Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

A faulty cystic fibrosis transmembrane conductor regulator gene causes the hereditary disease. This causes pulmonary symptoms and pancreatic insufficiency, malnutrition, liver illness, and CF-related diabetes. The assumption is fibrotic growth destroys islets. The article aims to review cystic fibrosis-related diabetes to cover previous findings, contemporary breakthroughs, and future research plans. We conducted a comprehensive literature survey on CFRD's clinical manifestations, monitoring, and analysis, as well as its diagnosis and management. A few theories, such as the deletion of phenylalanine at amino acid position 508, relate pancreatic dysfunction to cystic fibrosis. A study of 950 cord blood samples in India found 1:40000 CF newborns. Many groups and foundations recommend CF diabetic diagnosis criteria. They include oral glucose tolerance tests (OGTT), continuous glucose monitoring (CGM), HbA1c, and fasting hyperglycemia. Recently, fructosamine and glycated albumin have also used to diagnose hyperglycemia in Cystic fibrosis. The accuracy of OGTT and CGM makes them valuable diagnostic tools, with OGTT being the standard. CFRD causes pulmonary decline, malnutrition, microvascular issues, and death. Dietary control, which should be high in calories, protein, fat, salt, and carbohydrates, and physical activity are key CF treatments. Numerous pathophysiological pathways cause diabetes, however, insulin is still the best therapy. Drugs and tools are available to improve insulin treatment. Other therapies include metformin, repaglinide, GLP-1 agonists, and DPP-4 inhibitors.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855304379240517043133
2024-05-24
2025-09-23
Loading full text...

Full text loading...

References

  1. AndersenD.H. Cystic fibrosis of the pancreas and its relation to celiac disease: A clinical and pathologic study.AMA Am. J. Dis. Child.193856234439910.1001/archpedi.1938.01980140114013
    [Google Scholar]
  2. MacKenzieT. GiffordA.H. SabadosaK.A. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry.Ann. Intern. Med.2014161423324110.7326/M13‑0636 25133359
    [Google Scholar]
  3. BrennanA.L. GeddesD.M. GyiK.M. BakerE.H. Clinical importance of cystic fibrosis-related diabetes.J. Cyst. Fibros.20043420922210.1016/j.jcf.2004.08.001 15698938
    [Google Scholar]
  4. HarreiterJ. RodenM. Diabetes mellitus: Definition, classification, diagnosis, screening and prevention.Wien. Klin. Wochenschr.2023135S171710.1007/s00508‑022‑02122‑y 37101021
    [Google Scholar]
  5. MoheetA. MoranA. New Concepts in the Pathogenesis of Cystic Fibrosis–Related Diabetes.J. Clin. Endocrinol. Metab.202210761503150910.1210/clinem/dgac020 35106591
    [Google Scholar]
  6. MoranA. DunitzJ. NathanB. SaeedA. HolmeB. ThomasW. Cystic fibrosis-related diabetes: Current trends in prevalence, incidence, and mortality.Diabetes Care20093291626163110.2337/dc09‑0586 19542209
    [Google Scholar]
  7. KaminskiB.A. GoldsweigB.K. SidhayeA. BlackmanS.M. SchindlerT. MoranA. Cystic fibrosis related diabetes: Nutrition and growth considerations.J. Cyst. Fibros.201918S2S32S3710.1016/j.jcf.2019.08.011 31679727
    [Google Scholar]
  8. AlvesC. MannaD.T. AlbuquerqueC.T.M. Cystic fibrosis-related diabetes: An update on pathophysiology, diagnosis, and treatment.J. Pediatr. Endocrinol. Metab.202033783584310.1515/jpem‑2019‑0484 32651985
    [Google Scholar]
  9. SzentpeteryS. FernandezG.S. SchechterM.S. JainR. FlumeP.A. FinkA.K. Obesity in Cystic fibrosis: Prevalence, trends and associated factors data from the US cystic fibrosis foundation patient registry.J. Cyst. Fibros.202221577778310.1016/j.jcf.2022.03.010 35396178
    [Google Scholar]
