msec.2017.12.036 30184728
    [Google Scholar]
  30. PontilloA.R.N. DetsiA. Nanoparticles for ocular drug delivery: Modified and non-modified chitosan as a promising biocompatible carrier.Nanomedicine (Lond.)201914141889190910.2217/nnm‑2019‑0040 31274373
    [Google Scholar]
  31. MofidfarM. AbdiB. AhadianS. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies.Int. J. Pharm.202160712092410.1016/j.ijpharm.2021.120924 34324989
    [Google Scholar]
  32. DavoodiP. LeeL.Y. XuQ. Drug delivery systems for programmed and on-demand release.Adv. Drug Deliv. Rev.201813210413810.1016/j.addr.2018.07.002 30415656
    [Google Scholar]
  33. CoelhoJ.F. FerreiraP.C. AlvesP. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments.EPMA J.20101116420910.1007/s13167‑010‑0001‑x 23199049
    [Google Scholar]
  34. WillisG.L. ArmstrongS.M. Fine-tuning the circadian system with light treatment for Parkinson’s disease: An in-depth, critical review.Rev. Neurosci.2024351578410.1515/revneuro‑2023‑0026 37609845
    [Google Scholar]
  35. LiuD. YangF. XiongF. GuN. The smart drug delivery system and its clinical potential.Theranostics2016691306132310.7150/thno.14858 27375781
    [Google Scholar]
  36. BuH.Z. GukasyanH. GouletL. LouX.J. XiangC. KoudriakovaT. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs.Curr. Drug Metab.2007829110710.2174/138920007779815977 17305490
    [Google Scholar]
  37. RathoreN. RajanR.S. Current perspectives on stability of protein drug products during formulation, fill and finish operations.Biotechnol. Prog.200824350451410.1021/bp070462h 18484778
    [Google Scholar]
  38. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  39. MouryaV.K. InamdarN.N. Chitosan-modifications and applications: Opportunities galore.React. Funct. Polym.20086861013105110.1016/j.reactfunctpolym.2008.03.002
    [Google Scholar]
  40. AbatangeloG. VindigniV. AvruscioG. PandisL. BrunP. Hyaluronic acid: Redefining its role.Cells202097174310.3390/cells9071743 32708202
    [Google Scholar]
  41. MuppalaneniOmidian H. Polyvinyl alcohol in medicine and pharmacy: A perspective.J. Dev. Drugs2013231510.4172/2329‑6631.1000112
    [Google Scholar]
  42. PoppeJ. Gelatin.Thickening and gelling agents for food.Boston, MASpringer US19929812310.1007/978‑1‑4615‑3552‑2_5
    [Google Scholar]
  43. ChenJ. SpearS.K. HuddlestonJ.G. RogersR.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media.Green Chem.200572648210.1039/b413546f
    [Google Scholar]
  44. WoodruffM.A. HutmacherD.W. The return of a forgotten polymer—Polycaprolactone in the 21st century.Prog. Polym. Sci.201035101217125610.1016/j.progpolymsci.2010.04.002
    [Google Scholar]
  45. KamideK. Cellulose and cellulose derivatives.AmsterdamElsevier2005
    [Google Scholar]
  46. GebhardtJ.E. FuerstenauD.W. Adsorption of polyacrylic acid at oxide/water interfaces.Colloids Surf.19837322123110.1016/0166‑6622(83)80048‑1
    [Google Scholar]
  47. PaulM. PramanikS.D. SahooR.N. DeyY.N. NayakA.K. Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: A review.Int. J. Biol. Macromol.202324712580810.1016/j.ijbiomac.2023.125808 37460072
    [Google Scholar]
  48. SchildH.G. Poly(N-isopropylacrylamide): Experiment, theory and application.Prog. Polym. Sci.199217216324910.1016/0079‑6700(92)90023‑R
    [Google Scholar]
  49. HellerJ. Development of poly(ortho esters): A historical overview.Biomaterials199011965966510.1016/0142‑9612(90)90024‑K 2090300
    [Google Scholar]
  50. PetrovićZ. Polyurethanes from vegetable oils.Polym. Rev. (Phila. Pa.)200848110915510.1080/15583720701834224