  10. KhareS. DesimoneM. KasimN. ChanC.L. Cystic fibrosis-related diabetes: Prevalence, screening, and diagnosis.J. Clin. Transl. Endocrinol.20222710029010.1016/j.jcte.2021.100290 34917485
    [Google Scholar]
  11. BhakooO.N. KumarR. WaliaB.N.S. Mucoviscidosis of the lung.Indian J. Pediatr.196835418318510.1007/BF02808629 5724519
    [Google Scholar]
  12. KabraS.K. KabraM. GhoshM. VermaI.C. Cystic fibrosis-An Indian perspective on recent advances in diagnosis and management.Indian J. Pediatr.199663218919810.1007/BF02845243 10829988
    [Google Scholar]
  13. MandalA. KabraS.K. LodhaR. Cystic fibrosis in India: Past, present and future.J Pulm Med Respir Res2015100228
    [Google Scholar]
  14. KapoorV. ShastriS.S. KabraM. Carrier frequency of F508del mutation of cystic fibrosis in Indian population.J. Cyst. Fibros.200651434610.1016/j.jcf.2005.10.002 16311077
    [Google Scholar]
  15. KabraS.K. KabraM. LodhaR. Clinical profile and frequency of delta f508 mutation in Indian children with cystic fibrosis.Indian Pediatr.2003407612619 12881616
    [Google Scholar]
  16. SoaveD. MillerM.R. KeenanK. Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: A Mendelian randomization study.Diabetes20146362114211910.2337/db13‑1464 24550193
    [Google Scholar]
  17. MarshallB.C. ButlerS.M. StoddardM. MoranA.M. LiouT.G. MorganW.J. Epidemiology of cystic fibrosis-related diabetes.J. Pediatr.2005146568168710.1016/j.jpeds.2004.12.039 15870674
    [Google Scholar]
  18. BlackmanS.M. CommanderC.W. WatsonC. Genetic modifiers of cystic fibrosis-related diabetes.Diabetes201362103627363510.2337/db13‑0510 23670970
    [Google Scholar]
  19. AlvesC.A. AguiarR.A. AlvesA.C. SantanaM.A. Diabetes mellitus in patients with cystic fibrosis.J. Bras. Pneumol.200733221322110.1590/S1806‑37132007000200017 17724542
    [Google Scholar]
  20. GranadosA. ChanC.L. OdeK.L. MoheetA. MoranA. HollR. Cystic fibrosis related diabetes: Pathophysiology, screening and diagnosis.J. Cyst. Fibros.201918S2S3S910.1016/j.jcf.2019.08.016 31679726
    [Google Scholar]
  21. KelseyR. KoivulaM.F.N. McClenaghanN.H. KellyC. Cystic fibrosis–related diabetes: Pathophysiology and therapeutic challenges.Clin. Med. Insights Endocrinol. Diabetes201912117955141985177010.1177/1179551419851770 31191067
    [Google Scholar]
  22. WilschanskiM. NovakI. The cystic fibrosis of exocrine pancreas.Cold Spring Harb. Perspect. Med.201335a00974610.1101/cshperspect.a009746 23637307
    [Google Scholar]
  23. BestL. Glucose‐induced electrical activity in rat pancreatic β‐cells: Dependence on intracellular chloride concentration.J. Physiol.2005568113714410.1113/jphysiol.2005.093740 16024506
    [Google Scholar]
  24. KayaniK. MohammedR. MohiaddinH. Cystic fibrosis-related diabetes.Front. Endocrinol.201892010.3389/fendo.2018.00020 29515516
    [Google Scholar]
  25. (a NtimbaneT. MailhotG. SpahisS. CFTR silencing in pancreatic β-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response.Am. J. Physiol. Endocrinol. Metab.20163103E200E21210.1152/ajpendo.00333.2015 26625901
    [Google Scholar]
  26. (b KellyA. MoranA. Update on cystic fibrosis-related diabetes.J. Cystic Fibrosis2013124318331
    [Google Scholar]
  27. HullR.L. GibsonR.L. McNamaraS. Islet interleukin-1β immunoreactivity is an early feature of cystic fibrosis that may contribute to β-cell failure.Diabetes Care201841482383010.2337/dc17‑1387 29437698
    [Google Scholar]
  28. (a MasonK. HasanS. DarukhanavalaA. KutneyK. COVID-19: Pathophysiology and implications for cystic fibrosis, diabetes and cystic fibrosis-related diabetes.J. Clin. Transl. Endocrinol.20212610026810.1016/j.jcte.2021.100268 34722160
    [Google Scholar]
  29. b FaviaM. de BariL. BobbaA. AtlanteA. An intriguing involvement of mitochondria in cystic fibrosis.J. Clin. Med.20198111890
    [Google Scholar]
  30. MogoiM. PopL.L. DediuM. CiucaI.M. Oral Glucose Tolerance Test in Patients with Cystic Fibrosis Compared to the Overweight and Obese: A Different Approach in Understanding the Results.Children20229453310.3390/children9040533 35455577
    [Google Scholar]
  31. MoranA. BrunzellC. CohenR.C. Clinical care guidelines for cystic fibrosis-related diabetes: A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society.Diabetes Care201033122697270810.2337/dc10‑1768 21115772
    [Google Scholar]
  32. Leiva-GeaI. Antúnez FernándezC. Cardona-HernandezR. Ferrer LozanoM. Bahíllo-CuriesesP. Arroyo-DíezJ. Clemente LeónM. Martín-FríasM. Conde BarreiroS. Mingorance DelgadoA. Pérez SánchezJ. Increased presentation of diabetic ketoacidosis and changes in age and month of type 1 diabetes at onset during the COVID-19 pandemic in Spain.J. Clin. Med.20221115433810.1016/j.jcf.2021.01.002 33478894
    [Google Scholar]
  33. CostaM. PotvinS. HammanaI. Increased glucose excursion in cystic fibrosis and its association with a worse clinical status.J. Cyst. Fibros.20076637638310.1016/j.jcf.2007.02.005 17409029
    [Google Scholar]
  34. PotterK.J. RacineF. BonhoureA. A glycosylated hemoglobin A1c above 6% (42 mmol/mol) is associated with a high risk of developing Cystic Fibrosis-Related Diabetes and a lower probability of weight gain in both adults and children with Cystic Fibrosis.Diabetes Metab.202349410145510.1016/j.diabet.2023.101455 37271306
    [Google Scholar]
  35. BoudreauV. CoriatiA. DesjardinsK. LhoretR.R. Glycated hemoglobin cannot yet be proposed as a screening tool for cystic fibrosis related diabetes.J. Cyst. Fibros.201615225826010.1016/j.jcf.2016.02.005 26905501
    [Google Scholar]
  36. BurgessJ.C. BridgesN. BanyaW. HbA1c as a screening tool for cystic fibrosis related diabetes.J. Cyst. Fibros.201615225125710.1016/j.jcf.2015.03.013 25869326
    [Google Scholar]
  37. DobsonL. SheldonC.D. HattersleyA.T. Validation of interstitial fluid continuous glucose monitoring in cystic fibrosis.Diabetes Care20032661940194110.2337/diacare.26.6.1940‑a 12766139
    [Google Scholar]
  38. O’RiordanS.M.P. HindmarshP. HillN.R. Validation of continuous glucose monitoring in children and adolescents with cystic fibrosis: A prospective cohort study.Diabetes Care20093261020102210.2337/dc08‑1925 19279304
    [Google Scholar]
  39. GojsinaB. MinicP. TodorovicS. SoldatovicI. SovticA. Continuous glucose monitoring as a valuable tool in the early detection of diabetes related to cystic fibrosis.Front Pediatr.2021965972810.3389/fped.2021.659728 34307249
    [Google Scholar]
  40. Report of the expert committee on the diagnosis and classification of diabetes mellitus.Diabetes Care200326S1s5s2010.2337/diacare.26.2007.S5 12502614
    [Google Scholar]
  41. ZorronM. MarsonF.A. MorcilloA.M. Can continuous glucose monitoring predict cystic fibrosis-related diabetes and worse clinical outcome?J. Bras. Pneumol.202248e20210307 35475864
    [Google Scholar]
  42. KinnairdK.E.H. SauerweinT.J. Lack of correlation between 1,5-anhydroglucitol assay and oral glucose tolerance test in patients with cystic fibrosis.Endocr. Pract.201016216717010.4158/EP09149.OR 19833588
    [Google Scholar]
  43. LamG.Y. ShankarukD.M. DaytonJ. The use of fructosamine in cystic fibrosis-related diabetes (CFRD) screening.J. Cyst. Fibros.201817112112410.1016/j.jcf.2017.05.010 28648493
    [Google Scholar]
  44. IzsákV.D. SoósA. SzakácsZ. Screening methods for diagnosing cystic fibrosis-related diabetes: A network meta-analysis of diagnostic accuracy studies.Biomolecules202111452010.3390/biom11040520 33807165
    [Google Scholar]
  45. FarrellPM WhiteTB RenCL Diagnosis of cystic fibrosis: Consensus guidelines from the cystic fibrosis foundation.J Pediatr2017181S4-S15S15.e110.1016/j.jpeds.2016.09.064 28129811
    [Google Scholar]