    [Google Scholar]
  51. ShimW.S. KimJ.H. ParkH. KimK. Chan KwonI. LeeD.S. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone-co-lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-lactide) block copolymer.Biomaterials200627305178518510.1016/j.biomaterials.2006.05.038 16797693
    [Google Scholar]
  52. KaurG. MehtaS.K. Developments of Polysorbate (Tween) based microemulsions: Preclinical drug delivery, toxicity and antimicrobial applications.Int. J. Pharm.20175291-213416010.1016/j.ijpharm.2017.06.059 28642203
    [Google Scholar]
  53. LudwigA. The use of mucoadhesive polymers in ocular drug delivery.Adv. Drug Deliv. Rev.200557111595163910.1016/j.addr.2005.07.005 16198021
    [Google Scholar]
  54. AsaneG.S. NirmalS.A. RasalK.B. NaikA.A. MahadikM.S. RaoY.M. Polymers for mucoadhesive drug delivery system: A current status.Drug Dev. Ind. Pharm.200834111246126610.1080/03639040802026012 18720139
    [Google Scholar]
  55. KhareA. GroverK. PawarP. SinghI. Mucoadhesive polymers for enhancing retention in ocular drug delivery.Rev Adhes Adhes20142446750210.1002/9781119162346.ch13
    [Google Scholar]
  56. GrassiriB. ZambitoY. Bernkop-SchnürchA. Strategies to prolong the residence time of drug delivery systems on ocular surface.Adv. Colloid Interface Sci.202128810234210.1016/j.cis.2020.102342 33444845
    [Google Scholar]
  57. NangiaA.K. DesirajuG.R. Heterosynthons, Solid Form Design and Enhanced Drug Bioavailability.Angew. Chem. Int. Ed.20226139e20220748410.1002/anie.202207484 35984673
    [Google Scholar]
  58. RichterA. AntonS.E. KochP. DennettS.L. The impact of reducing dose frequency on health outcomes.Clin. Ther.20032582307233510.1016/S0149‑2918(03)80222‑9 14512137
    [Google Scholar]
  59. MillsJ.K. NeedhamD. Targeted drug delivery.Expert Opin. Ther. Pat.19999111499151310.1517/13543776.9.11.1499
    [Google Scholar]
  60. MatschkeC. IseleU. van HoogevestP. FahrA. Sustained-release injectables formed in situ and their potential use for veterinary products.J. Control. Release2002851-311510.1016/S0168‑3659(02)00266‑3 12480306
    [Google Scholar]
  61. BarmpatsalouV. DubbelboerI.R. RodlerA. Physiological properties, composition and structural profiling of porcine gastrointestinal mucus.Eur. J. Pharm. Biopharm.202116915616710.1016/j.ejpb.2021.10.008 34687897
    [Google Scholar]
  62. SingareD.S. MarellaS. GowthamrajanK. KulkarniG.T. VooturiR. RaoP.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective.Int. J. Pharm.20104021-221322010.1016/j.ijpharm.2010.09.041 20933066
    [Google Scholar]
  63. GoneppanavarU. MagazineR. Periyadka JanardhanaB. Krishna AcharS. Intravenous dexmedetomidine provides superior patient comfort and tolerance compared to intravenous midazolam in patients undergoing flexible bronchoscopy.Pulm. Med.201520151810.1155/2015/727530 26543645
    [Google Scholar]
  64. KhareA. GroverK. PawarP. SinghI. Mucoadhesive polymers for enhancing retention in ocular drug delivery: A critical review.Reviews of Adhesion and Adhesives20142446750210.7569/RAA.2014.097310
    [Google Scholar]
  65. KumarD. NagaichU. GulatiN. JainN. Nanoparticles laden in situ gelling system for ocular drug targeting.J. Adv. Pharm. Technol. Res.20134191710.4103/2231‑4040.107495 23662277
    [Google Scholar]
  66. PawarS. In-situ gel: New trends in controlled and sustained drug delivery system.Int. J. Pharm. Tech. Res.20102213981408
    [Google Scholar]
  67. Ruel-GariépyE. LerouxJ.C. In situ-forming hydrogels—review of temperature-sensitive systems.Eur. J. Pharm. Biopharm.200458240942610.1016/j.ejpb.2004.03.019 15296964