  46. QuintonP.M. Chloride impermeability in cystic fibrosis.Nature1983301589942142210.1038/301421a0 6823316
    [Google Scholar]
  47. LanngS. ThorsteinssonB. NerupJ. KochC. Influence of the development of diabetes mellitus on clinical status in patients with cystic fibrosis.Eur. J. Pediatr.1992151968468710.1007/BF01957574 1396931
    [Google Scholar]
  48. SchwarzenbergS.J. ThomasW. OlsenT.W. Microvascular complications in cystic fibrosis-related diabetes.Diabetes Care20073051056106110.2337/dc06‑1576 17322485
    [Google Scholar]
  49. BridgesN. RoweR. HoltR.I.G. Unique challenges of cystic fibrosis‐related diabetes.Diabet. Med.20183591181118810.1111/dme.13652 29687501
    [Google Scholar]
  50. CoreyM. EdwardsL. LevisonH. KnowlesM. Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis.J. Pediatr.1997131680981410.1016/S0022‑3476(97)70025‑8 9427882
    [Google Scholar]
  51. De BoeckK. AmaralM.D. Progress in therapies for cystic fibrosis.Lancet Respir. Med.20164866267410.1016/S2213‑2600(16)00023‑0 27053340
    [Google Scholar]
  52. KochC. RainisioM. MadessaniU. Presence of cystic fibrosis‐related diabetes mellitus is tightly linked to poor lung function in patients with cystic fibrosis: Data from the European Epidemiologic Registry of Cystic Fibrosis.Pediatr. Pulmonol.200132534335010.1002/ppul.1142 11596158
    [Google Scholar]
  53. LewisC. BlackmanS.M. NelsonA. Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and sex.Am. J. Respir. Crit. Care Med.2015191219420010.1164/rccm.201403‑0576OC 25479583
    [Google Scholar]
  54. MillaC.E. BillingsJ. MoranA. Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis.Diabetes Care20052892141214410.2337/diacare.28.9.2141 16123480
    [Google Scholar]
  55. AksitM.A. LingH. PaceR.G. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis.Am. J. Hum. Genet.2022109101894190810.1016/j.ajhg.2022.09.004 36206743
    [Google Scholar]
  56. KellyA. MarksB.E. StalveyM.S. Endocrine Complications of Cystic Fibrosis.Clin. Chest Med.202243477378910.1016/j.ccm.2022.06.013 36344080
    [Google Scholar]
  57. BirchL. LithanderF.E. HewerS.L. HarrimanK. ShieldH.J. PerryR. Dietary interventions for managing glucose abnormalities in cystic fibrosis: A systematic review protocol.Syst. Rev.2018719810.1186/s13643‑018‑0757‑y 30021636
    [Google Scholar]
  58. WilsonD.C. KalninsD. StewartC. Challenges in the dietary treatment of cystic fibrosis related diabetes mellitus.Clin. Nutr.2000192879310.1054/clnu.1999.0081 10867725
    [Google Scholar]
  59. ArmaghanianN. AtkinsonF. TaylorN. Dietary intake in cystic fibrosis and its role in glucose metabolism.Clin. Nutr.20203982495250010.1016/j.clnu.2019.11.004 31818530
    [Google Scholar]
  60. RadtkeT. NevittS.J. HebestreitH. KriemlerS. Physical exercise training for cystic fibrosis.Cochrane Database Syst. Rev.20171111CD00276810.1002/14651858.CD002768.pub4
    [Google Scholar]
  61. OdeK.L. ChanC.L. GranadosA. MoheetA. MoranA. BrennanA.L. Cystic fibrosis related diabetes: Medical management.J. Cyst. Fibros.201918S2S10S1810.1016/j.jcf.2019.08.003 31679720
    [Google Scholar]
  62. ShelleyJ. DawsonE.A. BoddyL.M. Developing an ecological approach to physical activity promotion in adults with Cystic fibrosis.PLoS One2022178e027235510.1371/journal.pone.0272355 35914006
    [Google Scholar]
  63. AlicandroG. BattezzatiP.M. BattezzatiA. Insulin secretion, nutritional status and respiratory function in cystic fibrosis patients with normal glucose tolerance.Clin. Nutr.201231111812310.1016/j.clnu.2011.09.007 21974813
    [Google Scholar]
  64. QuianzonC.C. CheikhI. History of insulin.J. Community Hosp. Intern. Med. Perspect.2012221870110.3402/jchimp.v2i2.18701 23882369
    [Google Scholar]
  65. FrostF. DyceP. NazarethD. MaloneV. WalshawM.J. Continuous glucose monitoring guided insulin therapy is associated with improved clinical outcomes in cystic fibrosis-related diabetes.J. Cyst. Fibros.201817679880310.1016/j.jcf.2018.05.005 29885744
    [Google Scholar]
  66. PozoL. BelloF. MendezY. SuraniS. Cystic fibrosis-related diabetes: The unmet need.World J. Diabetes202011621321710.4239/wjd.v11.i6.213 32547695
    [Google Scholar]
  67. MohanK. IsraelK.L. MillerH. GraingerR. LedsonM.J. WalshawM.J. Long-term effect of insulin treatment in cystic fibrosis-related diabetes.Respiration200876218118610.1159/000110206 17960051
    [Google Scholar]
  68. HollanderF.M. de RoosN.M. van MeerkerkB.G. van BerkhoutT.F. HeijermanH.G.M. van de GraafE.A. Body weight and body mass index in patients with end-stage cystic fibrosis stabilize after the start of enteral tube feeding.J. Acad. Nutr. Diet.2017117111808181510.1016/j.jand.2017.07.006 28919081
    [Google Scholar]
  69. PetersonG.E. Intermediate and long-acting insulins: A review of NPH insulin, insulin glargine and insulin detemir.Curr. Med. Res. Opin.200622122613261910.1185/030079906X154178 17166343
    [Google Scholar]
  70. OnadyG.M. StolfiA. Insulin and oral agents for managing cystic fibrosis‐related diabetes.Cochrane Database Syst. Rev.20164CD00473010.1002/14651858.CD004730.pub4
    [Google Scholar]
  71. ScottL.J. Repaglinide.Drugs201272224927210.2165/11207600‑000000000‑00000 22268393
    [Google Scholar]
  72. MatsuoK. NambuT. MatsudaY. Evaluation of the effects of exenatide administration in patients with type 2 diabetes with worsened glycemic control caused by glucocorticoid therapy.Intern. Med.2013521899510.2169/internalmedicine.52.8622 23291680
    [Google Scholar]
  73. CloreJ.N. HayT.L. Glucocorticoid-Induced Hyperglycemia.Endocr. Pract.200915546947410.4158/EP08331.RAR 19454391
    [Google Scholar]
  74. KellyA. SheikhS. StefanovskiD. Effect of sitagliptin on islet function in pancreatic insufficient cystic fibrosis with abnormal glucose tolerance.J. Clin. Endocrinol. Metab.202110692617263410.1210/clinem/dgab365 34406395
    [Google Scholar]
  75. IsmailH.M. Potential role for the use of gliptins in cystic fibrosis-related diabetes.J. Clin. Endocrinol. Metab.202110611e4786e478810.1210/clinem/dgab442 34139767
    [Google Scholar]
  76. GnanapragasamH. MustafaN. BierbrauerM. ProvidenceA.T. DandonaP. Semaglutide in cystic fibrosis-related diabetes.J. Clin. Endocrinol. Metab.202010572341234410.1210/clinem/dgaa167 32232400
    [Google Scholar]
  77. MoranA. Cystic fibrosis-related diabetes: An approach to diagnosis and management.Pediatr. Diabetes200011414810.1034/j.1399‑5448.2000.010107.x 15016241
    [Google Scholar]
  78. CoriatiA. ZiaiS. LavoieA. BerthiaumeY. LhoretR.R. The 1-h oral glucose tolerance test glucose and insulin values are associated with markers of clinical deterioration in cystic fibrosis.Acta Diabetol.201653335936610.1007/s00592‑015‑0791‑3 26215312
    [Google Scholar]
  79. SheikhS. Elevation of one hour plasma glucose during oral glucose tolerance testing.Pediatr. Pulmonol.20155010963
    [Google Scholar]
  80. MannikL.A. ChangK.A. AnnohP.Q.K. Prevalence of hypoglycemia during oral glucose tolerance testing in adults with cystic fibrosis and risk of developing cystic fibrosis-related diabetes.J. Cyst. Fibros.201817453654110.1016/j.jcf.2018.03.009 29680365
    [Google Scholar]
  81. ChanC.L. OdeK.L. GranadosA. MoheetA. MoranA. HameedS. Continuous glucose monitoring in cystic fibrosis – A practical guide.J. Cyst. Fibros.201918S2S25S3110.1016/j.jcf.2019.08.025 31679725
    [Google Scholar]
  82. SunX. YiY. XieW. CFTR influences beta cell function and insulin secre tion through non-cell autonomous exocrine-derived factors.Endocrinol.2017158103325333810.1210/en.2017‑00187 28977592
    [Google Scholar]
  83. MaheshwariRR JonesCJ ShawJAM WhiteMG Evaluation of CFTR expression and localisation in human pancreas.Diabetes201867S12166-P10.2337/db18‑2166‑P