    [Google Scholar]
  68. BhattaraiN. GunnJ. ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery.Adv. Drug Deliv. Rev.2010621839910.1016/j.addr.2009.07.019 19799949
    [Google Scholar]
  69. AchouriD. AlhanoutK. PiccerelleP. AndrieuV. Recent advances in ocular drug delivery.Drug Dev. Ind. Pharm.201339111599161710.3109/03639045.2012.736515 23153114
    [Google Scholar]
  70. AlmeidaH. AmaralM.H. LobãoP. LoboJ.M.S. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations.Drug Discov. Today201419440041210.1016/j.drudis.2013.10.001 24120893
    [Google Scholar]
  71. EdelhauserH.F. Rowe-RendlemanC.L. RobinsonM.R. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications.Invest. Ophthalmol. Vis. Sci.201051115403542010.1167/iovs.10‑5392 20980702
    [Google Scholar]
  72. GuptaH. JainS. MathurR. MishraP. MishraA.K. VelpandianT. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system.Drug Deliv.200714850751510.1080/10717540701606426 18027180
    [Google Scholar]
  73. GoteV. SikderS. SicotteJ. PalD. Ocular drug delivery: Present innovations and future challenges.J. Pharmacol. Exp. Ther.2019370360262410.1124/jpet.119.256933 31072813
    [Google Scholar]
  74. HuangD. ChenY.S. RupenthalI.D. Overcoming ocular drug delivery barriers through the use of physical forces.Adv. Drug Deliv. Rev.20181269611210.1016/j.addr.2017.09.008 28916492
    [Google Scholar]
  75. YavuzB. Bozdağ PehlivanS. ÜnlüN. Dendrimeric systems and their applications in ocular drug delivery.ScientificWorldJournal2013201311310.1155/2013/732340 24396306
    [Google Scholar]
  76. MoiseevR.V. MorrisonP.W.J. SteeleF. KhutoryanskiyV.V. Penetration enhancers in ocular drug delivery.Pharmaceutics201911732110.3390/pharmaceutics11070321 31324063
    [Google Scholar]
  77. SinghN. DieboldY. SahuS.K. LeonardiA. Epithelial barrier dysfunction in ocular allergy.Allergy20227751360137210.1111/all.15174 34757631
    [Google Scholar]
  78. SoutoE.B. Dias-FerreiraJ. López-MachadoA. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents.Pharmaceutics201911946010.3390/pharmaceutics11090460 31500106
    [Google Scholar]
  79. JanaS. MandlekarS. MaratheP. Prodrug design to improve pharmacokinetic and drug delivery properties: Challenges to the discovery scientists.Curr. Med. Chem.201017323874390810.2174/092986710793205426 20858214
    [Google Scholar]
  80. GoteV. AnsongM. PalD. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration.Expert Opin. Drug Metab. Toxicol.2020161088590610.1080/17425255.2020.1803278 32729364
    [Google Scholar]
  81. NajjarA. KaramanR. Successes, failures, and future prospects of prodrugs and their clinical impact.Expert Opin. Drug Discov.201914319922010.1080/17460441.2019.1567487 30714428
    [Google Scholar]
  82. ZhangZ.Y. XuY.D. MaY.Y. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro.Angew. Chem. Int. Ed.201352154127413110.1002/anie.201300431 23463695
    [Google Scholar]
  83. GuptaP. VermaniK. GargS. Hydrogels: From controlled release to pH-responsive drug delivery.Drug Discov. Today200271056957910.1016/S1359‑6446(02)02255‑9 12047857
    [Google Scholar]
  84. TaskarP. TatkeA. MajumdarS. Advances in the use of prodrugs for drug delivery to the eye.Expert Opin. Drug Deliv.2017141496310.1080/17425247.2016.1208649 27441817
    [Google Scholar]
  85. BeaumontK. WebsterR. GardnerI. DackK. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist.Curr. Drug Metab.20034646148510.2174/1389200033489253 14683475
    [Google Scholar]