    [Google Scholar]
  84. HaijaA.E.M. SinkoraM. MeyerholzD.K. An activated immune and inflammatory response targets the pancreas of newborn pigs with cystic fibrosis.Pancreatol201111550651510.1159/000332582 22057257
    [Google Scholar]
  85. SharerN. SchwarzM. MaloneG. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis.N. Engl. J. Med.19983391064565210.1056/NEJM199809033391001 9725921
    [Google Scholar]
  86. HegyiP. WilschanskiM. MuallemS. CFTR: A new horizon in the pathomechanism and treatment of pancreatitis.Rev. Physiol. Biochem. Pharmacol.2016170376610.1007/112_2015_5002 26856995
    [Google Scholar]
  87. WooldridgeJ.L. SzczesniakR.D. FenchelM.C. ElderD.A. Insulin secretion abnormalities in exocrine pancreatic sufficient cystic fibrosis patients.J. Cyst. Fibros.201514679279710.1016/j.jcf.2015.02.009 25754095
    [Google Scholar]
  88. SheikhS. GudipatyL. De LeonD.D. Reduced β-cell secretory capacity in pancreatic-insufficient, but not pancreatic-sufficient, cystic fibrosis despite nor mal glucose tolerance.Diabetes201766113414410.2337/db16‑0394 27495225
    [Google Scholar]
  89. BoomA. LybaertP. PolletJ.F. Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas.Endocrine200732219720510.1007/s12020‑007‑9026‑x 18040894
    [Google Scholar]
  90. MelisN. TaucM. CougnonM. Revisiting CFTR inhibition: A comparative study of CFTRinh ‐172 and GlyH ‐101 inhibitors.Br. J. Pharmacol.2014171153716372710.1111/bph.12726 24758416
    [Google Scholar]
  91. UcA. OlivierA.K. GriffinM.A. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass.Clin. Sci.2015128213114210.1042/CS20140059 25142104
    [Google Scholar]
  92. MillaC. WarwickW.J. MoranA. Trends in pulmonary function in patients with cystic fibrosis correlate with the degree of glucose intolerance at baseline.Am. J. Respir. Crit. Care Med.2000162389189510.1164/ajrccm.162.3.9904075 10988101
    [Google Scholar]
  93. LimoliD.H. YangJ. KhansahebM.K. Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes.Eur. J. Clin. Microbiol. Infect. Dis.201635694795310.1007/s10096‑016‑2621‑0 26993289
    [Google Scholar]
  94. Van SambeekL. CowleyE.S. NewmanD.K. KatoR. Sputum glucose and glycemic control in cystic fibrosis-related diabetes: A cross-sectional study.PLoS One2015103e011993810.1371/journal.pone.0119938 25803537
    [Google Scholar]
  95. GarnettJ.P. KalsiK.K. SobottaM. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion.Sci. Rep.2016613795510.1038/srep37955 27897253
    [Google Scholar]
  96. MoranA. BeckerD. CasellaS.J. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: A technical review.Diabetes Care201033122677268310.2337/dc10‑1279 21115770
    [Google Scholar]
  97. Cystic Fibrosis TrustManagement of Cystic Fibrosis Related Diabetes Mellitus.LondonCystic Fibrosis Trust2004
    [Google Scholar]
  98. HartN.J. AramandlaR. PoffenbergerG. Cystic fibrosis–related diabetes is caused by islet loss and inflammation.JCI Insight201838e9824010.1172/jci.insight.98240 29669939
    [Google Scholar]
  99. IannucciA. MukaiK. JohnsonD. BurkeB. Endocrine pancreas in cystic fibrosis: An immunohistochemical study.Hum. Pathol.198415327828410.1016/S0046‑8177(84)80191‑4 6365738
    [Google Scholar]
  100. SoejimaK. LandingB.H. Pancreatic islets in older patients with cystic fibrosis with and without diabetes mellitus: Morphometric and immunocytologic studies.Pediatr. Pathol.198661254610.3109/15513818609025923 2881283
    [Google Scholar]
  101. OlivierA.K. YiY. SunX. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets.J. Clin. Invest.2012122103755376810.1172/JCI60610 22996690
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855304379240517043133
Loading
/content/journals/cdth/10.2174/0115748855304379240517043133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test