  86. MishraA. VeerasamyR. JainP.K. DixitV.K. AgrawalR.K. Synthesis, characterization and pharmacological evaluation of amide prodrugs of ketorolac.Eur. J. Med. Chem.200843112464247210.1016/j.ejmech.2007.09.011 17967497
    [Google Scholar]
  87. VijayarajS. AnithaS. OmshanthiB. Sampath KumarK.P. Synthesis and characterization of novel oxime prodrug of gliclizide.Asian J. Chem.201426206989699210.14233/ajchem.2014.17642
    [Google Scholar]
  88. HeX. LuW. JiangX. CaiJ. ZhangX. DingJ. Synthesis and biological evaluation of bis and monocarbonate prodrugs of 10-hydroxycamptothecins.Bioorg. Med. Chem.200412154003400810.1016/j.bmc.2004.06.003 15246077
    [Google Scholar]
  89. ZhuJ. GuoT. WangZ. ZhaoY. Triggered azobenzene-based prodrugs and drug delivery systems.J. Control. Release202234547549310.1016/j.jconrel.2022.03.041 35339578
    [Google Scholar]
  90. HeimbachT. OhD.M. LiL.Y. Absorption rate limit considerations for oral phosphate prodrugs.Pharm. Res.200320684885610.1023/A:1023827017224 12817887
    [Google Scholar]
  91. VargheseO.P. SunW. HilbornJ. OssipovD.A. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: A hydrogel linked prodrug approach.J. Am. Chem. Soc.2009131258781878310.1021/ja902857b 19499915
    [Google Scholar]
  92. SimplícioA. ClancyJ. GilmerJ. Prodrugs for Amines.Molecules200813351954710.3390/molecules13030519 18463563
    [Google Scholar]
  93. VigB.S. HuttunenK.M. LaineK. RautioJ. Amino acids as promoieties in prodrug design and development.Adv. Drug Deliv. Rev.201365101370138510.1016/j.addr.2012.10.001 23099277
    [Google Scholar]
  94. ZaroJ.L. Lipid-based drug carriers for prodrugs to enhance drug delivery.AAPS J.2015171839210.1208/s12248‑014‑9670‑z 25269430
    [Google Scholar]
  95. QandilA. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: A critical review.Int. J. Mol. Sci.20121312172441727410.3390/ijms131217244 23247285
    [Google Scholar]
  96. HossainF. AndreanaP.R. Developments in carbohydrate-based cancer therapeutics.Pharmaceuticals (Basel)20191228410.3390/ph12020084 31167407
    [Google Scholar]
  97. FordeE. DevocelleM. Pro-moieties of antimicrobial peptide prodrugs.Molecules20152011210122710.3390/molecules20011210 25591121
    [Google Scholar]
  98. CacciatoreI. CornacchiaC. PinnenF. MollicaA. Di StefanoA. Prodrug approach for increasing cellular glutathione levels.Molecules20101531242126410.3390/molecules15031242 20335977
    [Google Scholar]
  99. ZhaoC.J. SchieberA. GänzleM.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review.Food Res. Int.201689Pt 1394710.1016/j.foodres.2016.08.042 28460929
    [Google Scholar]
  100. LavikE. KuehnM.H. KwonY.H. Novel drug delivery systems for glaucoma.Eye (Lond.)201125557858610.1038/eye.2011.82 21475311
    [Google Scholar]
  101. LynchC.R. KondiahP.P.D. ChoonaraY.E. du ToitL.C. AllyN. PillayV. Hydrogel biomaterials for application in ocular drug delivery.Front. Bioeng. Biotechnol.2020822810.3389/fbioe.2020.00228 32266248
    [Google Scholar]
  102. KumarK.S. BhowmikD. HarishG. DuraivelS. Ocular inserts: A novel controlled drug delivery system.Pharma Innov.201311
    [Google Scholar]
  103. HwangD. RamseyJ.D. KabanovA.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval.Adv. Drug Deliv. Rev.20201568011810.1016/j.addr.2020.09.009 32980449
    [Google Scholar]
  104. KarunaratneD.N. PamunuwaG. RanatungaU. Microemulsions.Properties And Uses Of Microemulsions.LondonIntechOpen Ltd.201710.5772/intechopen.68823
    [Google Scholar]
  105. FréchetJ.M.J. HawkerC.J. GitsovI. LeonJ.W. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties.J. Macromol. Sci. Part A Pure Appl. Chem.199633101399142510.1080/10601329608014916
    [Google Scholar]
  106. SethA. SharmaP.A. MaheshwariR. TekadeM. ShrivastavaS.K. TekadeR.K. Dendrimers in targeted drug delivery.Dendrimers.Targeted Drug Delivery.Cambridge, MassachusettsAcademic Press2018
    [Google Scholar]
  107. LanierO.L. ChristopherK.G. MacoonR.M. YuY. SekarP. ChauhanA. Commercialization challenges for drug eluting contact lenses.Expert Opin. Drug Deliv.20201781133114910.1080/17425247.2020.1787983 32602822
    [Google Scholar]
  108. KumariP. GhoshB. BiswasS. Nanocarriers for cancer-targeted drug delivery.J. Drug Target.201624317919110.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  109. RobbinsS.G. MixonR.N. WilsonD.J. Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases.Invest. Ophthalmol. Vis. Sci.1994351036493663 8088954
    [Google Scholar]
  110. MittalS. AshharM.U. QizilbashF.F. Ligand conjugated targeted nanotherapeutics for treatment of neurological disorders.Curr. Pharm. Des.202026192291230510.2174/1381612826666200417141600 32303160
    [Google Scholar]
  111. SealfonS.C. WeinsteinH. MillarR.P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor.Endocr. Rev.199718218020510.1210/edrv.18.2.0295 9101136
    [Google Scholar]
  112. ZhaoF. ZhaoY. LiuY. ChangX. ChenC. ZhaoY. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.Small20117101322133710.1002/smll.201100001
    [Google Scholar]
  113. DeNardoS.J. RichmanC.M. AlbrechtH. Enhancement of the therapeutic index: From nonmyeloablative and myeloablative toward pretargeted radioimmunotherapy for metastatic prostate cancer.Clin. Cancer Res.200511197187s7194s10.1158/1078‑0432.CCR‑1004‑0013 16203820
    [Google Scholar]
  114. VhoraI. PatilS. BhattP. GandhiR. BaradiaD. MisraA. Receptor-targeted drug delivery: Current perspective and challenges.Ther. Deliv.2014591007102410.4155/tde.14.63 25375343
    [Google Scholar]
  115. GaudanaR. JwalaJ. BodduS.H.S. MitraA.K. Recent perspectives in ocular drug delivery.Pharm. Res.20092651197121610.1007/s11095‑008‑9694‑0 18758924
    [Google Scholar]
  116. KompellaU.B. HartmanR.R. PatilM.A. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma.Prog. Retin. Eye Res.20218210090110.1016/j.preteyeres.2020.100901 32891866
    [Google Scholar]
  117. Ullah NayanM. SillmanB. HasanM. Advances in long-acting slow effective release antiretroviral therapies for treatment and prevention of HIV infection.Adv. Drug Deliv. Rev.202320011500910.1016/j.addr.2023.115009
    [Google Scholar]
  118. Rowe-RendlemanC.L. DurazoS.A. KompellaU.B. Drug and gene delivery to the back of the eye: From bench to bedside.Invest. Ophthalmol. Vis. Sci.20145542714273010.1167/iovs.13‑13707 24777644
    [Google Scholar]
  119. HagenN.A. BabulN. Comparative clinical efficacy and safety of a novel controlled-release oxycodone formulation and controlled-release hydromorphone in the treatment of cancer pain.Cancer19977971428143710.1002/(SICI)1097‑0142(19970401)79:7<1428:AID‑CNCR21>3.0.CO;2‑0 9083166
    [Google Scholar]
  120. SultanaY. MauryaD.P. IqbalZ. AqilM. Nanotechnology in ocular delivery: Current and future directions.Drugs Today (Barc)201147644145510.1358/dot.2011.47.6.1549023
    [Google Scholar]
  121. SahooS. DilnawazF. KrishnakumarS. Nanotechnology in ocular drug delivery.Drug Discov. Today2008133-414415110.1016/j.drudis.2007.10.021 18275912
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855287441240513081002
Loading
/content/journals/cdth/10.2174/0115748855287441240513081002
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test